BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu Y, Zhan L, Qin Z, Sackrison J, Bischof JC. Ultrasensitive and Highly Specific Lateral Flow Assays for Point-of-Care Diagnosis. ACS Nano 2021;15:3593-611. [PMID: 33607867 DOI: 10.1021/acsnano.0c10035] [Cited by in Crossref: 63] [Cited by in F6Publishing: 72] [Article Influence: 63.0] [Reference Citation Analysis]
Number Citing Articles
1 Song D, Yuan D, Tan X, Li L, He H, Zhao L, Yang G, Pan S, Dai H, Song X, Zhao Y. Allosteric aptasensor-initiated target cycling and transcription amplification of light-up RNA aptamer for sensitive detection of protein. Sens Actuators B Chem 2022;371:132526. [PMID: 35996600 DOI: 10.1016/j.snb.2022.132526] [Reference Citation Analysis]
2 Li X, Chen X, Mao M, Peng C, Wang Z. Accelerated CRISPR/Cas12a-based small molecule detection using bivalent aptamer. Biosens Bioelectron 2022;217:114725. [PMID: 36179433 DOI: 10.1016/j.bios.2022.114725] [Reference Citation Analysis]
3 Chatterjee S, Mukhopadhyay S. Recent advances of lateral flow immunoassay components as “point of need”. Journal of Immunoassay and Immunochemistry. [DOI: 10.1080/15321819.2022.2122063] [Reference Citation Analysis]
4 Seder I, Ham KM, Jun BH, Kim SJ. Mechanical Timer-Actuated Fluidic Dispensing System: Applications to an Automated Multistep Lateral Flow Immunoassay with High Sensitivity. Anal Chem 2022. [PMID: 36069050 DOI: 10.1021/acs.analchem.2c02945] [Reference Citation Analysis]
5 Lee HN, Lee J, Kang YK, Lee JH, Yang S, Chung HJ. A Lateral Flow Assay for Nucleic Acid Detection Based on Rolling Circle Amplification Using Capture Ligand-Modified Oligonucleotides. BioChip J. [DOI: 10.1007/s13206-022-00080-1] [Reference Citation Analysis]
6 Sena-Torralba A, Álvarez-Diduk R, Parolo C, Piper A, Merkoçi A. Toward Next Generation Lateral Flow Assays: Integration of Nanomaterials. Chem Rev 2022. [PMID: 36067039 DOI: 10.1021/acs.chemrev.1c01012] [Reference Citation Analysis]
7 Ahirwar R, Bhattacharya A, Kumar S. Unveiling the underpinnings of various non-conventional ELISA variants: a review article. Expert Rev Mol Diagn 2022. [PMID: 36004453 DOI: 10.1080/14737159.2022.2117615] [Reference Citation Analysis]
8 Khosla NK, Lesinski JM, Colombo M, Bezinge L, deMello AJ, Richards DA. Simplifying the complex: accessible microfluidic solutions for contemporary processes within in vitro diagnostics. Lab Chip 2022. [PMID: 35984715 DOI: 10.1039/d2lc00609j] [Reference Citation Analysis]
9 Deng C, Li H, Qian S, Fu P, Zhou H, Zheng J, Wang Y. An Emerging Fluorescent Carbon Nanobead Label Probe for Lateral Flow Assays and Highly Sensitive Screening of Foodborne Toxins and Pathogenic Bacteria. Anal Chem 2022. [PMID: 35959591 DOI: 10.1021/acs.analchem.2c01430] [Reference Citation Analysis]
10 Kim S, Lee J. Current Advances in Paper-Based Biosensor Technologies for Rapid COVID-19 Diagnosis. BioChip J. [DOI: 10.1007/s13206-022-00078-9] [Reference Citation Analysis]
11 Wang H, Zou Q, Xiang Y, Yang J, Xu Z, Yang W, Wu Y, Wu J, Liu D, Zhang D, Hu N. A smart tablet-phone-based system using dynamic light modulation for highly sensitive colorimetric biosensing. Talanta 2022. [DOI: 10.1016/j.talanta.2022.123862] [Reference Citation Analysis]
12 Huang Y, Gu Y, Liu X, Deng T, Dai S, Qu J, Yang G, Qu L. Reusable ring-like Fe3O4/Au nanozymes with enhanced peroxidase-like activities for colorimetric-SERS dual-mode sensing of biomolecules in human blood. Biosensors and Bioelectronics 2022;209:114253. [DOI: 10.1016/j.bios.2022.114253] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
13 Liu Y, Zhan L, Kangas J, Wang Y, Bischof J. Fast and ultrafast thermal contrast amplification of gold nanoparticle-based immunoassays. Sci Rep 2022;12:12729. [PMID: 35882876 DOI: 10.1038/s41598-022-14841-3] [Reference Citation Analysis]
14 Copeland CE, Kim J, Copeland PL, Heitmeier CJ, Kwon YC. Characterizing a New Fluorescent Protein for a Low Limit of Detection Sensing in the Cell-Free System. ACS Synth Biol 2022. [PMID: 35850511 DOI: 10.1021/acssynbio.2c00180] [Reference Citation Analysis]
15 Wang J, Jiang C, Yuan J, Tong L, Wang Y, Zhuo D, Huang L, Ni W, Zhang J, Huang M, Li D, Su B, Hu J. Hue Recognition Competitive Fluorescent Lateral Flow Immunoassay for Aflatoxin M 1 Detection with Improved Visual and Quantitative Performance. Anal Chem . [DOI: 10.1021/acs.analchem.2c02020] [Reference Citation Analysis]
16 Weiß LJK, Rinklin P, Thakur B, Music E, Url H, Kopic I, Hoven D, Banzet M, von Trotha T, Mayer D, Wolfrum B. Prototype Digital Lateral Flow Sensor Using Impact Electrochemistry in a Competitive Binding Assay. ACS Sens 2022. [PMID: 35801574 DOI: 10.1021/acssensors.2c00728] [Reference Citation Analysis]
17 Asghari S, Ekrami E, Barati F, Avatefi M, Mahmoudifard M. The role of the nanofibers in lateral flow assays enhancement: a critical review. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2022.2090360] [Reference Citation Analysis]
18 Zhuang H, Xu C, Gao F, Li Y, Lei C, Yu C. Recent Advances in Silica-Nanomaterial-Assisted Lateral Flow Assay. Bioengineering 2022;9:266. [DOI: 10.3390/bioengineering9070266] [Reference Citation Analysis]
19 Hendrickson OD, Zvereva EA, Zherdev AV, Dzantiev BB. Cascade-Enhanced Lateral Flow Immunoassay for Sensitive Detection of Okadaic Acid in Seawater, Fish, and Seafood. Foods 2022;11:1691. [PMID: 35741890 DOI: 10.3390/foods11121691] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Li X, Qian Z, Chang R, Peng C, Xie Z, Wang Z. Non-thiolated nucleic acid functionalized gold nanoparticle-based aptamer lateral flow assay for rapid detection of kanamycin. Mikrochim Acta 2022;189:244. [PMID: 35674802 DOI: 10.1007/s00604-022-05342-1] [Reference Citation Analysis]
21 Hao L, Yang W, Xu Y, Cui T, Zhu G, Zeng W, Bian K, Liang H, Zhang P, Zhang B. Engineering light-initiated afterglow lateral flow immunoassay for infectious disease diagnostics. Biosens Bioelectron 2022;212:114411. [PMID: 35623251 DOI: 10.1016/j.bios.2022.114411] [Reference Citation Analysis]
22 Gosselin B, Retout M, Dutour R, Troian-Gautier L, Bevernaegie R, Herens S, Lefèvre P, Denis O, Bruylants G, Jabin I. Ultrastable Silver Nanoparticles for Rapid Serology Detection of Anti-SARS-CoV-2 Immunoglobulins G. Anal Chem 2022. [PMID: 35561247 DOI: 10.1021/acs.analchem.2c00870] [Reference Citation Analysis]
23 Vieira M, Fernandes R, Ambrósio AF, Cardoso V, Carvalho M, Weng Kung P, Neves MAD, Mendes Pinto I. Lab-on-a-chip technologies for minimally invasive molecular sensing of diabetic retinopathy. Lab Chip 2022. [PMID: 35485913 DOI: 10.1039/d1lc01138c] [Reference Citation Analysis]
24 Yadav D, Agarwal S, Pancham P, Jindal D, Agarwal V, Dubey PK, Jha SK, Mani S, Rachana, Dey A, Jha NK, Kesari KK, Singh M. Probing the Immune System Dynamics of the COVID-19 Disease for Vaccine Designing and Drug Repurposing Using Bioinformatics Tools. Immuno 2022;2:344-71. [DOI: 10.3390/immuno2020022] [Reference Citation Analysis]
25 Zhao X, Byrne HJ, O’connor CM, Curtin J, Tian F. Limits of Detection of Mycotoxins by Laminar Flow Strips: A Review. Applied Nano 2022;3:91-101. [DOI: 10.3390/applnano3020006] [Reference Citation Analysis]
26 Wu J, Xu M, Liu W, Huang Y, Wang R, Chen W, Feng L, Liu N, Sun X, Zhou M, Qian K. Glaucoma Characterization by Machine Learning of Tear Metabolic Fingerprinting. Small Methods 2022;:e2200264. [PMID: 35388987 DOI: 10.1002/smtd.202200264] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Kang Y, Su G, Yu Y, Cao J, Wang J, Yan B. CRISPR-Cas12a-Based Aptasensor for On-Site and Highly Sensitive Detection of Microcystin-LR in Freshwater. Environ Sci Technol 2022;56:4101-10. [PMID: 35263090 DOI: 10.1021/acs.est.1c06733] [Reference Citation Analysis]
28 Fattahi Z, Hasanzadeh M. Nanotechnology-assisted microfluidic systems platform for chemical and bioanalysis. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116637] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Wu L, Zhou T, Huang R. A universal CRISPR/Cas9-based electrochemiluminescence probe for sensitive and single-base-specific DNA detection. Sensors and Actuators B: Chemical 2022;357:131411. [DOI: 10.1016/j.snb.2022.131411] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
30 Natarajan S, Joseph J, França Prazeres DM. Exploring carbohydrate binding module fusions and Fab fragments in a cellulose-based lateral flow immunoassay for detection of cystatin C. Sci Rep 2022;12:5478. [PMID: 35361862 DOI: 10.1038/s41598-022-09454-9] [Reference Citation Analysis]
31 Bu T, Bai F, Zhao S, Sun X, Jia P, He K, Wang Y, Li Q, Wang L. Dual-Modal Immunochromatographic Test for Sensitive Detection of Zearalenone in Food Samples Based On Biosynthetic Staphylococcus aureus-Mediated Polymer Dot Nanocomposites. Anal Chem 2022. [PMID: 35348339 DOI: 10.1021/acs.analchem.1c04721] [Reference Citation Analysis]
32 Weiß LJK, Lubins G, Music E, Rinklin P, Banzet M, Peng H, Terkan K, Mayer D, Wolfrum B. Single-Impact Electrochemistry in Paper-Based Microfluidics. ACS Sens 2022;7:884-92. [PMID: 35235291 DOI: 10.1021/acssensors.1c02703] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
33 Bikkarolla SK, McNamee SE, Vance P, McLaughlin J. High-Sensitive Detection and Quantitative Analysis of Thyroid-Stimulating Hormone Using Gold-Nanoshell-Based Lateral Flow Immunoassay Device. Biosensors (Basel) 2022;12:182. [PMID: 35323452 DOI: 10.3390/bios12030182] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Sena‐torralba A, Torné‐morató H, Parolo C, Ranjbar S, Farahmand Nejad MA, Álvarez‐diduk R, Idili A, Hormozi‐nezhad MR, Merkoçi A. A Novel Ratiometric Fluorescent Approach for the Modulation of the Dynamic Range of Lateral Flow Immunoassays. Adv Materials Technologies. [DOI: 10.1002/admt.202101450] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
35 Qin J, Wang W, Gao L, Yao SQ. Emerging biosensing and transducing techniques for potential applications in point-of-care diagnostics. Chem Sci 2022;13:2857-76. [PMID: 35382472 DOI: 10.1039/d1sc06269g] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
36 Karako K, Song P, Chen Y, Tang W. Increasing demand for point-of-care testing and the potential to incorporate the Internet of medical things in an integrated health management system. Biosci Trends 2022. [PMID: 35197419 DOI: 10.5582/bst.2022.01074] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Chen R, Chen X, Zhou Y, Lin T, Leng Y, Huang X, Xiong Y. "Three-in-One" Multifunctional Nanohybrids with Colorimetric Magnetic Catalytic Activities to Enhance Immunochromatographic Diagnosis. ACS Nano 2022;16:3351-61. [PMID: 35137583 DOI: 10.1021/acsnano.2c00008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
38 Tian LL, Li CH, Ye QC, Li YF, Huang CZ, Zhan L, Wang DM, Zhen SJ. A centrifugal microfluidic chip for point-of-care testing of staphylococcal enterotoxin B in complex matrices. Nanoscale 2022;14:1380-5. [PMID: 35018396 DOI: 10.1039/d1nr05599b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
39 Ali Z, Sánchez E, Tehseen M, Mahas A, Marsic T, Aman R, Sivakrishna Rao G, Alhamlan FS, Alsanea MS, Al-Qahtani AA, Hamdan S, Mahfouz M. Bio-SCAN: A CRISPR/dCas9-Based Lateral Flow Assay for Rapid, Specific, and Sensitive Detection of SARS-CoV-2. ACS Synth Biol 2022;11:406-19. [PMID: 34939798 DOI: 10.1021/acssynbio.1c00499] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
40 Danthanarayana AN, Brgoch J, Willson RC. Photoluminescent Molecules and Materials as Diagnostic Reporters in Lateral Flow Assays. ACS Appl Bio Mater 2022;5:82-96. [PMID: 35014811 DOI: 10.1021/acsabm.1c01051] [Reference Citation Analysis]
41 Kumar M, Singh G, Kaur N, Singh N. Organic Cation Receptor for Colorimetric Lateral Flow Device: Detection of Zearalenone in Food Samples. ACS Appl Mater Interfaces 2022;14:910-9. [PMID: 34978408 DOI: 10.1021/acsami.1c19744] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Alghounaim M, Bastaki H, Bin Essa F, Motlagh H, Al-Sabah S. The Performance of Two Rapid Antigen Tests During Population-Level Screening for SARS-CoV-2 Infection. Front Med (Lausanne) 2021;8:797109. [PMID: 35004772 DOI: 10.3389/fmed.2021.797109] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
43 Chen X, Ding L, Huang X, Xiong Y. Tailoring noble metal nanoparticle designs to enable sensitive lateral flow immunoassay. Theranostics 2022;12:574-602. [PMID: 34976202 DOI: 10.7150/thno.67184] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
44 Bian L, Xiong Y, Zhao H, Guo H, Li Z, Ye K, Zhang Z, Liu T, Wu Y, Lin G. Europium (III) chelate microparticle-based lateral flow immunoassay strips for rapid and quantitative detection of cystatin C in serum. Journal of Chromatography B 2022. [DOI: 10.1016/j.jchromb.2022.123133] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Park S, Kim H, Woo K, Kim JM, Jo HJ, Jeong Y, Lee KH. SARS-CoV-2 Variant Screening Using a Virus-Receptor-Based Electrical Biosensor. Nano Lett 2021. [PMID: 34962130 DOI: 10.1021/acs.nanolett.1c03108] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
46 Liu Y, Zhan L, Shen JW, Baro B, Alemany A, Sackrison J, Mitjà O, Bischof JC. fM-aM Detection of the SARS-CoV-2 Antigen by Advanced Lateral Flow Immunoassay Based on Gold Nanospheres. ACS Appl Nano Mater 2021;4:13826-37. [PMID: 34957379 DOI: 10.1021/acsanm.1c03217] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
47 Gao F, Liu C, Yao Y, Lei C, Li S, Yuan L, Song H, Yang Y, Wan J, Yu C. Quantum dots' size matters for balancing their quantity and quality in label materials to improve lateral flow immunoassay performance for C-reactive protein determination. Biosens Bioelectron 2021;199:113892. [PMID: 34933225 DOI: 10.1016/j.bios.2021.113892] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
48 Wu Y, Battalapalli D, Hakeem MJ, Selamneni V, Zhang P, Draz MS, Ruan Z. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections. J Nanobiotechnology 2021;19:401. [PMID: 34863214 DOI: 10.1186/s12951-021-01132-8] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
49 Wu Y, Sun J, Huang X, Lai W, Xiong Y. Ensuring food safety using fluorescent nanoparticles-based immunochromatographic test strips. Trends in Food Science & Technology 2021;118:658-78. [DOI: 10.1016/j.tifs.2021.10.025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
50 Tobin E, Brenner S. Nanotechnology Fundamentals Applied to Clinical Infectious Diseases and Public Health. Open Forum Infect Dis 2021;8:ofab583. [PMID: 34988245 DOI: 10.1093/ofid/ofab583] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Samper IC, Sánchez-Cano A, Khamcharoen W, Jang I, Siangproh W, Baldrich E, Geiss BJ, Dandy DS, Henry CS. Electrochemical Capillary-Flow Immunoassay for Detecting Anti-SARS-CoV-2 Nucleocapsid Protein Antibodies at the Point of Care. ACS Sens 2021;6:4067-75. [PMID: 34694794 DOI: 10.1021/acssensors.1c01527] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
52 Zhou P, Lu F, Pan W, Yin J, Li N, Tang B. Cyclic chain displacement amplification-based dual-miRNA detection: a triple-line lateral flow strip for the diagnosis of lung cancer. Chem Commun (Camb) 2021;57:12301-4. [PMID: 34730575 DOI: 10.1039/d1cc05442b] [Reference Citation Analysis]
53 Zou S, Wu L, Li G, Wang J, Cao D, Xu T, Jia A, Tang Y. Development of an accurate lateral flow immunoassay for PEDV detection in swine fecal samples with a filter pad design. Anim Dis 2021;1:27. [PMID: 34778887 DOI: 10.1186/s44149-021-00029-1] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
54 Moulahoum H, Ghorbanizamani F, Timur S. Paper-based lateral flow assay using rhodamine B-loaded polymersomes for the colorimetric determination of synthetic cannabinoids in saliva. Mikrochim Acta 2021;188:402. [PMID: 34731326 DOI: 10.1007/s00604-021-05062-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
55 Garifullina A, Shen AQ. High-throughput fabrication of high aspect ratio Ag/Al nanopillars for optical detection of biomarkers. J Mater Chem B 2021;9:8851-61. [PMID: 34647953 DOI: 10.1039/d1tb01556g] [Reference Citation Analysis]
56 Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB. Recombinase Polymerase Amplification Assay with and without Nuclease-Dependent-Labeled Oligonucleotide Probe. Int J Mol Sci 2021;22:11885. [PMID: 34769313 DOI: 10.3390/ijms222111885] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
57 Tripathi A, Harris KD, Elias AL. High surface area nitrogen-functionalized Ni nanozymes for efficient peroxidase-like catalytic activity. PLoS One 2021;16:e0257777. [PMID: 34637444 DOI: 10.1371/journal.pone.0257777] [Reference Citation Analysis]
58 Zhou Y, Wu Y, Ding L, Huang X, Xiong Y. Point-of-care COVID-19 diagnostics powered by lateral flow assay. Trends Analyt Chem 2021;145:116452. [PMID: 34629572 DOI: 10.1016/j.trac.2021.116452] [Cited by in F6Publishing: 18] [Reference Citation Analysis]
59 Napione L. Integrated Nanomaterials and Nanotechnologies in Lateral Flow Tests for Personalized Medicine Applications. Nanomaterials (Basel) 2021;11:2362. [PMID: 34578678 DOI: 10.3390/nano11092362] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
60 Lv Y, Xu H, Wu R, Xu Y, Li N, Li J, Shen H, Ma H, Guo F, Li LS. A quantum dot microspheres-based highly specific and sensitive three-dimensional microarray for multiplexed detection of inflammatory factors. Nanotechnology 2021;32. [PMID: 34371487 DOI: 10.1088/1361-6528/ac1bdd] [Reference Citation Analysis]
61 Li Y, Xie H, Wang J, Li X, Xiao Z, Xu Z, Lei H, Shen X. Lateral Flow Immunochromatography Assay for Detection of Furosemide in Slimming Health Foods. Foods 2021;10:2041. [PMID: 34574151 DOI: 10.3390/foods10092041] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
62 Hsiao WW, Le TN, Pham DM, Ko HH, Chang HC, Lee CC, Sharma N, Lee CK, Chiang WH. Recent Advances in Novel Lateral Flow Technologies for Detection of COVID-19. Biosensors (Basel) 2021;11:295. [PMID: 34562885 DOI: 10.3390/bios11090295] [Cited by in Crossref: 1] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
63 Fukuhara G. Smart polymer chemosensors: signal-amplification systems with allosterism. Polym J 2021;53:1325-34. [DOI: 10.1038/s41428-021-00547-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Xu LD, Zhu J, Ding SN. Immunoassay of SARS-CoV-2 nucleocapsid proteins using novel red emission-enhanced carbon dot-based silica spheres. Analyst 2021;146:5055-60. [PMID: 34282816 DOI: 10.1039/d1an01010g] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
65 Bu T, Bai F, Zhao S, Cao Y, He K, Sun X, Wang Q, Jia P, Li M, Wang X, Wang L. Multifunctional bacteria-derived tags for advancing immunoassay analytical performance with dual-channel switching and antibodies bioactivity sustaining. Biosens Bioelectron 2021;192:113538. [PMID: 34343740 DOI: 10.1016/j.bios.2021.113538] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
66 Yao L, Xu J, Cheng J, Yao B, Zheng L, Liu G, Chen W. Simultaneous and accurate screening of multiple genetically modified organism (GMO) components in food on the same test line of SERS-integrated lateral flow strip. Food Chem 2021;366:130595. [PMID: 34298393 DOI: 10.1016/j.foodchem.2021.130595] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
67 Panferov VG, Byzova NA, Biketov SF, Zherdev AV, Dzantiev BB. Comparative Study of In Situ Techniques to Enlarge Gold Nanoparticles for Highly Sensitive Lateral Flow Immunoassay of SARS-CoV-2. Biosensors (Basel) 2021;11:229. [PMID: 34356700 DOI: 10.3390/bios11070229] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
68 McConnell EM, Cozma I, Mou Q, Brennan JD, Lu Y, Li Y. Biosensing with DNAzymes. Chem Soc Rev 2021;50:8954-94. [PMID: 34227631 DOI: 10.1039/d1cs00240f] [Cited by in F6Publishing: 32] [Reference Citation Analysis]
69 Su L, Hu H, Tian Y, Jia C, Wang L, Zhang H, Wang J, Zhang D. Highly Sensitive Colorimetric/Surface-Enhanced Raman Spectroscopy Immunoassay Relying on a Metallic Core-Shell Au/Au Nanostar with Clenbuterol as a Target Analyte. Anal Chem 2021;93:8362-9. [PMID: 34077199 DOI: 10.1021/acs.analchem.1c01487] [Cited by in Crossref: 1] [Cited by in F6Publishing: 19] [Article Influence: 1.0] [Reference Citation Analysis]
70 Hwang YJ, Lee KK, Kim JW, Chung KH, Kim SJ, Yun WS, Lee CS. Effective Diagnosis of Foot-And-Mouth Disease Virus (FMDV) Serotypes O and A Based on Optical and Electrochemical Dual-Modal Detection. Biomolecules 2021;11:841. [PMID: 34198783 DOI: 10.3390/biom11060841] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
71 Yue H, Huang M, Tian T, Xiong E, Zhou X. Advances in Clustered, Regularly Interspaced Short Palindromic Repeats (CRISPR)-Based Diagnostic Assays Assisted by Micro/Nanotechnologies. ACS Nano 2021;15:7848-59. [PMID: 33961413 DOI: 10.1021/acsnano.1c02372] [Cited by in Crossref: 22] [Cited by in F6Publishing: 28] [Article Influence: 22.0] [Reference Citation Analysis]
72 Díaz-González M, de la Escosura-Muñiz A. Strip modification and alternative architectures for signal amplification in nanoparticle-based lateral flow assays. Anal Bioanal Chem 2021;413:4111-7. [PMID: 34036400 DOI: 10.1007/s00216-021-03421-5] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
73 Liu Y, Zhan L, Wang Y, Kangas J, Larkin D, Boulware DR, Bischof JC. Improved Influenza Diagnostics through Thermal Contrast Amplification. Diagnostics (Basel) 2021;11:462. [PMID: 33800088 DOI: 10.3390/diagnostics11030462] [Cited by in F6Publishing: 4] [Reference Citation Analysis]