BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ramdzan NSM, Fen YW, Omar NAS, Anas NAA, Daniyal WMEMM, Saleviter S, Zainudin AA. Optical and surface plasmon resonance sensing properties for chitosan/carboxyl-functionalized graphene quantum dots thin film. Optik 2019;178:802-12. [DOI: 10.1016/j.ijleo.2018.10.071] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 10.3] [Reference Citation Analysis]
Number Citing Articles
1 Daniyal WMEMM, Fen YW, Eddin FBK, Abdullah J, Mahdi MA. Surface plasmon resonance assisted optical characterization of nickel ion solution and nanocrystalline cellulose-graphene oxide thin film for sensitivity enhancement analysis. Physica B: Condensed Matter 2022;646:414292. [DOI: 10.1016/j.physb.2022.414292] [Reference Citation Analysis]
2 Eddin FBK, Fen YW, Sadrolhosseini AR, Liew JYC, Daniyal ‬MEMM. Optical Property Analysis of Chitosan-Graphene Quantum Dots Thin Film and Dopamine Using Surface Plasmon Resonance Spectroscopy. Plasmonics. [DOI: 10.1007/s11468-022-01680-1] [Reference Citation Analysis]
3 Uniyal S, Choudhary K, Sachdev S, Kumar S. Recent Advances in K-SPR Sensors for the Detection of Biomolecules and Microorganisms: A Review. IEEE Sensors J 2022;22:11415-26. [DOI: 10.1109/jsen.2022.3172115] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Eddin FBK, Fen YW, Fauzi NIM, Daniyal WMEMM, Omar NAS, Anuar MF, Hashim HS, Sadrolhosseini AR, Abdullah H. Direct and Sensitive Detection of Dopamine Using Carbon Quantum Dots Based Refractive Index Surface Plasmon Resonance Sensor. Nanomaterials (Basel) 2022;12:1799. [PMID: 35683655 DOI: 10.3390/nano12111799] [Reference Citation Analysis]
5 Fauzi NIM, Fen YW, Abdullah J, Kamarudin MA, Omar NAS, Eddin FBK, Ramdzan NSM, Daniyal WMEMM. Evaluation of Structural and Optical Properties of Graphene Oxide-Polyvinyl Alcohol Thin Film and Its Potential for Pesticide Detection Using an Optical Method. Photonics 2022;9:300. [DOI: 10.3390/photonics9050300] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Sabzehmeidani MM, Kazemzad M. Quantum dots based sensitive nanosensors for detection of antibiotics in natural products: A review. Sci Total Environ 2021;810:151997. [PMID: 34848263 DOI: 10.1016/j.scitotenv.2021.151997] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
7 Hashim HS, Fen YW, Omar NAS, Fauzi NIM. Sensing Methods for Hazardous Phenolic Compounds Based on Graphene and Conducting Polymers-Based Materials. Chemosensors 2021;9:291. [DOI: 10.3390/chemosensors9100291] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Ramdzan NSM, Fen YW, Liew JYC, Omar NAS, Anas NAA, Daniyal WMEMM, Fauzi NIM. Exploration on Structural and Optical Properties of Nanocrystalline Cellulose/Poly(3,4-Ethylenedioxythiophene) Thin Film for Potential Plasmonic Sensing Application. Photonics 2021;8:419. [DOI: 10.3390/photonics8100419] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Ramdzan NSM, Fen YW, Omar NAS, Anas NAA, Liew JYC, Daniyal WMEMM, Hashim HS. Detection of mercury ion using surface plasmon resonance spectroscopy based on nanocrystalline cellulose/poly(3,4-ethylenedioxythiophene) thin film. Measurement 2021;182:109728. [DOI: 10.1016/j.measurement.2021.109728] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
10 Báez DF, Brito TP, Espinoza LC, Méndez-torres AM, Sierpe R, Sierra-rosales P, Venegas CJ, Yáñez C, Bollo S. Graphene-based sensors for small molecule determination in real samples. Microchemical Journal 2021;167:106303. [DOI: 10.1016/j.microc.2021.106303] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Rosddi NNM, Fen YW, Omar NAS, Anas NAA, Hashim HS, Ramdzan NSM, Fauzi NIM, Anuar MF, Daniyal WMEMM. Glucose detection by gold modified carboxyl-functionalized graphene quantum dots-based surface plasmon resonance. Optik 2021;239:166779. [DOI: 10.1016/j.ijleo.2021.166779] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
12 Ozkaya C, Capan R, Erdogan M, Bayrakci M, Ozmen M, Acikbas Y. Fabrication of picoline amide-based calix[4]arene Langmuir-Blodgett thin film for volatile organic vapor sensing application. Molecular Crystals and Liquid Crystals 2020;710:49-65. [DOI: 10.1080/15421406.2020.1829309] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
13 Daniyal WMEMM, Fen YW, Abdullah J, Hashim HS, Fauzi N‘M, Chanlek N, Mahdi MA. X-ray photoelectron study on gold/nanocrystalline cellulose-graphene oxide thin film as surface plasmon resonance active layer for metal ion detection. Thin Solid Films 2020;713:138340. [DOI: 10.1016/j.tsf.2020.138340] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
14 Rosddi NNM, Fen YW, Anas NAA, Omar NAS, Ramdzan NSM, Daniyal WMEMM. Cationically Modified Nanocrystalline Cellulose/Carboxyl-Functionalized Graphene Quantum Dots Nanocomposite Thin Film: Characterization and Potential Sensing Application. Crystals 2020;10:875. [DOI: 10.3390/cryst10100875] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
15 Anas NAA, Fen YW, Yusof NA, Omar NAS, Daniyal WMEMM, Ramdzan NSM. Highly sensitive surface plasmon resonance optical detection of ferric ion using CTAB/hydroxylated graphene quantum dots thin film. Journal of Applied Physics 2020;128:083105. [DOI: 10.1063/5.0018106] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
16 Hashim HS, Fen YW, Omar NAS, Daniyal WMEMM, Saleviter S, Abdullah J. Structural, optical and potential sensing properties of tyrosinase immobilized graphene oxide thin film on gold surface. Optik 2020;212:164786. [DOI: 10.1016/j.ijleo.2020.164786] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
17 Hashim HS, Fen YW, Sheh Omar NA, Abdullah J, Daniyal WMEMM, Saleviter S. Detection of phenol by incorporation of gold modified-enzyme based graphene oxide thin film with surface plasmon resonance technique. Opt Express 2020;28:9738. [DOI: 10.1364/oe.387027] [Cited by in Crossref: 12] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
18 Han G, Chen Z, Cai L, Zhang Y, Tian J, Ma H, Fang S. Poly(vinyl alcohol)/Carboxyl Graphene Membranes for Ethanol Dehydration by Pervaporation. Chem Eng Technol 2020;43:574-81. [DOI: 10.1002/ceat.201900149] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
19 Han GL, Chen Z, Cai LF, Zhang YH, Tian JF, Ma HH, Fang SM. Poly(vinyl alcohol)/carboxyl graphene mixed matrix membranes: High‐power ultrasonic treatment for enhanced pervaporation performance. J Appl Polym Sci 2019;137:48526. [DOI: 10.1002/app.48526] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
20 Viorica GP, Musat V, Pimentel A, Calmeiro TR, Carlos E, Baroiu L, Martins R, Fortunato E. Hybrid (Ag)ZnO/Cs/PMMA nanocomposite thin films. Journal of Alloys and Compounds 2019;803:922-33. [DOI: 10.1016/j.jallcom.2019.06.373] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
21 Patil PO, Pandey GR, Patil AG, Borse VB, Deshmukh PK, Patil DR, Tade RS, Nangare SN, Khan ZG, Patil AM, More MP, Veerapandian M, Bari SB. Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review. Biosens Bioelectron 2019;139:111324. [PMID: 31121435 DOI: 10.1016/j.bios.2019.111324] [Cited by in Crossref: 55] [Cited by in F6Publishing: 75] [Article Influence: 18.3] [Reference Citation Analysis]
22 Daniyal WMEMM, Fen YW, Anas NAA, Omar NAS, Ramdzan NSM, Nakajima H, Mahdi MA. Enhancing the sensitivity of a surface plasmon resonance-based optical sensor for zinc ion detection by the modification of a gold thin film. RSC Adv 2019;9:41729-36. [DOI: 10.1039/c9ra07368j] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 5.7] [Reference Citation Analysis]
23 Daniyal WMEMM, Fen YW, Abdullah J, Sadrolhosseini AR, Saleviter S, Omar NAS. Exploration of surface plasmon resonance for sensing copper ion based on nanocrystalline cellulose-modified thin film. Opt Express 2018;26:34880. [DOI: 10.1364/oe.26.034880] [Cited by in Crossref: 27] [Cited by in F6Publishing: 33] [Article Influence: 6.8] [Reference Citation Analysis]