BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang C, Liu M, Wang Z, Li S, Deng Y, He N. Point-of-care diagnostics for infectious diseases: From methods to devices. Nano Today 2021;37:101092. [PMID: 33584847 DOI: 10.1016/j.nantod.2021.101092] [Cited by in Crossref: 98] [Cited by in F6Publishing: 70] [Article Influence: 98.0] [Reference Citation Analysis]
Number Citing Articles
1 He H, Zhou Y, Chen B, Zhang Y, Zhong X, Xu L, Guo B, Yin C, Zhou X, Li Q, Huang Z, Luo G, Guo X. Nucleic acid amplification with specific signal filtration and magnification for ultrasensitive colorimetric detection. Talanta 2023;253:123978. [DOI: 10.1016/j.talanta.2022.123978] [Reference Citation Analysis]
2 Molaei S, Masoomeh Dadkhah, Fathi F. Toxoplasmosis diagnostic techniques: Current developed methods and biosensors. Talanta 2023;252:123828. [DOI: 10.1016/j.talanta.2022.123828] [Reference Citation Analysis]
3 He S, Zhou Y, Xie Y, Zhang K, He Q, Yin G, Zou H, Hu Q, Zhang S, He H, Wang D. Isothermal amplification based on specific signal extraction and output for fluorescence and colorimetric detection of nucleic acids. Talanta 2023;252:123823. [DOI: 10.1016/j.talanta.2022.123823] [Reference Citation Analysis]
4 Ragusa E, Mastronardi V, Pedone D, Moglianetti M, Pompa PP, Zunino R, Gastaldo P. Random Weights Neural Network for Low-Cost Readout of Colorimetric Reactions: Accurate Detection of Antioxidant Levels. Lecture Notes in Networks and Systems 2023. [DOI: 10.1007/978-3-031-16281-7_10] [Reference Citation Analysis]
5 Li H, Yu S, Wang D, Huang X, Fu Q, Xu D, Zhang L, Qian S, Qiu X. An automated microfluidic system with one-dimensional beads array for multiplexed torch detection at point-of-care testing. Biomed Microdevices 2022;24:38. [DOI: 10.1007/s10544-022-00629-9] [Reference Citation Analysis]
6 Metaxiotou Z, Bissig H, Batista E, do Céu Ferreira M, Timmerman A. Metrology in health: challenges and solutions in infusion therapy and diagnostics. Biomedical Engineering / Biomedizinische Technik 2022;0. [DOI: 10.1515/bmt-2022-0045] [Reference Citation Analysis]
7 Lovecchio N, Costantini F, Nascetti A, de Cesare G, Caputo D. Thin-Film-Based Multifunctional System for Optical Detection and Thermal Treatment of Biological Samples. Biosensors 2022;12:969. [DOI: 10.3390/bios12110969] [Reference Citation Analysis]
8 Arias-alpízar K, Sánchez-cano A, Prat-trunas J, de la Serna Serna E, Alonso O, Sulleiro E, Sánchez-montalvá A, Diéguez A, Baldrich E. Malaria quantitative POC testing using magnetic particles, a paper microfluidic device and a hand-held fluorescence reader. Biosensors and Bioelectronics 2022;215:114513. [DOI: 10.1016/j.bios.2022.114513] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Li H, Zhao J, Wu T, Fu Z, Zhang W, Lian Z, Cai S, Yang R. Dual ligand-induced photoelectrochemical sensing by integrating Pt/MoS2 heterostructure and Au polyhedra for sensitive detection of SARS-CoV-2. Sensors and Actuators B: Chemical 2022. [DOI: 10.1016/j.snb.2022.132970] [Reference Citation Analysis]
10 Yuan H, Chen P, Wan C, Li Y, Liu B. Merging microfluidics with luminescence immunoassays for urgent point-of-care diagnostics of COVID-19. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116814] [Reference Citation Analysis]
11 Xie Y, Li H, Chen F, Udayakumar S, Arora K, Chen H, Lan Y, Hu Q, Zhou X, Guo X, Xiu L, Yin K. Clustered Regularly Interspaced short palindromic repeats-Based Microfluidic System in Infectious Diseases Diagnosis: Current Status, Challenges, and Perspectives. Adv Sci (Weinh) 2022;:e2204172. [PMID: 36257813 DOI: 10.1002/advs.202204172] [Reference Citation Analysis]
12 Markandan K, Tiong YW, Sankaran R, Subramanian S, Markandan UD, Chaudhary V, Numan A, Khalid M, Walvekar R. Emergence of infectious diseases and role of advanced nanomaterials in point-of-care diagnostics: a review. Biotechnol Genet Eng Rev 2022;:1-89. [PMID: 36243900 DOI: 10.1080/02648725.2022.2127070] [Reference Citation Analysis]
13 Hussain M, Zou J, Zhang H, Zhang R, Chen Z, Tang Y. Recent Progress in Spectroscopic Methods for the Detection of Foodborne Pathogenic Bacteria. Biosensors (Basel) 2022;12:869. [PMID: 36291007 DOI: 10.3390/bios12100869] [Reference Citation Analysis]
14 Xu M, Li Y, Lin C, Peng Y, Zhao S, Yang X, Yang Y. Recent Advances of Representative Optical Biosensors for Rapid and Sensitive Diagnostics of SARS-CoV-2. Biosensors (Basel) 2022;12:862. [PMID: 36291001 DOI: 10.3390/bios12100862] [Reference Citation Analysis]
15 Garzarelli V, Chiriacò MS, Cereda M, Autuori I, Ferrara F. Miniaturized Real-Time PCR systems for SARS-CoV-2 detection at the Point-of-Care. Clin Chim Acta 2022;536:104-11. [PMID: 36126763 DOI: 10.1016/j.cca.2022.09.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Zhang X, Shi Y, Chen G, Wu D, Wu Y, Li G. CRISPR/Cas Systems‐Inspired Nano/Biosensors for Detecting Infectious Viruses and Pathogenic Bacteria. Small Methods. [DOI: 10.1002/smtd.202200794] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 van der Veer HJ, van Aalen EA, Michielsen CMS, Hanckmann ETL, Deckers J, van Borren MMGJ, Flipse J, Loonen AJM, Schoeber JPH, Merkx M. Fast bioluminescent nucleic acid detection using one-pot isothermal amplification and dCas9-based split luciferase complementation.. [DOI: 10.1101/2022.09.12.507659] [Reference Citation Analysis]
18 Fang Y, Wang Y, Su X, Liu H, Chen H, Chen Z, Jin L, He N. A miniaturized and integrated dual-channel fluorescence module for multiplex real-time PCR in the portable nucleic acid detection system. Front Bioeng Biotechnol 2022;10:996456. [DOI: 10.3389/fbioe.2022.996456] [Reference Citation Analysis]
19 Rezaee T, Fazel-Zarandi R, Karimi A, Ensafi AA. Metal-organic frameworks for pharmaceutical and biomedical applications. J Pharm Biomed Anal 2022;221:115026. [PMID: 36113325 DOI: 10.1016/j.jpba.2022.115026] [Reference Citation Analysis]
20 Thoeny V, Melnik E, Asadi M, Mehrabi P, Schalkhammer T, Pulverer W, Maier T, Mutinati GC, Lieberzeit P, Hainberger R. Detection of breast cancer-related point-mutations using screen-printed and gold-plated electrochemical sensor arrays suitable for point-of-care applications. Talanta Open 2022. [DOI: 10.1016/j.talo.2022.100150] [Reference Citation Analysis]
21 Yeasmin S, Ammanath G, Onder A, Hui Xin EY, Yildiz UH, Palaniappan A, Liedberg B. Current Trends and Challenges in Point-of-care Urinalysis of Biomarkers in Trace Amounts. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116786] [Reference Citation Analysis]
22 Hughes R, Fishman A, Lamb-riddell K, Muñoz VS, Champneys A, Kiely J, Luxton R. Modelling a dynamic magneto-agglutination bioassay. Biosensors and Bioelectronics 2022. [DOI: 10.1016/j.bios.2022.114745] [Reference Citation Analysis]
23 Chavez‐pineda OG, Rodriguez‐moncayo R, Cedillo‐alcantar DF, Guevara‐pantoja PE, Amador‐hernandez JU, Garcia‐cordero JL. Microfluidic systems for the analysis of blood‐derived molecular biomarkers. Electrophoresis 2022;43:1667-1700. [DOI: 10.1002/elps.202200067] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Li Y, Lin C, Peng Y, He J, Yang Y. High-sensitivity and point-of-care detection of SARS-CoV-2 from nasal and throat swabs by magnetic SERS biosensor. Sens Actuators B Chem 2022;365:131974. [PMID: 35505925 DOI: 10.1016/j.snb.2022.131974] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
25 Pan Y, Mao K, Hui Q, Wang B, Cooper J, Yang Z. Paper-based devices for rapid diagnosis and wastewater surveillance. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116760] [Reference Citation Analysis]
26 Nikolaou P, Sciuto EL, Zanut A, Petralia S, Valenti G, Paolucci F, Prodi L, Conoci S. Ultrasensitive PCR-Free detection of whole virus genome by electrochemiluminescence. Biosensors and Bioelectronics 2022;209:114165. [DOI: 10.1016/j.bios.2022.114165] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
27 Liu J, Xu Y, Cheng J. Biochips under COVID-19: a new stage of well-grounded development and accelerated translation. Science Bulletin 2022. [DOI: 10.1016/j.scib.2022.08.003] [Reference Citation Analysis]
28 Besselink G, Schütz-trilling A, Veerbeek J, Verbruggen M, van der Meer A, Schonenberg R, Dam H, Evers K, Lindhout E, Garritsen A, van Amerongen A, Knoben W, Scheres L. Asymmetric Mach–Zehnder Interferometric Biosensing for Quantitative and Sensitive Multiplex Detection of Anti-SARS-CoV-2 Antibodies in Human Plasma. Biosensors 2022;12:553. [DOI: 10.3390/bios12080553] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Shi S, Chen J, Wang X, Xiao M, Chandrasekaran AR, Li L, Yi C, Pei H. Biointerface Engineering with Nucleic Acid Materials for Biosensing Applications. Adv Funct Materials. [DOI: 10.1002/adfm.202201069] [Reference Citation Analysis]
30 Biswas GC, Choudhury S, Rabbani MM, Das J. A Review on Potential Electrochemical Point-of-Care Tests Targeting Pandemic Infectious Disease Detection: COVID-19 as a Reference. Chemosensors 2022;10:269. [DOI: 10.3390/chemosensors10070269] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
31 Chen S, Tseng C, Huang K, Chang Y, Fu L. Microfluidic Sliding Paper-Based Device for Point-of-Care Determination of Albumin-to-Creatine Ratio in Human Urine. Biosensors 2022;12:496. [DOI: 10.3390/bios12070496] [Reference Citation Analysis]
32 Zhang T, Ding F, Yang Y, Zhao G, Zhang C, Wang R, Huang X. Research Progress and Future Trends of Microfluidic Paper-Based Analytical Devices in In-Vitro Diagnosis. Biosensors 2022;12:485. [DOI: 10.3390/bios12070485] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Yuan H, Lin J, Dong Z, Chen W, Chan YK, Yeh Y, Chang H, Chen C. Detection of pathogens using graphene quantum dots and gold nanoclusters on paper-based analytical devices. Sensors and Actuators B: Chemical 2022;363:131824. [DOI: 10.1016/j.snb.2022.131824] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
34 Han YD, Kim KR, Lee KW, Yoon HC. Retroreflection-based optical biosensing: From concept to applications. Biosensors and Bioelectronics 2022;207:114202. [DOI: 10.1016/j.bios.2022.114202] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
35 Liu Y, Deng Y, Li S, Wang-ngai Chow F, Liu M, He N. Monitoring and detection of antibiotic residues in animal derived foods: Solutions using aptamers. Trends in Food Science & Technology 2022;125:200-35. [DOI: 10.1016/j.tifs.2022.04.008] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Zhang E, Ou H, Jia L, Zhang W, Wang Y, Wang X. Comparative analysis of loop-mediated isothermal amplification combined with microfluidic chip technology and q-PCR in the detection of clinical infectious pathogens. J Clin Lab Anal 2022;:e24565. [PMID: 35754145 DOI: 10.1002/jcla.24565] [Reference Citation Analysis]
37 Domingues C, Santos A, Alvarez-Lorenzo C, Concheiro A, Jarak I, Veiga F, Barbosa I, Dourado M, Figueiras A. Where Is Nano Today and Where Is It Headed? A Review of Nanomedicine and the Dilemma of Nanotoxicology. ACS Nano 2022. [PMID: 35729778 DOI: 10.1021/acsnano.2c00128] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
38 Shen H, Chen X, Zeng L, Xu X, Tao Y, Kang S, Lu Y, Lian M, Yang C, Zhu Z. Magnetofluid-Integrated Multicolor Immunochip for Visual Analysis of Neutralizing Antibodies to SARS-CoV-2 Variants. Anal Chem . [DOI: 10.1021/acs.analchem.2c01260] [Reference Citation Analysis]
39 Polat EO, Cetin MM, Tabak AF, Bilget Güven E, Uysal BÖ, Arsan T, Kabbani A, Hamed H, Gül SB. Transducer Technologies for Biosensors and Their Wearable Applications. Biosensors (Basel) 2022;12:385. [PMID: 35735533 DOI: 10.3390/bios12060385] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
40 Xiao M, Tian F, Liu X, Zhou Q, Pan J, Luo Z, Yang M, Yi C. Virus Detection: From State-of-the-Art Laboratories to Smartphone-Based Point-of-Care Testing. Adv Sci (Weinh) 2022;9:e2105904. [PMID: 35393791 DOI: 10.1002/advs.202105904] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
41 Torezin Mendonça G, Cassaboni Stracke M, de Oliveira Coelho B, Bruna Soligo Sanchuki H, Klassen de Oliveira V, Klerynton Marchini F, Lucíola Zanette D, Nóbrega Aoki M, Ribeiro Viana E, Blanes L. A new RT-LAMP-on-a-Chip Instrument for SARS-CoV-2 diagnostics. Microchem J 2022;180:107600. [PMID: 35620142 DOI: 10.1016/j.microc.2022.107600] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Bhardwaj T, Ramana LN, Sharma TK. Current Advancements and Future Road Map to Develop ASSURED Microfluidic Biosensors for Infectious and Non-Infectious Diseases. Biosensors 2022;12:357. [DOI: 10.3390/bios12050357] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Petruzzi L, Maier T, Ertl P, Hainberger R. Quantitative detection of C-reactive protein in human saliva using an electrochemical lateral flow device. Biosensors and Bioelectronics: X 2022;10:100136. [DOI: 10.1016/j.biosx.2022.100136] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
44 Yang M, Sun N, Luo Y, Lai X, Li P, Zhang Z. Emergence of debubblers in microfluidics: A critical review. Biomicrofluidics 2022;16:031503. [PMID: 35757146 DOI: 10.1063/5.0088551] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Nix C, Ghassemi M, Crommen J, Fillet M. Overview on microfluidics devices for monitoring brain disorder biomarkers. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116693] [Reference Citation Analysis]
46 Jagannath A, Cong H, Hassan J, Gonzalez G, Gilchrist MD, Zhang N. Pathogen detection on microfluidic platforms: Recent advances, challenges, and prospects. Biosensors and Bioelectronics: X 2022;10:100134. [DOI: 10.1016/j.biosx.2022.100134] [Reference Citation Analysis]
47 Wang Y, Dai B, Ma C, Zhang Q, Huang K, Luo X, Liu X, Ying Y, Xie L. Cross-Wavelength Hierarchical Metamaterials Enabled for Trans-Scale Molecules Detection Simultaneously. Adv Sci (Weinh) 2022;9:e2105447. [PMID: 35261180 DOI: 10.1002/advs.202105447] [Reference Citation Analysis]
48 Zherdev AV, Dzantiev BB. Detection Limits of Immunoanalytical Systems: Limiting Factors and Methods of Reduction. J Anal Chem 2022;77:391-401. [DOI: 10.1134/s1061934822040141] [Reference Citation Analysis]
49 Malla P, Liao HP, Liu CH, Wu WC, Sreearunothai P. Voltammetric biosensor for coronavirus spike protein using magnetic bead and screen-printed electrode for point-of-care diagnostics. Mikrochim Acta 2022;189:168. [PMID: 35362759 DOI: 10.1007/s00604-022-05288-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
50 Ordutowski H, Dal Dosso F, De Wispelaere W, Van Tricht C, Vermeire S, Geukens N, Gils A, Spasic D, Lammertyn J. Next generation point-of-care test for therapeutic drug monitoring of adalimumab in patients diagnosed with autoimmune diseases. Biosens Bioelectron 2022;208:114189. [PMID: 35366427 DOI: 10.1016/j.bios.2022.114189] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
51 Nai YH, Doeven EH, Guijt RM. An improved nucleic acid sequence-based amplification method mediated by T4 gene 32 protein. PLoS ONE 2022;17:e0265391. [DOI: 10.1371/journal.pone.0265391] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
52 Wang X, Hong XZ, Li YW, Li Y, Wang J, Chen P, Liu BF. Microfluidics-based strategies for molecular diagnostics of infectious diseases. Mil Med Res 2022;9:11. [PMID: 35300739 DOI: 10.1186/s40779-022-00374-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
53 Nelis JLD, Bose U, Broadbent JA, Hughes J, Sikes A, Anderson A, Caron K, Schmoelzl S, Colgrave ML. Biomarkers and biosensors for the diagnosis of noncompliant pH, dark cutting beef predisposition, and welfare in cattle. Comp Rev Food Sci Food Safe. [DOI: 10.1111/1541-4337.12935] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Arora M, Zambrzycki SC, Levy JM, Esper A, Frediani JK, Quave CL, Fernández FM, Kamaleswaran R. Machine Learning Approaches to Identify Discriminative Signatures of Volatile Organic Compounds (VOCs) from Bacteria and Fungi Using SPME-DART-MS. Metabolites 2022;12:232. [DOI: 10.3390/metabo12030232] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
55 Carvalho APG, Alegria ECBA, Fantoni A, Ferraria AM, do Rego AMB, Ribeiro APC. Effect of Graphene vs. Reduced Graphene Oxide in Gold Nanoparticles for Optical Biosensors-A Comparative Study. Biosensors (Basel) 2022;12:163. [PMID: 35323433 DOI: 10.3390/bios12030163] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
56 Giorello A, Nicastro A, Berli CLA. Microfluidic Platforms for the Production of Nanoparticles at Flow Rates Larger Than One Liter Per Hour. Adv Materials Technologies. [DOI: 10.1002/admt.202101588] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
57 Chen YF, Wang CH, Chang WR, Li JW, Hsu MF, Sun YS, Liu TY, Chiu CW. Hydrophilic-Hydrophobic Nanohybrids of AuNP-Immobilized Two-Dimensional Nanomica Platelets as Flexible Substrates for High-Efficiency and High-Selectivity Surface-Enhanced Raman Scattering Microbe Detection. ACS Appl Bio Mater 2022. [PMID: 35195391 DOI: 10.1021/acsabm.1c01151] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
58 Karako K, Song P, Chen Y, Tang W. Increasing demand for point-of-care testing and the potential to incorporate the Internet of medical things in an integrated health management system. Biosci Trends 2022. [PMID: 35197419 DOI: 10.5582/bst.2022.01074] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Khan A, Ostaku J, Aras E, Safak Seker UO. Combating Infectious Diseases with Synthetic Biology. ACS Synth Biol 2022;11:528-37. [PMID: 35077138 DOI: 10.1021/acssynbio.1c00576] [Reference Citation Analysis]
60 Singh M, Bindal G, Misra CS, Rath D. The era of Cas12 and Cas13 CRISPR-based disease diagnosis. Crit Rev Microbiol 2022;:1-16. [PMID: 35164636 DOI: 10.1080/1040841X.2021.2025041] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
61 Chen L, Zhou S, Zhu W, Liu S, Zhang J, Zhuang H, Zhang J, Li Y, Gao F. Highly Sensitive Lanthanide-Doped Nanoparticles-Based Point-of-Care Diagnosis of Human Cardiac Troponin I. IJN 2022;Volume 17:635-46. [DOI: 10.2147/ijn.s346415] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
62 Wang Y, Xu H, Dong Z, Wang Z, Yang Z, Yu X, Chang L. Micro/Nano biomedical devices for point-of-care diagnosis of infectious respiratory diseases. Medicine in Novel Technology and Devices 2022. [DOI: 10.1016/j.medntd.2022.100116] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
63 Deb R, Pal P, Chaudhary P, Bhadsavle S, Behera M, Parmanand, Gautam D, Roshan M, Vats A, Ludri A, Gupta VK, De S. Development of gold nanoparticle-based visual assay for rapid detection of Escherichia coli specific DNA in milk of cows affected with mastitis. LWT 2022;155:112901. [DOI: 10.1016/j.lwt.2021.112901] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Carneiro LP, Pinto AM, Mendes A, Goreti F. Sales M. An all-in-one approach for self-powered sensing: A methanol fuel cell modified with a molecularly imprinted polymer for cancer biomarker detection. Journal of Electroanalytical Chemistry 2022;906:116009. [DOI: 10.1016/j.jelechem.2022.116009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
65 Pang R, Zhu Q, Wei J, Meng X, Wang Z. Enhancement of the Detection Performance of Paper-Based Analytical Devices by Nanomaterials. Molecules 2022;27:508. [PMID: 35056823 DOI: 10.3390/molecules27020508] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
66 Bagre A, Patel PR, Naqvi S, Jain K. Emerging concerns of infectious diseases and drug delivery challenges. Nanotheranostics for Treatment and Diagnosis of Infectious Diseases 2022. [DOI: 10.1016/b978-0-323-91201-3.00013-x] [Reference Citation Analysis]
67 Ravinayagam V, Jermy BR. Nanodrug Delivery Systems for Infectious Diseases: From Challenges to Solutions. Nanotechnology for Infectious Diseases 2022. [DOI: 10.1007/978-981-16-9190-4_13] [Reference Citation Analysis]
68 Pellissery AJ, Upadhyay A, Venkitanarayanan K. Advances in Point-of-Care Testing Platforms for Diagnosis of Infectious Diseases. Encyclopedia of Infection and Immunity 2022. [DOI: 10.1016/b978-0-12-818731-9.00148-8] [Reference Citation Analysis]
69 Shelef O, Gutkin S, Feder D, Ben-bassat A, Mandelboim M, Haitin Y, Ben-tal N, Bacharach E, Shabat D. Ultrasensitive chemiluminescent neuraminidase probe for rapid screening and identification of small-molecules with antiviral activity against influenza A virus in mammalian cells. Chem Sci . [DOI: 10.1039/d2sc03460c] [Reference Citation Analysis]
70 Wang Z, Ou Y, Wang S, Meng Y, Wang Z, Zhai X, Wang L, Xia S. Ultrahigh-Q Tunable Terahertz Absorber Based on Bulk Dirac Semimetal with Surface Lattice Resonance. Photonics 2022;9:22. [DOI: 10.3390/photonics9010022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
71 Farinha P, Coelho JMP, Reis CP, Gaspar MM. A Comprehensive Updated Review on Magnetic Nanoparticles in Diagnostics. Nanomaterials (Basel) 2021;11:3432. [PMID: 34947781 DOI: 10.3390/nano11123432] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
72 Jia Y, Sun H, Tian J, Song Q, Zhang W. Paper-Based Point-of-Care Testing of SARS-CoV-2. Front Bioeng Biotechnol 2021;9:773304. [PMID: 34912791 DOI: 10.3389/fbioe.2021.773304] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
73 He Z, Li S, Zeng Y, Zhang J, Li Q, Gao B, Du X, Gu Z. Photo‐Adjustable TiO 2 ‐Paper as a Smart Substrate for Paper‐Based Analytical Devices. Adv Materials Inter 2022;9:2101450. [DOI: 10.1002/admi.202101450] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
74 Guo L, Chen S, Yu YL, Wang JH. A Smartphone Optical Device for Point-of-Care Testing of Glucose and Cholesterol Using Ag NPs/UiO-66-NH2-Based Ratiometric Fluorescent Probe. Anal Chem 2021;93:16240-7. [PMID: 34813276 DOI: 10.1021/acs.analchem.1c04126] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
75 Naeem N, Drese KS, Paterson L, Kersaudy-Kerhoas M. Current and Emerging Microfluidic-Based Integrated Solutions for Free Hemoglobin and Hemolysis Detection and Measurement. Anal Chem 2021. [PMID: 34860012 DOI: 10.1021/acs.analchem.1c04567] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
76 Wu Y, Sun J, Huang X, Lai W, Xiong Y. Ensuring food safety using fluorescent nanoparticles-based immunochromatographic test strips. Trends in Food Science & Technology 2021;118:658-78. [DOI: 10.1016/j.tifs.2021.10.025] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
77 Deroco PB, Wachholz Junior D, Kubota LT. Recent advances in point-of-care biosensors for the diagnosis of neglected tropical diseases. Sensors and Actuators B: Chemical 2021;349:130821. [DOI: 10.1016/j.snb.2021.130821] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Rajsic S, Breitkopf R, Bachler M, Treml B. Diagnostic Modalities in Critical Care: Point-of-Care Approach. Diagnostics (Basel) 2021;11:2202. [PMID: 34943438 DOI: 10.3390/diagnostics11122202] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
79 Singh S, Numan A, Cinti S. Point-of-Care for Evaluating Antimicrobial Resistance through the Adoption of Functional Materials. Anal Chem 2021. [PMID: 34802244 DOI: 10.1021/acs.analchem.1c03856] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
80 Mo X, Wang X, Zhu Z, Yu Y, Chang D, Zhang X, Li D, Sun F, Zhou L, Xu J, Zhang H, Gao C, Guan M, Xiao Y, Wu W. Quality Management for Point-Of-Care Testing of Pathogen Nucleic Acids: Chinese Expert Consensus. Front Cell Infect Microbiol 2021;11:755508. [PMID: 34722341 DOI: 10.3389/fcimb.2021.755508] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
81 Larochelle EP, Tadimety A. Engineering Consideration for Emerging Essential Nucleic Acid Tests for Point-of-Care Diagnostics. Advances in Molecular Pathology 2021;4:81-91. [DOI: 10.1016/j.yamp.2021.07.003] [Reference Citation Analysis]
82 Sciuto EL, Leonardi AA, Calabrese G, Luca G, Coniglio MA, Irrera A, Conoci S. Nucleic Acids Analytical Methods for Viral Infection Diagnosis: State-of-the-Art and Future Perspectives. Biomolecules 2021;11:1585. [PMID: 34827583 DOI: 10.3390/biom11111585] [Reference Citation Analysis]
83 Kyosei Y, Namba M, Makioka D, Kokubun A, Watabe S, Yoshimura T, Sasaki T, Shioda T, Ito E. Ultrasensitive Detection of SARS-CoV-2 Spike Proteins Using the Thio-NAD Cycling Reaction: A Preliminary Study before Clinical Trials. Microorganisms 2021;9:2214. [PMID: 34835340 DOI: 10.3390/microorganisms9112214] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
84 Xu L, Wang S, Zhu J, Zhou T, Ding S. Dendritic Silica Nanospheres Loaded with Red‐Emissive Enhanced Carbon Dots for Zika Virus Immunoassay. ChemistrySelect 2021;6:9787-93. [DOI: 10.1002/slct.202102274] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
85 Rezaei M, Razavi Bazaz S, Morshedi Rad D, Shimoni O, Jin D, Rawlinson W, Ebrahimi Warkiani M. A Portable RT-LAMP/CRISPR Machine for Rapid COVID-19 Screening. Biosensors (Basel) 2021;11:369. [PMID: 34677325 DOI: 10.3390/bios11100369] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
86 Zhang D, Cai L, Wei X, Wang Y, Shang L, Sun L, Zhao Y. Multiplexed CRISPR/Cas9 quantifications based on bioinspired photonic barcodes. Nano Today 2021;40:101268. [DOI: 10.1016/j.nantod.2021.101268] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
87 Sharma M, Gangakhedkar RR, Bhattacharya S, Walia K. Understanding complexities in the uptake of indigenously developed rapid point-of-care diagnostics for containment of antimicrobial resistance in India. BMJ Glob Health 2021;6:e006628. [PMID: 34580070 DOI: 10.1136/bmjgh-2021-006628] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
88 Zhu L, Zhao J, Guo Z, Liu Y, Chen H, Chen Z, He N. Applications of Aptamer-Bound Nanomaterials in Cancer Therapy. Biosensors (Basel) 2021;11:344. [PMID: 34562934 DOI: 10.3390/bios11090344] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
89 Wan Q, Liu X, Zu Y. Oligonucleotide aptamers for pathogen detection and infectious disease control. Theranostics 2021;11:9133-61. [PMID: 34522231 DOI: 10.7150/thno.61804] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
90 Escobar A, Chiu P, Qu J, Zhang Y, Xu CQ. Integrated Microfluidic-Based Platforms for On-Site Detection and Quantification of Infectious Pathogens: Towards On-Site Medical Translation of SARS-CoV-2 Diagnostic Platforms. Micromachines (Basel) 2021;12:1079. [PMID: 34577722 DOI: 10.3390/mi12091079] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
91 Devi S, Sharma N, Ahmed T, Huma ZI, Kour S, Sahoo B, Singh AK, Macesic N, Lee SJ, Gupta MK. Aptamer-based diagnostic and therapeutic approaches in animals: Current potential and challenges. Saudi J Biol Sci 2021;28:5081-93. [PMID: 34466086 DOI: 10.1016/j.sjbs.2021.05.031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
92 Xu LD, Zhu J, Ding SN. Immunoassay of SARS-CoV-2 nucleocapsid proteins using novel red emission-enhanced carbon dot-based silica spheres. Analyst 2021;146:5055-60. [PMID: 34282816 DOI: 10.1039/d1an01010g] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
93 Ye X, Wang N, Li Y, Fang X, Kong J. A high-specificity flap probe-based isothermal nucleic acid amplification method based on recombinant FEN1-Bst DNA polymerase. Biosens Bioelectron 2021;192:113503. [PMID: 34303138 DOI: 10.1016/j.bios.2021.113503] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
94 Guan T, Jiang Z, Liang Z, Liu Y, Huang W, Li X, Shen X, Li M, Xu Z, Lei H. Single-emission dual-enzyme magnetosensor for multiplex immunofluorometric assay of adulterated colorants in chili seasoning. Food Chem 2022;366:130594. [PMID: 34303207 DOI: 10.1016/j.foodchem.2021.130594] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
95 Golda-cepa M, Pajerski W, Duch J, Jarosz M, Indyka P, Pawlyta M, Ochonska D, Brzychczy-wloch M, Sojka Z, Kotarba A. Innovative method for the preparation of catalytic surfaces: The application of microorganisms for the deposition of nanoparticles on supports. Applied Surface Science 2021;553:149573. [DOI: 10.1016/j.apsusc.2021.149573] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
96 Li S, Huang S, Ke Y, Chen H, Dang J, Huang C, Liu W, Cui D, Wang J, Zhi X, Ding X. A HiPAD Integrated with rGO/MWCNTs Nano-Circuit Heater for Visual Point-of-Care Testing of SARS-CoV-2. Adv Funct Mater 2021;31:2100801. [PMID: 34230825 DOI: 10.1002/adfm.202100801] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
97 Sareyyüpoğlu B, Akkoyunlu B. Veteriner Mikrobiyolojide Hasta/Sürü Yanında Teşhis Yöntemleri. Harran Üniversitesi Veteriner Fakültesi Dergisi 2021. [DOI: 10.31196/huvfd.908142] [Reference Citation Analysis]
98 Calabretta MM, Montali L, Lopreside A, Fragapane F, Iacoangeli F, Roda A, Bocci V, D'Elia M, Michelini E. Ultrasensitive On-Field Luminescence Detection Using a Low-Cost Silicon Photomultiplier Device. Anal Chem 2021;93:7388-93. [PMID: 33973781 DOI: 10.1021/acs.analchem.1c00899] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
99 Pritzker K. Impact of the COVID-19 pandemic on Molecular Diagnostics. Expert Rev Mol Diagn 2021;21:519-21. [PMID: 33910436 DOI: 10.1080/14737159.2021.1923481] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
100 Katseli V, Angelopoulou M, Kokkinos C. 3D Printed Bioelectronic Microwells. Adv Funct Materials 2021;31:2102459. [DOI: 10.1002/adfm.202102459] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
101 Zhang X, Xu X, Wang J, Wang C, Yan Y, Wu A, Ren Y. Public-Health-Driven Microfluidic Technologies: From Separation to Detection. Micromachines (Basel) 2021;12:391. [PMID: 33918189 DOI: 10.3390/mi12040391] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
102 Yang CH, Wu TH, Chang CC, Lo HY, Liu HW, Huang NT, Lin CW. Biosensing Amplification by Hybridization Chain Reaction on Phase-Sensitive Surface Plasmon Resonance. Biosensors (Basel) 2021;11:75. [PMID: 33800935 DOI: 10.3390/bios11030075] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
103 Radfar P, Bazaz SR, Mirakhorli F, Warkiani ME. The role of 3D printing in the fight against COVID-19 outbreak. Journal of 3D printing in medicine 2021;5:51-60. [DOI: 10.2217/3dp-2020-0028] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]