BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chahrour O, Cobice D, Malone J. Stable isotope labelling methods in mass spectrometry-based quantitative proteomics. J Pharm Biomed Anal 2015;113:2-20. [PMID: 25956803 DOI: 10.1016/j.jpba.2015.04.013] [Cited by in Crossref: 164] [Cited by in F6Publishing: 133] [Article Influence: 23.4] [Reference Citation Analysis]
Number Citing Articles
1 Stepath M, Zülch B, Maghnouj A, Schork K, Turewicz M, Eisenacher M, Hahn S, Sitek B, Bracht T. Systematic Comparison of Label-Free, SILAC, and TMT Techniques to Study Early Adaption toward Inhibition of EGFR Signaling in the Colorectal Cancer Cell Line DiFi. J Proteome Res 2020;19:926-37. [DOI: 10.1021/acs.jproteome.9b00701] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
2 Chen Y, Tsai C, Chen C, Yu J, Chang Y. Development of biomarkers of genitourinary cancer using mass spectrometry-based clinical proteomics. Journal of Food and Drug Analysis 2019;27:387-403. [DOI: 10.1016/j.jfda.2018.09.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Chahrour O, Malone J, Collins M, Salmon V, Greenan C, Bombardier A, Ma Z, Dunwoody N. Development and validation of an ICP-MS method for the determination of elemental impurities in TP-6076 active pharmaceutical ingredient (API) according to USP 〈232〉/〈233〉. Journal of Pharmaceutical and Biomedical Analysis 2017;145:84-90. [DOI: 10.1016/j.jpba.2017.06.045] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
4 Nøjgaard N, Fontana W, Hellmuth M, Merkle D. Cayley Graphs of Semigroups Applied to Atom Tracking in Chemistry. J Comput Biol 2021;28:701-15. [PMID: 34115945 DOI: 10.1089/cmb.2020.0548] [Reference Citation Analysis]
5 Cheng SX, Xu ZW, Yi TL, Sun HT, Yang C, Yu ZQ, Yang XS, Jin XH, Tu Y, Zhang S. iTRAQ-Based Quantitative Proteomics Reveals the New Evidence Base for Traumatic Brain Injury Treated with Targeted Temperature Management. Neurotherapeutics 2018;15:216-32. [PMID: 29247448 DOI: 10.1007/s13311-017-0591-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
6 Galán A, Horvatić A, Kuleš J, Bilić P, Gotić J, Mrljak V. LC-MS/MS analysis of the dog serum phosphoproteome reveals novel and conserved phosphorylation sites: Phosphoprotein patterns in babesiosis caused by Babesia canis, a case study. PLoS One 2018;13:e0207245. [PMID: 30485286 DOI: 10.1371/journal.pone.0207245] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
7 Martínez-Rodríguez F, Limones-González JE, Mendoza-Almanza B, Esparza-Ibarra EL, Gallegos-Flores PI, Ayala-Luján JL, Godina-González S, Salinas E, Mendoza-Almanza G. Understanding Cervical Cancer through Proteomics. Cells 2021;10:1854. [PMID: 34440623 DOI: 10.3390/cells10081854] [Reference Citation Analysis]
8 Rauner M, Foessl I, Formosa MM, Kague E, Prijatelj V, Lopez NA, Banerjee B, Bergen D, Busse B, Calado Â, Douni E, Gabet Y, Giralt NG, Grinberg D, Lovsin NM, Solan XN, Ostanek B, Pavlos NJ, Rivadeneira F, Soldatovic I, van de Peppel J, van der Eerden B, van Hul W, Balcells S, Marc J, Reppe S, Søe K, Karasik D. Perspective of the GEMSTONE Consortium on Current and Future Approaches to Functional Validation for Skeletal Genetic Disease Using Cellular, Molecular and Animal-Modeling Techniques. Front Endocrinol 2021;12:731217. [DOI: 10.3389/fendo.2021.731217] [Reference Citation Analysis]
9 Stastna M, Gottlieb RA, Van Eyk JE. Exploring ribosome composition and newly synthesized proteins through proteomics and potential biomedical applications. Expert Rev Proteomics 2017;14:529-43. [PMID: 28532181 DOI: 10.1080/14789450.2017.1333424] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
10 Bąchor R, Waliczek M, Stefanowicz P, Szewczuk Z. Trends in the Design of New Isobaric Labeling Reagents for Quantitative Proteomics. Molecules 2019;24:E701. [PMID: 30781343 DOI: 10.3390/molecules24040701] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
11 Kellogg JJ, Paine MF, McCune JS, Oberlies NH, Cech NB. Selection and characterization of botanical natural products for research studies: a NaPDI center recommended approach. Nat Prod Rep 2019;36:1196-221. [PMID: 30681109 DOI: 10.1039/c8np00065d] [Cited by in Crossref: 32] [Cited by in F6Publishing: 16] [Article Influence: 16.0] [Reference Citation Analysis]
12 Galasko D. Expanding the Repertoire of Biomarkers for Alzheimer's Disease: Targeted and Non-targeted Approaches. Front Neurol 2015;6:256. [PMID: 26733934 DOI: 10.3389/fneur.2015.00256] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
13 Cilento EM, Jin L, Stewart T, Shi M, Sheng L, Zhang J. Mass spectrometry: A platform for biomarker discovery and validation for Alzheimer's and Parkinson's diseases. J Neurochem 2019;151:397-416. [PMID: 30474862 DOI: 10.1111/jnc.14635] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
14 Sequeira VM, Vermeulen M. Identifying Readers for (hydroxy)methylated DNA Using Quantitative Interaction Proteomics: Advances and Challenges Ahead. Journal of Molecular Biology 2020;432:1792-800. [DOI: 10.1016/j.jmb.2019.12.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
15 Li P, Che X, Gao Y, Zhang R. Proteomics and Bioinformatics Analysis of Cartilage in Post-Traumatic Osteoarthritis in a Mini-Pig Model of Anterior Cruciate Ligament Repair. Med Sci Monit 2020;26:e920104. [PMID: 31916546 DOI: 10.12659/MSM.920104] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- und tritiummarkierte Verbindungen: Anwendungen in den modernen Biowissenschaften. Angew Chem 2018;130:1774-802. [DOI: 10.1002/ange.201704146] [Cited by in Crossref: 69] [Cited by in F6Publishing: 31] [Article Influence: 17.3] [Reference Citation Analysis]
17 Martinez JLC, Espiño CL, Santos HM. Mass Spectrometry-based Proteomics: What is it expecting ahead? Journal of Proteomics 2016;145:1-2. [DOI: 10.1016/j.jprot.2016.07.017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
18 Wang L, Shi F, Xu W, Cao Y, Li N, Li M, Wang Q, Wang J, Tian Q, Yu L, Zhou X. The Down-Expression of ACE and IDE Exacerbates Exogenous Amyloid-β Neurotoxicity in CB2R–/– Mice. JAD 2018;64:957-71. [DOI: 10.3233/jad-180142] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Heininen J, Julku U, Myöhänen T, Kotiaho T, Kostiainen R. Multiplexed analysis of amino acids in mice brain microdialysis samples using isobaric labeling and liquid chromatography-high resolution tandem mass spectrometry. J Chromatogr A 2021;1656:462537. [PMID: 34537659 DOI: 10.1016/j.chroma.2021.462537] [Reference Citation Analysis]
20 Taverna D, Mignogna C, Gabriele C, Santise G, Donato G, Cuda G, Gaspari M. An optimized procedure for on-tissue localized protein digestion and quantification using hydrogel discs and isobaric mass tags: analysis of cardiac myxoma. Anal Bioanal Chem 2017;409:2919-30. [PMID: 28190108 DOI: 10.1007/s00216-017-0237-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
21 Michelotti A, Rodrigues F, Roche M. Development and Scale-Up of Stereoretentive α-Deuteration of Amines. Org Process Res Dev 2017;21:1741-4. [DOI: 10.1021/acs.oprd.7b00227] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 2.4] [Reference Citation Analysis]
22 El-Rami FE, Sikora AE. Bioinformatics Workflow for Gonococcal Proteomics. Methods Mol Biol 2019;1997:185-205. [PMID: 31119625 DOI: 10.1007/978-1-4939-9496-0_12] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
23 Valdés A, Zhao H, Pettersson U, Lind SB. Time-resolved proteomics of adenovirus infected cells. PLoS One 2018;13:e0204522. [PMID: 30252905 DOI: 10.1371/journal.pone.0204522] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
24 Hsu JL, Chen SH. Stable isotope dimethyl labelling for quantitative proteomics and beyond. Philos Trans A Math Phys Eng Sci 2016;374:20150364. [PMID: 27644970 DOI: 10.1098/rsta.2015.0364] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
25 Raimondo F, Cerra D, Magni F, Pitto M. Urinary proteomics for the study of genetic kidney diseases. Expert Review of Proteomics 2016;13:309-24. [DOI: 10.1586/14789450.2016.1136218] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
26 Licier R, Miranda E, Serrano H. A Quantitative Proteomics Approach to Clinical Research with Non-Traditional Samples. Proteomes 2016;4:E31. [PMID: 28248241 DOI: 10.3390/proteomes4040031] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
27 Hayama T, Ohyama K. Recent development and trends in sample extraction and preparation for mass spectrometric analysis of nucleotides, nucleosides, and proteins. J Pharm Biomed Anal 2018;161:51-60. [PMID: 30145449 DOI: 10.1016/j.jpba.2018.08.030] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
28 Adaba RI, Mann G, Raab A, Houssen WE, McEwan AR, Thomas L, Tabudravu J, Naismith JH, Jaspars M. Accurate quantification of modified cyclic peptides without the need for authentic standards. Tetrahedron 2016;72:8603-9. [PMID: 32818002 DOI: 10.1016/j.tet.2016.11.040] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
29 Zhang S, Zhang S, Zhang X, Liu R. Analysis of Proteins and DNAs Using Inductively Coupled Plasma Mass Spectrometry and Elemental Tagging. In: Meyers RA, editor. Encyclopedia of Analytical Chemistry. Chichester: John Wiley & Sons, Ltd; 2006. pp. 1-45. [DOI: 10.1002/9780470027318.a9639] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
30 Burhop A, Weck R, Atzrodt J, Derdau V. Hydrogen-Isotope Exchange (HIE) Reactions of Secondary and Tertiary Sulfonamides and Sulfonylureas with Iridium(I) Catalysts: Hydrogen-Isotope Exchange (HIE) Reactions of Secondary and Tertiary Sulfonamides and Sulfonylureas with Iridium(I) Catalysts. Eur J Org Chem 2017;2017:1418-24. [DOI: 10.1002/ejoc.201601599] [Cited by in Crossref: 29] [Cited by in F6Publishing: 17] [Article Influence: 5.8] [Reference Citation Analysis]
31 Wang X, Liang Y, Liu L, Shi J, Zhu HJ. Targeted absolute quantitative proteomics with SILAC internal standards and unlabeled full-length protein calibrators (TAQSI). Rapid Commun Mass Spectrom 2016;30:553-61. [PMID: 26842578 DOI: 10.1002/rcm.7482] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
32 Sanz-Medel A. "Heteroatom-tagged" quantification of proteins via ICP-MS. Anal Bioanal Chem 2016;408:5393-5. [PMID: 27314847 DOI: 10.1007/s00216-016-9687-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
33 Trautwein-Schult A, Maaß S, Plate K, Otto A, Becher D. A Metabolic Labeling Strategy for Relative Protein Quantification in Clostridioides difficile. Front Microbiol 2018;9:2371. [PMID: 30386308 DOI: 10.3389/fmicb.2018.02371] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
34 Lee P, Jiang S, Li Y, Yue J, Gou X, Chen SY, Zhao Y, Schober M, Tan M, Wu X. Phosphorylation of Pkp1 by RIPK4 regulates epidermal differentiation and skin tumorigenesis. EMBO J 2017;36:1963-80. [PMID: 28507225 DOI: 10.15252/embj.201695679] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 5.4] [Reference Citation Analysis]
35 Ren B, Wang Y, Wang H, Wu Y, Li J, Tian J. Comparative proteomics reveals the neurotoxicity mechanism of ER stressors tunicamycin and dithiothreitol. Neurotoxicology. 2018;68:25-37. [PMID: 30003905 DOI: 10.1016/j.neuro.2018.07.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
36 Zhou X, Qu L, Zhang W, Yang F, Hou X, Wang S. Analysis of Proteomic Characteristics of Peripheral Blood in Preeclampsia and Study of Changes in Fetal Arterial Doppler Parameters Based on Magnetic Nanoparticles. Comput Math Methods Med 2021;2021:7145487. [PMID: 34765014 DOI: 10.1155/2021/7145487] [Reference Citation Analysis]
37 Qin W, Li L, Wang T, Huang H, Gao Y. Urine Proteome Changes in a TNBS‐Induced Colitis Rat Model. Prot Clin Appl 2019;13:1800100. [DOI: 10.1002/prca.201800100] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
38 Pang L, Li Q, Li Y, Liu Y, Duan N, Li H. Urine proteomics of primary membranous nephropathy using nanoscale liquid chromatography tandem mass spectrometry analysis. Clin Proteomics 2018;15:5. [PMID: 29445323 DOI: 10.1186/s12014-018-9183-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
39 Wither MJ, Hansen KC, Reisz JA. Mass Spectrometry-Based Bottom-Up Proteomics: Sample Preparation, LC-MS/MS Analysis, and Database Query Strategies. Curr Protoc Protein Sci 2016;86:16.4.1-16.4.20. [PMID: 27801520 DOI: 10.1002/cpps.18] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
40 Tian X, de Vries MP, Permentier HP, Bischoff R. A Collision-Induced Dissociation Cleavable Isobaric Tag for Peptide Fragment Ion-Based Quantification in Proteomics. J Proteome Res 2020;19:3817-24. [PMID: 32786690 DOI: 10.1021/acs.jproteome.0c00371] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
41 Wen XP, Zhang YZ, Wan QQ. Non-targeted proteomics of acute respiratory distress syndrome: clinical and research applications. Proteome Sci 2021;19:5. [PMID: 33743690 DOI: 10.1186/s12953-021-00174-y] [Reference Citation Analysis]
42 Banfi C, Baetta R, Gianazza E, Tremoli E. Technological advances and proteomic applications in drug discovery and target deconvolution: identification of the pleiotropic effects of statins. Drug Discov Today 2017;22:848-69. [PMID: 28284830 DOI: 10.1016/j.drudis.2017.03.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 3.4] [Reference Citation Analysis]
43 Zhang Z, Zhang Y, Song S, Yin L, Sun D, Gu J. Recent advances in the bioanalytical methods of polyethylene glycols and PEGylated pharmaceuticals. J Sep Sci 2020;43:1978-97. [DOI: 10.1002/jssc.201901340] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
44 Welker M, van Belkum A. One System for All: Is Mass Spectrometry a Future Alternative for Conventional Antibiotic Susceptibility Testing? Front Microbiol 2019;10:2711. [PMID: 31849870 DOI: 10.3389/fmicb.2019.02711] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
45 Zhao Y, Zhang Y, Zhang J, Yang G. Plasma proteome profiling using tandem mass tag labeling technology reveals potential biomarkers for Parkinson's disease: a preliminary study. Proteomics Clin Appl 2021;:e2100010. [PMID: 34791804 DOI: 10.1002/prca.202100010] [Reference Citation Analysis]
46 Kim YE, Kim K, Oh HB, Lee SK, Kang D. Quantitative proteomic profiling of Cervicovaginal fluid from pregnant women with term and preterm birth. Proteome Sci 2021;19:3. [PMID: 33588889 DOI: 10.1186/s12953-021-00171-1] [Reference Citation Analysis]
47 Latosinska A, Frantzi M, Merseburger AS, Mischak H. Promise and Implementation of Proteomic Prostate Cancer Biomarkers. Diagnostics (Basel) 2018;8:E57. [PMID: 30158500 DOI: 10.3390/diagnostics8030057] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
48 Zhao Y, Xiong X, Sun Y. Cullin-RING Ligase 5: Functional characterization and its role in human cancers. Semin Cancer Biol 2020;67:61-79. [PMID: 32334051 DOI: 10.1016/j.semcancer.2020.04.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
49 Leal MF, Wisnieski F, de Oliveira Gigek C, do Santos LC, Calcagno DQ, Burbano RR, Smith MC. What gastric cancer proteomic studies show about gastric carcinogenesis? Tumour Biol. 2016;37:9991-10010. [PMID: 27126070 DOI: 10.1007/s13277-016-5043-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
50 Gu H, Zhao Y, Demichele M, Zheng N, Zhang YJ, Pillutla R, Zeng J. In-Sample Calibration Curve Using Multiple Isotopologue Reaction Monitoring of a Stable Isotopically Labeled Analyte for Instant LC-MS/MS Bioanalysis and Quantitative Proteomics. Anal Chem 2019;91:2536-43. [DOI: 10.1021/acs.analchem.8b05656] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
51 Tian X, Permentier HP, Bischoff R. Chemical isotope labeling for quantitative proteomics. Mass Spectrom Rev 2021. [PMID: 34091937 DOI: 10.1002/mas.21709] [Reference Citation Analysis]
52 Hajduk J, Matysiak J, Kokot ZJ. Challenges in biomarker discovery with MALDI-TOF MS. Clin Chim Acta 2016;458:84-98. [PMID: 27134187 DOI: 10.1016/j.cca.2016.04.033] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
53 Marquez J, Kratchmarova I, Akimov V, Unda F, Ibarretxe G, Clerigué AS, Osinalde N, Badiola I. NADH dehydrogenase complex I is overexpressed in incipient metastatic murine colon cancer cells. Oncol Rep 2019;41:742-52. [PMID: 30483808 DOI: 10.3892/or.2018.6892] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
54 Aroso M, Ferreira R, Freitas A, Vitorino R, Gomez-Lazaro M. New insights on the mitochondrial proteome plasticity in Parkinson's disease. Proteomics Clin Appl 2016;10:416-29. [PMID: 26749507 DOI: 10.1002/prca.201500092] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
55 Esteve-Sánchez Y, Morante-Carriel JA, Martínez-Márquez A, Sellés-Marchart S, Bru-Martinez R. Dimethyl Labeling-Based Quantitative Proteomics of Recalcitrant Cocoa Pod Tissue. Methods Mol Biol 2020;2139:133-46. [PMID: 32462583 DOI: 10.1007/978-1-0716-0528-8_10] [Reference Citation Analysis]
56 Li J, Wen S, Li B, Li N, Zhan X. Phosphorylation-Mediated Molecular Pathway Changes in Human Pituitary Neuroendocrine Tumors Identified by Quantitative Phosphoproteomics. Cells 2021;10:2225. [PMID: 34571875 DOI: 10.3390/cells10092225] [Reference Citation Analysis]
57 Daulat AM, Puvirajesinghe TM, Camoin L, Borg J. Mapping Cellular Polarity Networks Using Mass Spectrometry-based Strategies. Journal of Molecular Biology 2018;430:3545-64. [DOI: 10.1016/j.jmb.2018.05.023] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
58 Duarte TT, Spencer CT. Personalized Proteomics: The Future of Precision Medicine. Proteomes 2016;4:29. [PMID: 27882306 DOI: 10.3390/proteomes4040029] [Cited by in Crossref: 59] [Cited by in F6Publishing: 48] [Article Influence: 9.8] [Reference Citation Analysis]
59 Higashi T, Ogawa S. Isotope-coded ESI-enhancing derivatization reagents for differential analysis, quantification and profiling of metabolites in biological samples by LC/MS: A review. Journal of Pharmaceutical and Biomedical Analysis 2016;130:181-93. [DOI: 10.1016/j.jpba.2016.04.033] [Cited by in Crossref: 47] [Cited by in F6Publishing: 34] [Article Influence: 7.8] [Reference Citation Analysis]
60 Li YH, Sun W, Zhou BJ, Rosenstein A, Zhao J, Wang J, Bian ZX. iTRAQ-based pharmacoproteomics reveals potential targets of berberine, a promising therapy for ulcerative colitis. Eur J Pharmacol 2019;850:167-79. [PMID: 30771347 DOI: 10.1016/j.ejphar.2019.02.021] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
61 Jain KK. Role of Proteomics in the Development of Personalized Medicine. Adv Protein Chem Struct Biol 2016;102:41-52. [PMID: 26827601 DOI: 10.1016/bs.apcsb.2015.09.002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
62 Liu DD, Luo P, Gu L, Zhang Q, Gao P, Zhu Y, Chen X, Guo Q, Zhang J, Ma N, Wang J. Celastrol exerts a neuroprotective effect by directly binding to HMGB1 protein in cerebral ischemia-reperfusion. J Neuroinflammation 2021;18:174. [PMID: 34372857 DOI: 10.1186/s12974-021-02216-w] [Reference Citation Analysis]
63 Tian X, de Vries MP, Visscher SWJ, Permentier HP, Bischoff R. Selective Maleylation-Directed Isobaric Peptide Termini Labeling for Accurate Proteome Quantification. Anal Chem 2020;92:7836-44. [PMID: 32319746 DOI: 10.1021/acs.analchem.0c01059] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
64 Hagedoorn PL. Microbial Metalloproteomics. Proteomes 2015;3:424-39. [PMID: 28248278 DOI: 10.3390/proteomes3040424] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
65 Zielke RA. Proteomics of Vibrio cholerae. Methods Mol Biol 2018;1839:171-8. [PMID: 30047063 DOI: 10.1007/978-1-4939-8685-9_15] [Reference Citation Analysis]
66 Hong Y, Li S, Wang J, Li Y. In vitro inhibition of hepatic stellate cell activation by the autophagy-related lipid droplet protein ATG2A. Sci Rep. 2018;8:9232. [PMID: 29915313 DOI: 10.1038/s41598-018-27686-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
67 Chen Y, Wei H, Liu Y, Gao F, Chen Z, Wang P, Li L, Zhang S. Identification of new protein biomarkers associated with the boar fertility using iTRAQ-based quantitative proteomic analysis. Int J Biol Macromol 2020;162:50-9. [PMID: 32553959 DOI: 10.1016/j.ijbiomac.2020.06.102] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
68 Iorgu AI, Cliff MJ, Waltho JP, Scrutton NS, Hay S. Isotopically labeled flavoenzymes and their uses in probing reaction mechanisms. Methods Enzymol 2019;620:145-66. [PMID: 31072485 DOI: 10.1016/bs.mie.2019.03.009] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
69 Sabherwal S, English JA, Föcking M, Cagney G, Cotter DR. Blood biomarker discovery in drug-free schizophrenia: the contribution of proteomics and multiplex immunoassays. Expert Review of Proteomics 2016;13:1141-55. [DOI: 10.1080/14789450.2016.1252262] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
70 Reisdorph NA, Michel C, Fritz K, Reisdorph R. Application of Proteomics in Lung Research. Methods Mol Biol 2018;1809:237-62. [PMID: 29987793 DOI: 10.1007/978-1-4939-8570-8_16] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
71 Kholodar SA, Ghosh AK, Kohen A. Measurement of Enzyme Isotope Effects. Methods Enzymol 2017;596:43-83. [PMID: 28911779 DOI: 10.1016/bs.mie.2017.06.033] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
72 Mourino-Alvarez L, Baldan-Martin M, Rincon R, Martin-Rojas T, Corbacho-Alonso N, Sastre-Oliva T, Barderas MG. Recent advances and clinical insights into the use of proteomics in the study of atherosclerosis. Expert Rev Proteomics 2017;14:701-13. [PMID: 28689450 DOI: 10.1080/14789450.2017.1353912] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
73 Peffers MJ, Smagul A, Anderson JR. Proteomic analysis of synovial fluid: current and potential uses to improve clinical outcomes. Expert Rev Proteomics 2019;16:287-302. [PMID: 30793992 DOI: 10.1080/14789450.2019.1578214] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
74 Pei G, Chen L, Zhang W. WGCNA Application to Proteomic and Metabolomic Data Analysis. Methods Enzymol. 2017;585:135-158. [PMID: 28109426 DOI: 10.1016/bs.mie.2016.09.016] [Cited by in Crossref: 88] [Cited by in F6Publishing: 86] [Article Influence: 14.7] [Reference Citation Analysis]
75 Liao DJ, Cheng XP, Li N, Liang KL, Fan H, Zhang SY, Hu XQ, Fan P, Wu YS. A Comparative Study on the Incidence, Aggravation, and Remission of Lupus Nephritis Based on iTRAQ Technology. Comb Chem High Throughput Screen 2020;23:649-57. [PMID: 32297573 DOI: 10.2174/1386207323666200416151836] [Reference Citation Analysis]
76 Li J, Zhan X. Mass spectrometry-based proteomics analyses of post-translational modifications and proteoforms in human pituitary adenomas. Biochim Biophys Acta Proteins Proteom 2021;1869:140584. [PMID: 33321259 DOI: 10.1016/j.bbapap.2020.140584] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
77 Harrilal CP, Gandhi VD, Nagy G, Chen X, Buchanan MG, Wojcik R, Conant CR, Donor MT, Ibrahim YM, Garimella SVB, Smith RD, Larriba-Andaluz C. Measurement and Theory of Gas-Phase Ion Mobility Shifts Resulting from Isotopomer Mass Distribution Changes. Anal Chem 2021;93:14966-75. [PMID: 34726890 DOI: 10.1021/acs.analchem.1c01736] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 O’reilly J, Lindsey ML, Baugh JA. Physiological proteomics of heart failure. Current Opinion in Physiology 2018;1:185-97. [DOI: 10.1016/j.cophys.2017.12.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
79 Komatsu E, Buist M, Roy R, Gomes de Oliveira AG, Bodnar E, Salama A, Soulillou J, Perreault H. Characterization of immunoglobulins through analysis of N-glycopeptides by MALDI-TOF MS. Methods 2016;104:170-81. [DOI: 10.1016/j.ymeth.2016.01.005] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 3.7] [Reference Citation Analysis]
80 Anand S, Samuel M, Ang C, Keerthikumar S, Mathivanan S. Label-Based and Label-Free Strategies for Protein Quantitation. In: Keerthikumar S, Mathivanan S, editors. Proteome Bioinformatics. New York: Springer; 2017. pp. 31-43. [DOI: 10.1007/978-1-4939-6740-7_4] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 5.3] [Reference Citation Analysis]
81 Li N, Zhan X. MASS SPECTROMETRY‐BASED MITOCHONDRIAL PROTEOMICS IN HUMAN OVARIAN CANCERS. Mass Spec Rev 2020;39:471-98. [DOI: 10.1002/mas.21618] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
82 Yokota H. Applications of proteomics in pharmaceutical research and development. Biochim Biophys Acta Proteins Proteom 2019;1867:17-21. [PMID: 29753086 DOI: 10.1016/j.bbapap.2018.05.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
83 Baarda BI, Sikora AE. Proteomics of Neisseria gonorrhoeae: the treasure hunt for countermeasures against an old disease. Front Microbiol 2015;6:1190. [PMID: 26579097 DOI: 10.3389/fmicb.2015.01190] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
84 Liu X, Shi L, Gu JD. Microbial electrocatalysis: Redox mediators responsible for extracellular electron transfer. Biotechnol Adv 2018;36:1815-27. [PMID: 30196813 DOI: 10.1016/j.biotechadv.2018.07.001] [Cited by in Crossref: 97] [Cited by in F6Publishing: 73] [Article Influence: 24.3] [Reference Citation Analysis]
85 Segeletz S, Hoflack B. Proteomic approaches to study osteoclast biology. Proteomics 2016;16:2545-56. [PMID: 27350065 DOI: 10.1002/pmic.201500519] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
86 Zhang S, Li W, Lu H, Liu Y. Quantification of N-glycosylation site occupancy status based on labeling/label-free strategies with LC-MS/MS. Talanta 2017;170:509-13. [PMID: 28501204 DOI: 10.1016/j.talanta.2017.04.053] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
87 Chappell DL, White MC, Damania B. Proteomic approaches to investigate gammaherpesvirus biology and associated tumorigenesis. Adv Virus Res 2021;109:201-54. [PMID: 33934828 DOI: 10.1016/bs.aivir.2020.10.001] [Reference Citation Analysis]
88 Kontostathi G, Makridakis M, Zoidakis J, Vlahou A. Applications of multiple reaction monitoring targeted proteomics assays in human plasma. Expert Rev Mol Diagn 2019;19:499-515. [PMID: 31057016 DOI: 10.1080/14737159.2019.1615448] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
89 Nilsson J, Brinkmalm G, Ramadan S, Gilborne L, Noborn F, Blennow K, Wallin A, Svensson J, Abo-Riya MA, Huang X, Larson G. Synthetic standard aided quantification and structural characterization of amyloid-beta glycopeptides enriched from cerebrospinal fluid of Alzheimer's disease patients. Sci Rep 2019;9:5522. [PMID: 30940835 DOI: 10.1038/s41598-019-41897-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
90 Tsuchida S, Satoh M, Takiwaki M, Nomura F. Current Status of Proteomic Technologies for Discovering and Identifying Gingival Crevicular Fluid Biomarkers for Periodontal Disease. Int J Mol Sci 2018;20:E86. [PMID: 30587811 DOI: 10.3390/ijms20010086] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
91 Zilkenat S, Grin I, Wagner S. Stoichiometry determination of macromolecular membrane protein complexes. Biol Chem 2017;398:155-64. [PMID: 27664774 DOI: 10.1515/hsz-2016-0251] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
92 Baldan-Martin M, Martin-Rojas T, Corbacho-Alonso N, Lopez JA, Sastre-Oliva T, Gil-Dones F, Vazquez J, Arevalo JM, Mourino-Alvarez L, Barderas MG. Comprehensive Proteomic Profiling of Pressure Ulcers in Patients with Spinal Cord Injury Identifies a Specific Protein Pattern of Pathology. Adv Wound Care (New Rochelle) 2020;9:277-94. [PMID: 32226651 DOI: 10.1089/wound.2019.0968] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
93 Clough R, Harrington CF, Hill SJ, Madrid Y, Tyson JF. Atomic Spectrometry Update: review of advances in elemental speciation. J Anal At Spectrom 2016;31:1330-73. [DOI: 10.1039/c6ja90030e] [Cited by in Crossref: 8] [Article Influence: 1.3] [Reference Citation Analysis]
94 Sharpton SR, Yong GJM, Terrault NA, Lynch SV. Gut Microbial Metabolism and Nonalcoholic Fatty Liver Disease. Hepatol Commun 2019;3:29-43. [PMID: 30619992 DOI: 10.1002/hep4.1284] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
95 He Y, Mohamedali A, Huang C, Baker MS, Nice EC. Oncoproteomics: Current status and future opportunities. Clin Chim Acta 2019;495:611-24. [PMID: 31176645 DOI: 10.1016/j.cca.2019.06.006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
96 Lin Y, Chien K, Wu C, Chang W, Chu LJ, Chen M, Yeh C, Yu J. Super-SILAC mix coupled with SIM/AIMS assays for targeted verification of phosphopeptides discovered in a large-scale phosphoproteome analysis of hepatocellular carcinoma. Journal of Proteomics 2017;157:40-51. [DOI: 10.1016/j.jprot.2017.02.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
97 Woll KA, Dailey WP, Brannigan G, Eckenhoff RG. Shedding Light on Anesthetic Mechanisms: Application of Photoaffinity Ligands. Anesth Analg 2016;123:1253-62. [PMID: 27464974 DOI: 10.1213/ANE.0000000000001365] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 4.4] [Reference Citation Analysis]
98 Kim YE, Jeon HJ, Kim D, Lee SY, Kim KY, Hong J, Maeng PJ, Kim KR, Kang D. Quantitative Proteomic Analysis of 2D and 3D Cultured Colorectal Cancer Cells: Profiling of Tankyrase Inhibitor XAV939-Induced Proteome. Sci Rep 2018;8:13255. [PMID: 30185973 DOI: 10.1038/s41598-018-31564-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
99 Evans EH, Pisonero J, Smith CMM, Taylor RN. Atomic spectrometry update: review of advances in atomic spectrometry and related techniques. J Anal At Spectrom 2016;31:1057-77. [DOI: 10.1039/c6ja90020h] [Cited by in Crossref: 14] [Article Influence: 2.3] [Reference Citation Analysis]
100 Carbonara K, Andonovski M, Coorssen JR. Proteomes Are of Proteoforms: Embracing the Complexity. Proteomes 2021;9:38. [PMID: 34564541 DOI: 10.3390/proteomes9030038] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
101 Ghodasara P, Sadowski P, Satake N, Kopp S, Mills PC. Clinical veterinary proteomics: Techniques and approaches to decipher the animal plasma proteome. Vet J 2017;230:6-12. [PMID: 29208216 DOI: 10.1016/j.tvjl.2017.10.022] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
102 Lee LH, Halu A, Morgan S, Iwata H, Aikawa M, Singh SA. XINA: A Workflow for the Integration of Multiplexed Proteomics Kinetics Data with Network Analysis. J Proteome Res 2019;18:775-81. [PMID: 30370770 DOI: 10.1021/acs.jproteome.8b00615] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
103 Lau BYC, Othman A, Ramli US. Application of Proteomics Technologies in Oil Palm Research. Protein J 2018;37:473-99. [DOI: 10.1007/s10930-018-9802-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
104 Ippoushi K, Wakagi M, Hashimoto N, Takano-ishikawa Y. Absolute quantification of the α, α′, and β subunits of β-conglycinin from soybeans by liquid chromatography/tandem mass spectrometry using stable isotope-labelled peptides. Food Research International 2019;116:1223-8. [DOI: 10.1016/j.foodres.2018.10.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
105 Smith J, Mittermayr S, Váradi C, Bones J. Quantitative glycomics using liquid phase separations coupled to mass spectrometry. Analyst 2017;142:700-20. [PMID: 28170017 DOI: 10.1039/c6an02715f] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 2.8] [Reference Citation Analysis]
106 Ji EH, Diep C, Liu T, Li H, Merrill R, Messadi D, Hu S. Potential protein biomarkers for burning mouth syndrome discovered by quantitative proteomics. Mol Pain 2017;13:1744806916686796. [PMID: 28326926 DOI: 10.1177/1744806916686796] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
107 Zhang C, Liu Y. Retrieving Quantitative Information of Histone PTMs by Mass Spectrometry. Methods Enzymol 2017;586:165-91. [PMID: 28137562 DOI: 10.1016/bs.mie.2016.10.017] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
108 Giera M. Bioanalytical derivatization: is there still room for development? Bioanalysis 2015;7:2439-41. [DOI: 10.4155/bio.15.151] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
109 Kitanaka A, Juichi H, Nihashi Y, Miyashita M, Miyagawa H. A Facile Method for Preferential Modification of the N-Terminal Amino Group of Peptides Using Triazine-Based Coupling Reagents. Mass Spectrom (Tokyo) 2017;6:A0059. [PMID: 28785530 DOI: 10.5702/massspectrometry.A0059] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
110 Shan M, Gregory BD. Using RNA Affinity Purification Followed by Mass Spectrometry to Identify RNA-Binding Proteins (RBPs). Methods Mol Biol 2020;2166:241-53. [PMID: 32710413 DOI: 10.1007/978-1-0716-0712-1_14] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
111 Xie W, Li M, Song L, Zhang R, Hu X, Liang C, Yang X. 15N Stable Isotope Labeling PSTs in Alexandrium minutum for Application of PSTs as Biomarker. Toxins (Basel) 2019;11:E211. [PMID: 30965634 DOI: 10.3390/toxins11040211] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
112 Cazares LH, Ward MD, Brueggemann EE, Kenny T, Demond P, Mahone CR, Martins KA, Nuss JE, Glaros T, Bavari S. Development of a liquid chromatography high resolution mass spectrometry method for the quantitation of viral envelope glycoprotein in Ebola virus-like particle vaccine preparations. Clin Proteomics 2016;13:18. [PMID: 27597813 DOI: 10.1186/s12014-016-9119-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
113 Tan HW, Xu YM, Lau ATY. Human bronchial-pulmonary proteomics in coronavirus disease 2019 (COVID-19) pandemic: applications and implications. Expert Rev Proteomics 2021;18:925-38. [PMID: 34812694 DOI: 10.1080/14789450.2021.2010549] [Reference Citation Analysis]
114 Ratovitski T, Chaerkady R, Kammers K, Stewart JC, Zavala A, Pletnikova O, Troncoso JC, Rudnicki DD, Margolis RL, Cole RN, Ross CA. Quantitative Proteomic Analysis Reveals Similarities between Huntington's Disease (HD) and Huntington's Disease-Like 2 (HDL2) Human Brains. J Proteome Res 2016;15:3266-83. [PMID: 27486686 DOI: 10.1021/acs.jproteome.6b00448] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
115 Arul AB, Robinson RAS. Sample Multiplexing Strategies in Quantitative Proteomics. Anal Chem 2019;91:178-89. [PMID: 30525468 DOI: 10.1021/acs.analchem.8b05626] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]
116 Li J, Wu L, Jin Y, Su P, Yang B, Yang Y. A universal SI-traceable isotope dilution mass spectrometry method for protein quantitation in a matrix by tandem mass tag technology. Anal Bioanal Chem 2016;408:3485-93. [PMID: 26942737 DOI: 10.1007/s00216-016-9424-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
117 Yu C, Brooks S, Li Y, Subramanian M, Summers R, Pope M. Rapid Proteomics to Prospect and Validate Novel Bacterial Metabolism Induced by Environmental Burden. Proteomics in Biology, Part B. Elsevier; 2017. pp. 379-411. [DOI: 10.1016/bs.mie.2016.11.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
118 Psatha K, Kollipara L, Voutyraki C, Divanach P, Sickmann A, Rassidakis GZ, Drakos E, Aivaliotis M. Deciphering lymphoma pathogenesis via state-of-the-art mass spectrometry-based quantitative proteomics. J Chromatogr B Analyt Technol Biomed Life Sci 2017;1047:2-14. [PMID: 27979587 DOI: 10.1016/j.jchromb.2016.11.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
119 Budelier MM, Cheng WW, Bergdoll L, Chen ZW, Abramson J, Krishnan K, Qian M, Covey DF, Janetka JW, Evers AS. Click Chemistry Reagent for Identification of Sites of Covalent Ligand Incorporation in Integral Membrane Proteins. Anal Chem 2017;89:2636-44. [PMID: 28194953 DOI: 10.1021/acs.analchem.6b05003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
120 Yi J, Hu H, Shi P, Shi S, Zhao J, Xu L, Yang W, Li B, Zhu J, Zou S. Differential analysis of quantitative proteome and acetyl-proteome profiling between premenopausal and postmenopausal ovarian tissues. Clin Proteomics 2018;15:36. [PMID: 30479583 DOI: 10.1186/s12014-018-9214-0] [Reference Citation Analysis]
121 Benda D, Beck S, Linscheid MW. Synthesis and characterization of a new MeCAT reagent containing a photocleavable linker for labeling of proteins and peptides in mass spectrometric analyses. Talanta 2019;192:197-203. [PMID: 30348378 DOI: 10.1016/j.talanta.2018.09.046] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
122 Cong Y, Zhang Z, Zhang S, Hu L, Gu J. Quantitative MS analysis of therapeutic mAbs and their glycosylation for pharmacokinetics study. Prot Clin Appl 2016;10:303-14. [DOI: 10.1002/prca.201500098] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
123 He R, Kong Y, Fang P, Li L, Shi H, Liu Z. Integration of quantitative proteomics and metabolomics reveals tissue hypoxia mechanisms in an ischemic-hypoxic rat model. J Proteomics 2020;228:103924. [PMID: 32736140 DOI: 10.1016/j.jprot.2020.103924] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
124 Steinkraus BR, Toegel M, Fulga TA. Tiny giants of gene regulation: experimental strategies for microRNA functional studies. Wiley Interdiscip Rev Dev Biol 2016;5:311-62. [PMID: 26950183 DOI: 10.1002/wdev.223] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 6.3] [Reference Citation Analysis]
125 Cid-barrio L, Calderón-celis F, Abásolo-linares P, Fernández-sánchez ML, Costa-fernández JM, Encinar JR, Sanz-medel A. Advances in absolute protein quantification and quantitative protein mapping using ICP-MS. TrAC Trends in Analytical Chemistry 2018;104:148-59. [DOI: 10.1016/j.trac.2017.09.024] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 5.5] [Reference Citation Analysis]
126 Ménoret A, Crocker SJ, Rodriguez A, Rathinam VA, Clark RB, Vella AT. Transition from identity to bioactivity-guided proteomics for biomarker discovery with focus on the PF2D platform. Proteomics Clin Appl 2016;10:8-24. [PMID: 26201056 DOI: 10.1002/prca.201500029] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
127 Zielke RA, Wierzbicki IH, Baarda BI, Gafken PR, Soge OO, Holmes KK, Jerse AE, Unemo M, Sikora AE. Proteomics-driven Antigen Discovery for Development of Vaccines Against Gonorrhea. Mol Cell Proteomics 2016;15:2338-55. [PMID: 27141096 DOI: 10.1074/mcp.M116.058800] [Cited by in Crossref: 52] [Cited by in F6Publishing: 32] [Article Influence: 8.7] [Reference Citation Analysis]
128 Miah S, Banks CA, Adams MK, Florens L, Lukong KE, Washburn MP. Advancement of mass spectrometry-based proteomics technologies to explore triple negative breast cancer. Mol Biosyst 2016;13:42-55. [PMID: 27891540 DOI: 10.1039/c6mb00639f] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
129 Itze-Mayrhofer C, Brem G. Quantitative proteomic strategies to study reproduction in farm animals: Female reproductive fluids. J Proteomics 2020;225:103884. [PMID: 32593762 DOI: 10.1016/j.jprot.2020.103884] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
130 Khodadadi E, Zeinalzadeh E, Taghizadeh S, Mehramouz B, Kamounah FS, Khodadadi E, Ganbarov K, Yousefi B, Bastami M, Kafil HS. Proteomic Applications in Antimicrobial Resistance and Clinical Microbiology Studies. Infect Drug Resist 2020;13:1785-806. [PMID: 32606829 DOI: 10.2147/IDR.S238446] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
131 Ayrton ST, Cooks RG, Pugia M. Molecular labels for analysis of amines and diols by spray based ionization-mass spectrometry. Analyst 2016;141:5398-403. [PMID: 27352128 DOI: 10.1039/c6an00907g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
132 Alfieri M, Barbaro F, Consolini E, Bassi E, Dallatana D, Bergonzi C, Bianchera A, Bettini R, Toni R, Elviri L. A targeted mass spectrometry method to screen collagen types I-V in the decellularized 3D extracellular matrix of the adult male rat thyroid. Talanta 2019;193:1-8. [DOI: 10.1016/j.talanta.2018.09.087] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
133 Hu J, Yang P, Hou X. Atomic spectrometry and atomic mass spectrometry in bioanalytical chemistry. Applied Spectroscopy Reviews 2019;54:180-203. [DOI: 10.1080/05704928.2018.1553047] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
134 Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- and Tritium-Labelled Compounds: Applications in the Life Sciences. Angew Chem Int Ed Engl 2018;57:1758-84. [PMID: 28815899 DOI: 10.1002/anie.201704146] [Cited by in Crossref: 220] [Cited by in F6Publishing: 138] [Article Influence: 55.0] [Reference Citation Analysis]
135 Yu S, Yan C, Yang X, He S, Liu J, Qin C, Huang C, Lu Y, Tian Z, Jia L. Pharmacoproteomic analysis reveals that metapristone (RU486 metabolite) intervenes E-cadherin and vimentin to realize cancer metastasis chemoprevention. Sci Rep 2016;6:22388. [PMID: 26932781 DOI: 10.1038/srep22388] [Cited by in Crossref: 14] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
136 Pfeuffer J, Sachsenberg T, Alka O, Walzer M, Fillbrunn A, Nilse L, Schilling O, Reinert K, Kohlbacher O. OpenMS – A platform for reproducible analysis of mass spectrometry data. Journal of Biotechnology 2017;261:142-8. [DOI: 10.1016/j.jbiotec.2017.05.016] [Cited by in Crossref: 56] [Cited by in F6Publishing: 44] [Article Influence: 11.2] [Reference Citation Analysis]
137 Zhang P, Misra S, Guo Z, Rehkämper M, Valsami-Jones E. Stable isotope labeling of metal/metal oxide nanomaterials for environmental and biological tracing. Nat Protoc 2019;14:2878-99. [PMID: 31515516 DOI: 10.1038/s41596-019-0205-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
138 Wojcik R, Nagy G, Attah IK, Webb IK, Garimella SVB, Weitz KK, Hollerbach A, Monroe ME, Ligare MR, Nielson FF, Norheim RV, Renslow RS, Metz TO, Ibrahim YM, Smith RD. SLIM Ultrahigh Resolution Ion Mobility Spectrometry Separations of Isotopologues and Isotopomers Reveal Mobility Shifts due to Mass Distribution Changes. Anal Chem 2019;91:11952-62. [PMID: 31450886 DOI: 10.1021/acs.analchem.9b02808] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
139 He Y, Luo Y, Chen H, Hou H, Hu Q. Research Progress in Analysis of Small Molecule Metabolites in Bio-matrices by Stable Isotope Coded Derivatization Combining with Liquid Chromatography–tandem Mass Spectrometry. Chinese Journal of Analytical Chemistry 2017;45:1066-77. [DOI: 10.1016/s1872-2040(17)61026-0] [Cited by in Crossref: 5] [Article Influence: 1.0] [Reference Citation Analysis]
140 Purcell AW, Croft NP, Tscharke DC. Immunology by numbers: quantitation of antigen presentation completes the quantitative milieu of systems immunology! Curr Opin Immunol 2016;40:88-95. [PMID: 27060633 DOI: 10.1016/j.coi.2016.03.007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]