BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huang L, Jin J, Ao L, Jiang C, Zhang Y, Wen HM, Wang J, Wang H, Hu J. Hierarchical Plasmonic-Fluorescent Labels for Highly Sensitive Lateral Flow Immunoassay with Flexible Dual-Modal Switching. ACS Appl Mater Interfaces 2020;12:58149-60. [PMID: 33326226 DOI: 10.1021/acsami.0c18667] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 7.3] [Reference Citation Analysis]
Number Citing Articles
1 Zhao S, Xu Z, Bu T, Hu X, Cao J, Hou J, Bai F, Zhang R, Wang L, Zhang G. Iridium (IV) oxide-mediated microorganism nanozyme amplified immunochromatographic assay for dual-signal sensitive detection of salbutamol. Food Control 2023;145:109481. [DOI: 10.1016/j.foodcont.2022.109481] [Reference Citation Analysis]
2 Zuo J, Yan T, Tang X, Zhang Q, Li P. Dual-Modal Immunosensor Made with the Multifunction Nanobody for Fluorescent/Colorimetric Sensitive Detection of Aflatoxin B(1) in Maize. ACS Appl Mater Interfaces 2023;15:2771-80. [PMID: 36598495 DOI: 10.1021/acsami.2c20269] [Reference Citation Analysis]
3 Fang B, Xiong Q, Duan H, Xiong Y, Lai W. Tailored quantum dots for enhancing sensing performance of lateral flow immunoassay. TrAC Trends in Analytical Chemistry 2022;157:116754. [DOI: 10.1016/j.trac.2022.116754] [Reference Citation Analysis]
4 Xie Z, Feng S, Pei F, Xia M, Hao Q, Liu B, Tong Z, Wang J, Lei W, Mu X. Magnetic/fluorescent dual-modal lateral flow immunoassay based on multifunctional nanobeads for rapid and accurate SARS-CoV-2 nucleocapsid protein detection. Anal Chim Acta 2022;1233:340486. [PMID: 36283777 DOI: 10.1016/j.aca.2022.340486] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Zhang X, Fishlock S, Sharpe P, Mclaughlin J. Development of colorimetric lateral flow assays with gold nanostructures for Cystatin C detection. Sensors and Actuators Reports 2022;4:100121. [DOI: 10.1016/j.snr.2022.100121] [Reference Citation Analysis]
6 Zhang C, Wang Y, Liu Z, Bai M, Wang J, Wang Y. Nanobody-based immunochromatographic biosensor for colorimetric and photothermal dual-mode detection of foodborne pathogens. Sensors and Actuators B: Chemical 2022;369:132371. [DOI: 10.1016/j.snb.2022.132371] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Xiong J, Qin L, Zhang H, Zhang S, He S, Xu Y, Zhang L, Wang Z, Jiang H. Sensitive and simultaneous detection of ractopamine and salbutamol using multiplex lateral flow immunoassay based on polyethyleneimine-mediated SiO2@QDs nanocomposites: Comparison and application. Microchemical Journal 2022;181:107730. [DOI: 10.1016/j.microc.2022.107730] [Reference Citation Analysis]
8 Li J, Wu T, Wang C, Tu J, Song X, Shao Y, Wang C, Qi K, Xiao R. Nanogapped Fe 3 O 4 @Au Surface-Enhanced Raman Scattering Tags for the Multiplex Detection of Bacteria on an Immunochromatographic Strip. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c02494] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Zhang R, Liao T, Wang X, Zhai H, Yang D, Wang X, Wang H, Feng F. Second near-infrared fluorescent dye for lateral flow immunoassays rapid detection of influenza A/B virus. Anal Biochem 2022;655:114847. [PMID: 35964731 DOI: 10.1016/j.ab.2022.114847] [Reference Citation Analysis]
10 Zhuang H, Xu C, Gao F, Li Y, Lei C, Yu C. Recent Advances in Silica-Nanomaterial-Assisted Lateral Flow Assay. Bioengineering 2022;9:266. [DOI: 10.3390/bioengineering9070266] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Hao L, Yang W, Xu Y, Cui T, Zhu G, Zeng W, Bian K, Liang H, Zhang P, Zhang B. Engineering light-initiated afterglow lateral flow immunoassay for infectious disease diagnostics. Biosens Bioelectron 2022;212:114411. [PMID: 35623251 DOI: 10.1016/j.bios.2022.114411] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Zheng S, Wu T, Li J, Jin Q, Xiao R, Wang S, Wang C. Difunctional immunochromatographic assay based on magnetic quantum dot for ultrasensitive and simultaneous detection of multiple mycotoxins in foods. Sensors and Actuators B: Chemical 2022;359:131528. [DOI: 10.1016/j.snb.2022.131528] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
13 Lee S, Park CS, Yoon H. Nanoparticulate Photoluminescent Probes for Bioimaging: Small Molecules and Polymers. Int J Mol Sci 2022;23:4949. [PMID: 35563340 DOI: 10.3390/ijms23094949] [Reference Citation Analysis]
14 Natarajan S, Joseph J, França Prazeres DM. Exploring carbohydrate binding module fusions and Fab fragments in a cellulose-based lateral flow immunoassay for detection of cystatin C. Sci Rep 2022;12:5478. [PMID: 35361862 DOI: 10.1038/s41598-022-09454-9] [Reference Citation Analysis]
15 Jia J, Ao L, Luo Y, Liao T, Huang L, Zhuo D, Jiang C, Wang J, Hu J. Quantum dots assembly enhanced and dual-antigen sandwich structured lateral flow immunoassay of SARS-CoV-2 antibody with simultaneously high sensitivity and specificity. Biosens Bioelectron 2022;198:113810. [PMID: 34840014 DOI: 10.1016/j.bios.2021.113810] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
16 Lou D, Fan L, Jiang T, Zhang Y. Advances in nanoparticle‐based lateral flow immunoassay for point‐of‐care testing. VIEW 2022;3:20200125. [DOI: 10.1002/viw.20200125] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
17 Chen X, Ding L, Huang X, Xiong Y. Tailoring noble metal nanoparticle designs to enable sensitive lateral flow immunoassay. Theranostics 2022;12:574-602. [PMID: 34976202 DOI: 10.7150/thno.67184] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 12.0] [Reference Citation Analysis]
18 Bian L, Xiong Y, Zhao H, Guo H, Li Z, Ye K, Zhang Z, Liu T, Wu Y, Lin G. Europium (III) chelate microparticle-based lateral flow immunoassay strips for rapid and quantitative detection of cystatin C in serum. Journal of Chromatography B 2022. [DOI: 10.1016/j.jchromb.2022.123133] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Cheng X, Zheng S, Wang W, Han H, Yang X, Shen W, Wang C, Wang S. Synthesis of two-dimensional graphene oxide-fluorescent nanoprobe for ultrasensitive and multiplex immunochromatographic detection of respiratory bacteria. Chemical Engineering Journal 2021;426:131836. [DOI: 10.1016/j.cej.2021.131836] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
20 Pan R, Li G, Liu S, Zhang X, Liu J, Su Z, Wu Y. Emerging nanolabels-based immunoassays: Principle and applications in food safety. TrAC Trends in Analytical Chemistry 2021;145:116462. [DOI: 10.1016/j.trac.2021.116462] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
21 Wang C, Cheng X, Liu L, Zhang X, Yang X, Zheng S, Rong Z, Wang S. Ultrasensitive and Simultaneous Detection of Two Specific SARS-CoV-2 Antigens in Human Specimens Using Direct/Enrichment Dual-Mode Fluorescence Lateral Flow Immunoassay. ACS Appl Mater Interfaces 2021;13:40342-53. [PMID: 34412466 DOI: 10.1021/acsami.1c11461] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 10.0] [Reference Citation Analysis]
22 Bu T, Bai F, Zhao S, Cao Y, He K, Sun X, Wang Q, Jia P, Li M, Wang X, Wang L. Multifunctional bacteria-derived tags for advancing immunoassay analytical performance with dual-channel switching and antibodies bioactivity sustaining. Biosens Bioelectron 2021;192:113538. [PMID: 34343740 DOI: 10.1016/j.bios.2021.113538] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
23 Wang C, Yang X, Zheng S, Cheng X, Xiao R, Li Q, Wang W, Liu X, Wang S. Development of an ultrasensitive fluorescent immunochromatographic assay based on multilayer quantum dot nanobead for simultaneous detection of SARS-CoV-2 antigen and influenza A virus. Sens Actuators B Chem 2021;345:130372. [PMID: 34219970 DOI: 10.1016/j.snb.2021.130372] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
24 Zhao, Wu Z, Zhang W, Yu J, Li H, Di W, Duan Y. Substrate-Induced Growth of Micro/Nanostructured Zn(OH)F Arrays for Highly Sensitive Microfluidic Fluorescence Assays. ACS Appl Mater Interfaces 2021;13:28462-71. [PMID: 34124881 DOI: 10.1021/acsami.1c04752] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
25 Zheng S, Yang X, Zhang B, Cheng S, Han H, Jin Q, Wang C, Xiao R. Sensitive detection of Escherichia coli O157:H7 and Salmonella typhimurium in food samples using two-channel fluorescence lateral flow assay with liquid Si@quantum dot. Food Chem 2021;363:130400. [PMID: 34198144 DOI: 10.1016/j.foodchem.2021.130400] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
26 Su L, Hu H, Tian Y, Jia C, Wang L, Zhang H, Wang J, Zhang D. Highly Sensitive Colorimetric/Surface-Enhanced Raman Spectroscopy Immunoassay Relying on a Metallic Core-Shell Au/Au Nanostar with Clenbuterol as a Target Analyte. Anal Chem 2021;93:8362-9. [PMID: 34077199 DOI: 10.1021/acs.analchem.1c01487] [Cited by in Crossref: 25] [Cited by in F6Publishing: 32] [Article Influence: 12.5] [Reference Citation Analysis]