BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Soh JH, Chan H, Ying JY. Strategies for developing sensitive and specific nanoparticle-based lateral flow assays as point-of-care diagnostic device. Nano Today 2020;30:100831. [DOI: 10.1016/j.nantod.2019.100831] [Cited by in Crossref: 72] [Cited by in F6Publishing: 40] [Article Influence: 36.0] [Reference Citation Analysis]
Number Citing Articles
1 Tsagkaris AS, Nelis JL, Campbell K, Elliott CT, Pulkrabova J, Hajslova J. Smartphone and microfluidic systems in medical and food analysis. Microfluidic Biosensors 2023. [DOI: 10.1016/b978-0-12-823846-2.00002-x] [Reference Citation Analysis]
2 Hu X, Huang L, Wang S, Ahmed R, Li P, Demirci U, Zhang Z. Color-Selective Labyrinth-Like Quantum Dot Nanobeads Enable Point-of-Care Dual Assay of Mycotoxins. Sensors and Actuators B: Chemical 2022. [DOI: 10.1016/j.snb.2022.132956] [Reference Citation Analysis]
3 Geng Z, Miao Y, Zhang G, Liang X. Colorimetric Biosensor Based on Smartphone: State-of-art. Sensors and Actuators A: Physical 2022. [DOI: 10.1016/j.sna.2022.114056] [Reference Citation Analysis]
4 Sena-Torralba A, Álvarez-Diduk R, Parolo C, Piper A, Merkoçi A. Toward Next Generation Lateral Flow Assays: Integration of Nanomaterials. Chem Rev 2022. [PMID: 36067039 DOI: 10.1021/acs.chemrev.1c01012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
5 Xu M, Lin L, Jin G, Lin Y, Zhang K. Two-in-one: Portable piezoelectric and plasmonic exciton effect-based co-enhanced photoelectrochemical biosensor for point-of-care testing of low-abundance cancer markers. Biosensors and Bioelectronics 2022;211:114413. [DOI: 10.1016/j.bios.2022.114413] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Su R, Wu Y, Doulkeridou S, Qiu X, Sørensen TJ, Susumu K, Medintz IL, van Bergen en Henegouwen PMP, Hildebrandt N. A Nanobody‐on‐Quantum Dot Displacement Assay for Rapid and Sensitive Quantification of the Epidermal Growth Factor Receptor (EGFR). Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202207797] [Reference Citation Analysis]
7 Thapa S, Singh KR, Verma R, Singh J, Singh RP. State-of-the-Art Smart and Intelligent Nanobiosensors for SARS-CoV-2 Diagnosis. Biosensors 2022;12:637. [DOI: 10.3390/bios12080637] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
8 Martinez-duarte R, Mager D, Korvink JG, Islam M. Evaluating carbon-electrode dielectrophoresis under the ASSURED criteria. Front Med Technol 2022;4. [DOI: 10.3389/fmedt.2022.922737] [Reference Citation Analysis]
9 Su R, Wu Y, Doulkeridou S, Qiu X, Sørensen TJ, Susumu K, Medintz IL, van Bergen en Henegouwen PMP, Hildebrandt N. A Nanobody‐on‐Quantum Dot Displacement Assay for Rapid and Sensitive Quantification of the Epidermal Growth Factor Receptor (EGFR). Angewandte Chemie. [DOI: 10.1002/ange.202207797] [Reference Citation Analysis]
10 Zhang T, Ding F, Yang Y, Zhao G, Zhang C, Wang R, Huang X. Research Progress and Future Trends of Microfluidic Paper-Based Analytical Devices in In-Vitro Diagnosis. Biosensors 2022;12:485. [DOI: 10.3390/bios12070485] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Liu S, Shu R, Nie C, Li Y, Luo X, Ji Y, Yin X, Sun J, Zhang D, Wang J. Bioresource-derived tannic acid-supported immuno-network in lateral flow immunoassay for sensitive clenbuterol monitoring. Food Chemistry 2022;382:132390. [DOI: 10.1016/j.foodchem.2022.132390] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
12 Liang X, Zhang X, Haseeb HA, Tang T, Shan J, Yin B, Guo W. Development and evaluation of a novel visual and rapid detection assay for toxigenic Fusarium graminearum in maize based on recombinase polymerase amplification and lateral flow analysis. International Journal of Food Microbiology 2022;372:109682. [DOI: 10.1016/j.ijfoodmicro.2022.109682] [Reference Citation Analysis]
13 Kumar P, Sarkar N, Singh A, Kaushik M. Nanopaper Biosensors at Point of Care. Bioconjugate Chem . [DOI: 10.1021/acs.bioconjchem.2c00213] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Gosselin B, Retout M, Dutour R, Troian-Gautier L, Bevernaegie R, Herens S, Lefèvre P, Denis O, Bruylants G, Jabin I. Ultrastable Silver Nanoparticles for Rapid Serology Detection of Anti-SARS-CoV-2 Immunoglobulins G. Anal Chem 2022. [PMID: 35561247 DOI: 10.1021/acs.analchem.2c00870] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
15 Petruzzi L, Maier T, Ertl P, Hainberger R. Quantitative detection of C-reactive protein in human saliva using an electrochemical lateral flow device. Biosensors and Bioelectronics: X 2022;10:100136. [DOI: 10.1016/j.biosx.2022.100136] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
16 Zhang Y, Farwin A, Ying JY. Directly interface microreaction tube and test strip for the Detection of Salmonella in food with combined isothermal amplification and lateral flow assay. Food Microbiology 2022. [DOI: 10.1016/j.fm.2022.104062] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Mo J, Liu J, Huang S, Liang B, Huang X, Yang C, Chen M, Liu J, Zhang T, Xie X, Guo J, Liu F, Chen H. Determination of Transdermal Rate of Metallic Microneedle Array through an Impedance Measurements-Based Numerical Check Screening Algorithm. Micromachines 2022;13:718. [DOI: 10.3390/mi13050718] [Reference Citation Analysis]
18 Zhao X, Byrne HJ, O’connor CM, Curtin J, Tian F. Limits of Detection of Mycotoxins by Laminar Flow Strips: A Review. Applied Nano 2022;3:91-101. [DOI: 10.3390/applnano3020006] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Chen R, Chen X, Zhou Y, Lin T, Leng Y, Huang X, Xiong Y. "Three-in-One" Multifunctional Nanohybrids with Colorimetric Magnetic Catalytic Activities to Enhance Immunochromatographic Diagnosis. ACS Nano 2022;16:3351-61. [PMID: 35137583 DOI: 10.1021/acsnano.2c00008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
20 Lou D, Fan L, Jiang T, Zhang Y. Advances in nanoparticle‐based lateral flow immunoassay for point‐of‐care testing. VIEW 2022;3:20200125. [DOI: 10.1002/viw.20200125] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
21 Wang Z, Zhao J, Xu X, Guo L, Xu L, Sun M, Hu S, Kuang H, Xu C, Li A. An Overview for the Nanoparticles-Based Quantitative Lateral Flow Assay. Small Methods 2022;6:e2101143. [PMID: 35041285 DOI: 10.1002/smtd.202101143] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
22 Majdinasab M, Badea M, Marty JL. Aptamer-Based Lateral Flow Assays: Current Trends in Clinical Diagnostic Rapid Tests. Pharmaceuticals 2022;15:90. [DOI: 10.3390/ph15010090] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
23 Liu Z, Chen J, Zhao S, Pang Y, Shen X, Lei H, Li X. Immunochromatographic assays based on three kinds of nanoparticles for the rapid and highly sensitive detection of tylosin and tilmicosin in eggs. Mikrochim Acta 2021;189:42. [PMID: 34971440 DOI: 10.1007/s00604-021-05151-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Wang Z, Chen J, Khan SA, Li F, Shen J, Duan Q, Liu X, Zhu J. Plasmonic Metasurfaces for Medical Diagnosis Applications: A Review. Sensors 2021;22:133. [DOI: 10.3390/s22010133] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
25 Chen L, Yang C, Xiao Y, Yan X, Hu L, Eggersdorfer M, Chen D, Weitz D, Ye F. Millifluidics, microfluidics, and nanofluidics: manipulating fluids at varying length scales. Materials Today Nano 2021;16:100136. [DOI: 10.1016/j.mtnano.2021.100136] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 14.0] [Reference Citation Analysis]
26 Nilghaz A, Mousavi SM, Tian J, Cao R, Guijt RM, Wang X. Noble-Metal Nanoparticle-Based Colorimetric Diagnostic Assays for Point-of-Need Applications. ACS Appl Nano Mater 2021;4:12808-24. [DOI: 10.1021/acsanm.1c01545] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
27 Zhang Y, Yu Y, Ying JY. Multi‐Color Au/Ag Nanoparticles for Multiplexed Lateral Flow Assay Based on Spatial Separation and Color Co‐Localization. Adv Funct Materials 2022;32:2109553. [DOI: 10.1002/adfm.202109553] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
28 Wang Z, Xing K, Ding N, Wang S, Zhang G, Lai W. Lateral flow immunoassay based on dual spectral-overlapped fluorescence quenching of polydopamine nanospheres for sensitive detection of sulfamethazine. J Hazard Mater 2021;423:127204. [PMID: 34555767 DOI: 10.1016/j.jhazmat.2021.127204] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
29 Cao X, Song Q, Sun Y, Mao Y, Lu W, Li L. A SERS-LFA biosensor combined with aptamer recognition for simultaneous detection of thrombin and PDGF-BB in prostate cancer plasma. Nanotechnology 2021;32. [PMID: 34298537 DOI: 10.1088/1361-6528/ac1754] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
30 Menger RF, Funk E, Henry CS, Borch T. Sensors for detecting per- and polyfluoroalkyl substances (PFAS): A critical review of development challenges, current sensors, and commercialization obstacles. Chemical Engineering Journal 2021;417:129133. [DOI: 10.1016/j.cej.2021.129133] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 22.0] [Reference Citation Analysis]
31 Bu T, Bai F, Zhao S, Cao Y, He K, Sun X, Wang Q, Jia P, Li M, Wang X, Wang L. Multifunctional bacteria-derived tags for advancing immunoassay analytical performance with dual-channel switching and antibodies bioactivity sustaining. Biosens Bioelectron 2021;192:113538. [PMID: 34343740 DOI: 10.1016/j.bios.2021.113538] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
32 Ranjan S, Jain S, Bhargava A, Shandilya R, Srivastava RK, Mishra PK. Lateral flow assay-based detection of long non-coding RNAs: A point-of-care platform for cancer diagnosis. J Pharm Biomed Anal 2021;204:114285. [PMID: 34333453 DOI: 10.1016/j.jpba.2021.114285] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
33 Miller JN, Niessner R, Knopp D. Enzyme and Immunoassays. Ullmann's Encyclopedia of Industrial Chemistry 2021. [DOI: 10.1002/14356007.b05_129.pub3] [Reference Citation Analysis]
34 Chen CA, Yuan H, Chen CW, Chien YS, Sheng WH, Chen CF. An electricity- and instrument-free infectious disease sensor based on a 3D origami paper-based analytical device. Lab Chip 2021;21:1908-15. [PMID: 34008628 DOI: 10.1039/d1lc00079a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
35 Naseri M, Ziora ZM, Simon GP, Batchelor W. ASSURED‐compliant point‐of‐care diagnostics for the detection of human viral infections. Rev Med Virol. [DOI: 10.1002/rmv.2263] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
36 Shen Y, Zhang Y, Gao ZF, Ye Y, Wu Q, Chen H, Xu J. Recent advances in nanotechnology for simultaneous detection of multiple pathogenic bacteria. Nano Today 2021;38:101121. [DOI: 10.1016/j.nantod.2021.101121] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 25.0] [Reference Citation Analysis]
37 Wang J, Jiang C, Jin J, Huang L, Yu W, Su B, Hu J. Ratiometric Fluorescent Lateral Flow Immunoassay for Point‐of‐Care Testing of Acute Myocardial Infarction. Angew Chem 2021;133:13152-13159. [DOI: 10.1002/ange.202103458] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Díaz-González M, de la Escosura-Muñiz A. Strip modification and alternative architectures for signal amplification in nanoparticle-based lateral flow assays. Anal Bioanal Chem 2021;413:4111-7. [PMID: 34036400 DOI: 10.1007/s00216-021-03421-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
39 Chen H, Das A, Bi L, Choi N, Moon JI, Wu Y, Park S, Choo J. Recent advances in surface-enhanced Raman scattering-based microdevices for point-of-care diagnosis of viruses and bacteria. Nanoscale 2020;12:21560-70. [PMID: 33094771 DOI: 10.1039/d0nr06340a] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 44.0] [Reference Citation Analysis]
40 Wang J, Jiang C, Jin J, Huang L, Yu W, Su B, Hu J. Ratiometric Fluorescent Lateral Flow Immunoassay for Point‐of‐Care Testing of Acute Myocardial Infarction. Angew Chem Int Ed 2021;60:13042-9. [DOI: 10.1002/anie.202103458] [Cited by in Crossref: 45] [Cited by in F6Publishing: 52] [Article Influence: 45.0] [Reference Citation Analysis]
41 Huang L, Tian S, Zhao W, Liu K, Ma X, Guo J. Aptamer-based lateral flow assay on-site biosensors. Biosens Bioelectron 2021;186:113279. [PMID: 33979718 DOI: 10.1016/j.bios.2021.113279] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 24.0] [Reference Citation Analysis]
42 Liu Y, Zhan L, Qin Z, Sackrison J, Bischof JC. Ultrasensitive and Highly Specific Lateral Flow Assays for Point-of-Care Diagnosis. ACS Nano 2021;15:3593-611. [PMID: 33607867 DOI: 10.1021/acsnano.0c10035] [Cited by in Crossref: 88] [Cited by in F6Publishing: 101] [Article Influence: 88.0] [Reference Citation Analysis]
43 Shirshahi V, Liu G. Enhancing the analytical performance of paper lateral flow assays: From chemistry to engineering. TrAC Trends in Analytical Chemistry 2021;136:116200. [DOI: 10.1016/j.trac.2021.116200] [Cited by in Crossref: 30] [Cited by in F6Publishing: 14] [Article Influence: 30.0] [Reference Citation Analysis]
44 Chen C, Yu X, Han D, Ai J, Ke Y, Wang Z, Meng G. Non-CTAB synthesized gold nanorods-based immunochromatographic assay for dual color and on-site detection of aflatoxins and zearalenones in maize. Food Control 2020;118:107418. [DOI: 10.1016/j.foodcont.2020.107418] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
45 Yuan J, Chen X, Duan H, Cai X, Li Y, Guo L, Huang X, Xiong Y. Gold nanoparticle-decorated metal organic frameworks on immunochromatographic assay for human chorionic gonadotropin detection. Mikrochim Acta 2020;187:640. [PMID: 33151410 DOI: 10.1007/s00604-020-04617-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
46 Ren Y, Wei J, He Y, Wang Y, Bai M, Zhang C, Luo L, Wang J, Wang Y. Ultrasensitive label-free immunochromatographic strip sensor for Salmonella determination based on salt-induced aggregated gold nanoparticles. Food Chem 2021;343:128518. [PMID: 33160767 DOI: 10.1016/j.foodchem.2020.128518] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
47 Parolo C, Sena-Torralba A, Bergua JF, Calucho E, Fuentes-Chust C, Hu L, Rivas L, Álvarez-Diduk R, Nguyen EP, Cinti S, Quesada-González D, Merkoçi A. Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nat Protoc 2020;15:3788-816. [PMID: 33097926 DOI: 10.1038/s41596-020-0357-x] [Cited by in Crossref: 93] [Cited by in F6Publishing: 99] [Article Influence: 46.5] [Reference Citation Analysis]
48 Chakraborty D, Kumar S, Chandrasekaran N, Mukherjee A. Viral Diagnostics and Preventive Techniques in the Era of COVID-19: Role of Nanoparticles. Front Nanotechnol 2020;2:588795. [DOI: 10.3389/fnano.2020.588795] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
49 Wei D, Zhang X, Chen B, Zeng K. Using bimetallic Au@Pt nanozymes as a visual tag and as an enzyme mimic in enhanced sensitive lateral-flow immunoassays: Application for the detection of streptomycin. Anal Chim Acta 2020;1126:106-13. [PMID: 32736714 DOI: 10.1016/j.aca.2020.06.009] [Cited by in Crossref: 36] [Cited by in F6Publishing: 25] [Article Influence: 18.0] [Reference Citation Analysis]
50 Mao W, Son YJ, Yoo HS. Gold nanospheres and nanorods for anti-cancer therapy: comparative studies of fabrication, surface-decoration, and anti-cancer treatments. Nanoscale 2020;12:14996-5020. [DOI: 10.1039/d0nr01690j] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]