BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hashim HS, Fen YW, Omar NAS, Fauzi NIM, Daniyal WMEMM. Recent advances of priority phenolic compounds detection using phenol oxidases-based electrochemical and optical sensors. Measurement 2021;184:109855. [DOI: 10.1016/j.measurement.2021.109855] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Liu Y, Chen Y, Fan Y, Gao G, Zhi J. Development of a Tyrosinase Amperometric Biosensor Based on Carbon Nanomaterials for the Detection of Phenolic Pollutants in Diverse Environments. ChemElectroChem 2022;9. [DOI: 10.1002/celc.202200861] [Reference Citation Analysis]
2 Facure MH, Andre RS, Cardoso RM, Mercante LA, Correa DS. Electrochemical and optical dual-mode detection of phenolic compounds using MnO2/GQD nanozyme. Electrochimica Acta 2022. [DOI: 10.1016/j.electacta.2022.141777] [Reference Citation Analysis]
3 Vasilaki E, Rigakis I, Papadoulis T, Staridas A, Psaroudaki A, Frantzeskakis L, Makris Z, Lazari D, Antonidakis E. Inertia Sensor Detecting Materials using Electromagnetic Signals. WSEAS TRANSACTIONS ON SYSTEMS 2022;21:140-146. [DOI: 10.37394/23202.2022.21.15] [Reference Citation Analysis]
4 Omar NAS, Fen YW, Irmawati R, Hashim HS, Ramdzan NSM, Fauzi NIM. A Review on Carbon Dots: Synthesis, Characterization and Its Application in Optical Sensor for Environmental Monitoring. Nanomaterials 2022;12:2365. [DOI: 10.3390/nano12142365] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
5 Yang X, Wu Z, Qin Z, Chen F, Lv C, Zhang M, Zhong F, Shaymurat T, Duan H. Highly selective and sensitive phenol sensor based on cattail carbon fibre operating at room temperature. Sensors and Actuators A: Physical 2022;341:113593. [DOI: 10.1016/j.sna.2022.113593] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Eddin FBK, Fen YW, Sadrolhosseini AR, Liew JYC, Daniyal ‬MEMM. Optical Property Analysis of Chitosan-Graphene Quantum Dots Thin Film and Dopamine Using Surface Plasmon Resonance Spectroscopy. Plasmonics. [DOI: 10.1007/s11468-022-01680-1] [Reference Citation Analysis]
7 Fauzi NIM, Fen YW, Abdullah J, Kamarudin MA, Omar NAS, Eddin FBK, Ramdzan NSM, Daniyal WMEMM. Evaluation of Structural and Optical Properties of Graphene Oxide-Polyvinyl Alcohol Thin Film and Its Potential for Pesticide Detection Using an Optical Method. Photonics 2022;9:300. [DOI: 10.3390/photonics9050300] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
8 Mitu SA, Aktar MN, Ibrahim SM, Ahmed K. Surface Plasmon Resonance–Based Refractive Index Biosensor: an External Sensing Approach. Plasmonics. [DOI: 10.1007/s11468-022-01645-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Ly NH, Son SJ, Kim HH, Joo S. Recent Developments in Plasmonic Sensors of Phenol and Its Derivatives. Applied Sciences 2021;11:10519. [DOI: 10.3390/app112210519] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
10 Hashim HS, Fen YW, Omar NAS, Fauzi NIM. Sensing Methods for Hazardous Phenolic Compounds Based on Graphene and Conducting Polymers-Based Materials. Chemosensors 2021;9:291. [DOI: 10.3390/chemosensors9100291] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]