BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li H, Ye H, Zhao X, Sun X, Zhu Q, Han Z, Yuan R, He H. Artful union of a zirconium-porphyrin MOF/GO composite for fabricating an aptamer-based electrochemical sensor with superb detecting performance. Chinese Chemical Letters 2021;32:2851-5. [DOI: 10.1016/j.cclet.2021.02.042] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhang H, Kang Z, Zhu H, Lin H, Yang DP. ZnO/C nanocomposite grafted molecularly imprinted polymers as photoelectrochemical sensing interface for ultrasensitive and selective detection of chloramphenicol. Sci Total Environ 2023;859:160284. [PMID: 36403831 DOI: 10.1016/j.scitotenv.2022.160284] [Reference Citation Analysis]
2 Yang Y, Wang C, Zhang H, Qian J, Yang S, Liao H, Sun X, Wang Y, Sun P, Jia Y, Guo J, Zhu H, Nie C. Preparation of Functionalized Zr-Based MOFs and MOFs/GO for Efficient Removal of 1,3-Butadiene from Cigarette Smoke. Materials (Basel) 2023;16. [PMID: 36676418 DOI: 10.3390/ma16020684] [Reference Citation Analysis]
3 Alameri AA, Sanaan Jabbar H, Altimari US, Sultonov MM, Mahdi AB, Solanki R, Shaker Shafik S, Sivaraman R, Aravindhan S, Hadi JM, Mahmood Saleh M, Mustafa YF. Advances in Biosensing of Chemical Food Contaminants Based on the MOFs-Graphene Nanohybrids. Crit Rev Anal Chem 2022;:1-17. [PMID: 36580293 DOI: 10.1080/10408347.2022.2160923] [Reference Citation Analysis]
4 Zha X, Zhao X, Webb E, Khan SU, Wang Y. Beyond Pristine Metal-Organic Frameworks: Preparation of Hollow MOFs and Their Composites for Catalysis, Sensing, and Adsorption Removal Applications. Molecules 2022;28. [PMID: 36615337 DOI: 10.3390/molecules28010144] [Reference Citation Analysis]
5 Qiao J, Ma Q, Song Y, Qi L. In Situ Monitoring of Intracellular ATP Variation Based on a Thermoregulated Polymer Nanocomposite. ACS Appl Bio Mater 2022;5:5826-31. [PMID: 36441583 DOI: 10.1021/acsabm.2c00810] [Reference Citation Analysis]
6 Zong Z, Tian G, Wang J, Fan C, Yang F, Guo F. Recent Advances in Metal-Organic-Framework-Based Nanocarriers for Controllable Drug Delivery and Release. Pharmaceutics 2022;14. [PMID: 36559283 DOI: 10.3390/pharmaceutics14122790] [Reference Citation Analysis]
7 Dong J, Wang Y, Lu Y, Zhang L. Ultrathin two-dimensional porphyrinic metal-organic framework nanosheets induced by the axial aryl substituent. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.108052] [Reference Citation Analysis]
8 Yin M, Zhang L, Wei X, Sun J, Xu D. Detection of antibiotics by electrochemical sensors based on metal-organic frameworks and their derived materials. Microchemical Journal 2022;183:107946. [DOI: 10.1016/j.microc.2022.107946] [Reference Citation Analysis]
9 Huang Y, Niu Q, Jian L, Zhao W, Li Y, Dong W, Zhang K, Liang W, Yang C. Synthesis of Porphyrinic Metal-Organic Framework/rGO Nanocomposite for Electrochemical Recognition of Copper Ions in Water. Journal of Organometallic Chemistry 2022. [DOI: 10.1016/j.jorganchem.2022.122597] [Reference Citation Analysis]
10 Wang X, Xing G, Li N, Xie Y, Lin L. An integrated microfluidic device for the simultaneous detection of multiple antibiotics. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.108110] [Reference Citation Analysis]
11 Guo F, Tian G, Fan C, Zong Z, Wang J, Xu J. A zirconium–organic framework nanosheet-based aptasensor with outstanding electrochemical sensing performance. Inorganic Chemistry Communications 2022;145:109970. [DOI: 10.1016/j.inoche.2022.109970] [Reference Citation Analysis]
12 Roostaee M, Beitollahi H, Sheikhshoaie I. Simultaneous Determination of Dopamine and Uric Acid in Real Samples Using a Voltammetric Nanosensor Based on Co-MOF, Graphene Oxide, and 1-Methyl-3-butylimidazolium Bromide. Micromachines 2022;13:1834. [DOI: 10.3390/mi13111834] [Reference Citation Analysis]
13 Wu M, Wang L, Xu F, Ma G. Preparation of Ni-MOF superstructure-reduced graphene oxide composite for enhanced electrochemical sensing of acetaminophen. Ionics. [DOI: 10.1007/s11581-022-04778-y] [Reference Citation Analysis]
14 Chu D, Wang Y, Li D, Chu XQ, Ge D, Chen X. Prism-like bimetallic (Ni-Co) alkaline carboxylate-based non-enzymatic sensor capable of exceptionally high catalytic activity towards glucose. Dalton Trans 2022. [PMID: 36148531 DOI: 10.1039/d2dt02424a] [Reference Citation Analysis]
15 Li X, Jin Y, Zhu F, Liu R, Jiang Y, Jiang Y, Mao L. Electrochemical Conjugation of Aptamers on a Carbon Fiber Microelectrode Enables Highly Stable and Selective In Vivo Neurosensing. Angew Chem Int Ed 2022. [DOI: 10.1002/anie.202208121] [Reference Citation Analysis]
16 Zhang L, Chu M, Ji C, Tan J, Yuan Q. Preparation, applications, and challenges of functional DNA nanomaterials. Nano Res . [DOI: 10.1007/s12274-022-4793-5] [Reference Citation Analysis]
17 Li H, An Y, Zhang E, Zhou S, Li M, Li Z, Li X, Yuan R, Zhang W, He H. A covalent organic framework nanosheet-based electrochemical aptasensor with sensitive detection performance. Analytica Chimica Acta 2022;1223:340204. [DOI: 10.1016/j.aca.2022.340204] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Li R, Zhang D, Li X, Qi H. Sensitive and selective electrogenerated chemiluminescence aptasensing method for the determination of dopamine based on target-induced conformational displacement. Bioelectrochemistry 2022;146:108148. [DOI: 10.1016/j.bioelechem.2022.108148] [Reference Citation Analysis]
19 Li L, Liu X, Su B, Zhang H, Li R, Liu Z, Chen Q, Huang T, Cao H. An innovative electrochemical immunosensor based on nanobody heptamer and AuNPs@ZIF-8 nanocomposites as support for the detection of alpha fetoprotein in serum. Microchemical Journal 2022;179:107463. [DOI: 10.1016/j.microc.2022.107463] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
20 Liu Y, Deng Y, Li S, Wang-ngai Chow F, Liu M, He N. Monitoring and detection of antibiotic residues in animal derived foods: Solutions using aptamers. Trends in Food Science & Technology 2022;125:200-35. [DOI: 10.1016/j.tifs.2022.04.008] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Wei P, Wang S, Wang W, Niu Z, Rodas-gonzalez A, Li K, Li L, Yang Q. CoNi bimetallic metal-organic frameworks and gold nanoparticles-based aptamer electrochemical sensor for enrofloxacin detection. Applied Surface Science 2022. [DOI: 10.1016/j.apsusc.2022.154369] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Peng Y, Li M, Jia X, Su J, Zhao X, Zhang S, Zhang H, Zhou X, Chen J, Huang Y, Wågberg T, Hu G. Cu Nanoparticle-Decorated Boron-Carbon-Nitrogen Nanosheets for Electrochemical Determination of Chloramphenicol. ACS Appl Mater Interfaces 2022. [PMID: 35704422 DOI: 10.1021/acsami.2c06729] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
23 Shen H, Jang B, Park J, Mun HJ, Cho HB, Choa YH. In Situ Synthesis of a Bi2Te3-Nanosheet/Reduced-Graphene-Oxide Nanocomposite for Non-Enzymatic Electrochemical Dopamine Sensing. Nanomaterials (Basel) 2022;12:2009. [PMID: 35745351 DOI: 10.3390/nano12122009] [Reference Citation Analysis]
24 Gu J, Peng Y, Zhou T, Ma J, Pang H, Yamauchi Y. Porphyrin-based framework materials for energy conversion. Nano Res Energy 2022;1:e9120009. [DOI: 10.26599/nre.2022.9120009] [Cited by in Crossref: 17] [Cited by in F6Publishing: 28] [Article Influence: 17.0] [Reference Citation Analysis]
25 Wang Y, Qin Y, Zhao X, Jia P, Zeng Z, Xu L. BODIPY-based supramolecular fluorescent metallacages. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.05.090] [Reference Citation Analysis]
26 He Y, Lin Z. Recent advances in protein-imprinted polymers: synthesis, applications and challenges. J Mater Chem B 2022. [PMID: 35507351 DOI: 10.1039/d2tb00273f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Peng G, Gao F, Zou J, Wang X, Gao Y, Zhou H, Liu S, Li M, Lu L. One-step electrochemical synthesis of tremella-like Co-MOFs/carbon nanohorns films for enhanced electrochemical sensing of carbendazim in vegetable and fruit samples. Journal of Electroanalytical Chemistry 2022. [DOI: 10.1016/j.jelechem.2022.116462] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 David IG, Buleandra M, Popa DE, Cheregi MC, Iorgulescu EE. Past and Present of Electrochemical Sensors and Methods for Amphenicol Antibiotic Analysis. Micromachines 2022;13:677. [DOI: 10.3390/mi13050677] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Fu H, Wang C, Liu W. MOFs for water purification. Chinese Chemical Letters 2022;33:1647-9. [DOI: 10.1016/j.cclet.2021.08.065] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
30 Zhang H, Li H, Han Z, Yuan R, He H. Incorporating Fullerenes in Nanoscale Metal–Organic Matrixes: An Ultrasensitive Platform for Impedimetric Aptasensing of Tobramycin. ACS Appl Mater Interfaces. [DOI: 10.1021/acsami.1c23320] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
31 Wu C, Li X, Shao M, Kan J, Wang G, Geng Y, Dong Y. Porphyrin covalent organic framework for photocatalytic synthesis of tetrahydroquinolines. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.01.065] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
32 Yuan R, Li HK, He H. Recent advances in metal/covalent organic framework-based electrochemical aptasensors for biosensing applications. Dalton Trans 2021;50:14091-104. [PMID: 34609402 DOI: 10.1039/d1dt02360h] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]