BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rojo de la Vega M, Chapman E, Zhang DD. NRF2 and the Hallmarks of Cancer. Cancer Cell 2018;34:21-43. [PMID: 29731393 DOI: 10.1016/j.ccell.2018.03.022] [Cited by in F6Publishing: 387] [Reference Citation Analysis]
Number Citing Articles
1 Bovilla VR, Kuruburu MG, Bettada VG, Krishnamurthy J, Sukocheva OA, Thimmulappa RK, Shivananju NS, Balakrishna JP, Madhunapantula SV. Targeted Inhibition of Anti-Inflammatory Regulator Nrf2 Results in Breast Cancer Retardation In Vitro and In Vivo. Biomedicines 2021;9:1119. [PMID: 34572304 DOI: 10.3390/biomedicines9091119] [Reference Citation Analysis]
2 Cavaliere A, Merz V, Casalino S, Zecchetto C, Simionato F, Salt HL, Contarelli S, Santoro R, Melisi D. Novel Biomarkers for Prediction of Response to Preoperative Systemic Therapies in Gastric Cancer. J Gastric Cancer 2019;19:375-92. [PMID: 31897341 DOI: 10.5230/jgc.2019.19.e39] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
3 Liu P, Dodson M, Fang D, Chapman E, Zhang DD. NRF2 negatively regulates primary ciliogenesis and hedgehog signaling. PLoS Biol 2020;18:e3000620. [PMID: 32053600 DOI: 10.1371/journal.pbio.3000620] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
4 Zhou YK, Li XP, Yin JY, Zou T, Wang Z, Wang Y, Cao L, Chen J, Liu ZQ. Association of variations in platinum resistance-related genes and prognosis in lung cancer patients. J Cancer 2020;11:4343-51. [PMID: 32489453 DOI: 10.7150/jca.44410] [Reference Citation Analysis]
5 Manford AG, Rodríguez-pérez F, Shih KY, Shi Z, Berdan CA, Choe M, Titov DV, Nomura DK, Rape M. A Cellular Mechanism to Detect and Alleviate Reductive Stress. Cell 2020;183:46-61.e21. [DOI: 10.1016/j.cell.2020.08.034] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
6 Hiebert P, Werner S. Regulation of Wound Healing by the NRF2 Transcription Factor-More Than Cytoprotection. Int J Mol Sci 2019;20:E3856. [PMID: 31398789 DOI: 10.3390/ijms20163856] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
7 Serrano JJ, Delgado B, Medina MÁ. Control of tumor angiogenesis and metastasis through modulation of cell redox state. Biochim Biophys Acta Rev Cancer 2020;1873:188352. [PMID: 32035101 DOI: 10.1016/j.bbcan.2020.188352] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Gao Y, Kim S, Lee YI, Lee J. Cellular Stress-Modulating Drugs Can Potentially Be Identified by in Silico Screening with Connectivity Map (CMap). Int J Mol Sci 2019;20:E5601. [PMID: 31717493 DOI: 10.3390/ijms20225601] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
9 Ding H, Yu X, Hang C, Gao K, Lao X, Jia Y, Yan Z. Ailanthone: A novel potential drug for treating human cancer. Oncol Lett 2020;20:1489-503. [PMID: 32724391 DOI: 10.3892/ol.2020.11710] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Zhao J, Lin X, Meng D, Zeng L, Zhuang R, Huang S, Lv W, Hu J. Nrf2 Mediates Metabolic Reprogramming in Non-Small Cell Lung Cancer. Front Oncol 2020;10:578315. [PMID: 33324555 DOI: 10.3389/fonc.2020.578315] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
11 Mukhopadhyay S, Goswami D, Adiseshaiah PP, Burgan W, Yi M, Guerin TM, Kozlov SV, Nissley DV, McCormick F. Undermining Glutaminolysis Bolsters Chemotherapy While NRF2 Promotes Chemoresistance in KRAS-Driven Pancreatic Cancers.Cancer Res. 2020;80:1630-1643. [PMID: 31911550 DOI: 10.1158/0008-5472.CAN-19-1363] [Cited by in Crossref: 52] [Cited by in F6Publishing: 46] [Article Influence: 26.0] [Reference Citation Analysis]
12 Panieri E, Saso L. Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells. Antioxid Redox Signal 2021;34:1428-83. [PMID: 33403898 DOI: 10.1089/ars.2020.8146] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Romero R, Sánchez-Rivera FJ, Westcott PMK, Mercer KL, Bhutkar A, Muir A, González-Robles TJ, Lamboy-Rodríguez SA, Liao LZ, Ng SR, Li L, Colón CI, Naranjo S, Beytagh MC, Lewis CA, Hsu PP, Bronson RT, Vander Heiden MG, Jacks T. Keap1 mutation renders lung adenocarcinomas dependent on Slc33a1. Nat Cancer 2020;1:589-602. [PMID: 34414377 DOI: 10.1038/s43018-020-0071-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
14 Kachuri L, Johansson M, Rashkin SR, Graff RE, Bossé Y, Manem V, Caporaso NE, Landi MT, Christiani DC, Vineis P, Liu G, Scelo G, Zaridze D, Shete SS, Albanes D, Aldrich MC, Tardón A, Rennert G, Chen C, Goodman GE, Doherty JA, Bickeböller H, Field JK, Davies MP, Dawn Teare M, Kiemeney LA, Bojesen SE, Haugen A, Zienolddiny S, Lam S, Le Marchand L, Cheng I, Schabath MB, Duell EJ, Andrew AS, Manjer J, Lazarus P, Arnold S, McKay JD, Emami NC, Warkentin MT, Brhane Y, Obeidat M, Martin RM, Relton C, Davey Smith G, Haycock PC, Amos CI, Brennan P, Witte JS, Hung RJ. Immune-mediated genetic pathways resulting in pulmonary function impairment increase lung cancer susceptibility. Nat Commun 2020;11:27. [PMID: 31911640 DOI: 10.1038/s41467-019-13855-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
15 Yi J, Zhu J, Wu J, Thompson CB, Jiang X. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci U S A 2020;117:31189-97. [PMID: 33229547 DOI: 10.1073/pnas.2017152117] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 13.0] [Reference Citation Analysis]
16 Sánchez-Martín P, Saito T, Komatsu M. p62/SQSTM1: 'Jack of all trades' in health and cancer. FEBS J 2019;286:8-23. [PMID: 30499183 DOI: 10.1111/febs.14712] [Cited by in Crossref: 80] [Cited by in F6Publishing: 73] [Article Influence: 20.0] [Reference Citation Analysis]
17 Liu X, Zhang Y, Zhuang L, Olszewski K, Gan B. NADPH debt drives redox bankruptcy: SLC7A11/xCT-mediated cystine uptake as a double-edged sword in cellular redox regulation. Genes Dis 2021;8:731-45. [PMID: 34522704 DOI: 10.1016/j.gendis.2020.11.010] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
18 Yoshino S, Matsui Y, Fukui Y, Seki M, Yamaguchi K, Kanamori A, Saitoh Y, Shimamura T, Suzuki Y, Furukawa Y, Kaneko S, Seiki M, Murakami Y, Inoue JI, Sakamoto T. EXOSC9 depletion attenuates P-body formation, stress resistance, and tumorigenicity of cancer cells. Sci Rep 2020;10:9275. [PMID: 32518284 DOI: 10.1038/s41598-020-66455-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
19 Scuto M, Trovato Salinaro A, Caligiuri I, Ontario ML, Greco V, Sciuto N, Crea R, Calabrese EJ, Rizzolio F, Canzonieri V, Calabrese V. Redox modulation of vitagenes via plant polyphenols and vitamin D: Novel insights for chemoprevention and therapeutic interventions based on organoid technology. Mech Ageing Dev 2021;199:111551. [PMID: 34358533 DOI: 10.1016/j.mad.2021.111551] [Reference Citation Analysis]
20 Zheng K, Dong Y, Yang R, Liang Y, Wu H, He Z. Regulation of ferroptosis by bioactive phytochemicals: Implications for medical nutritional therapy. Pharmacol Res 2021;168:105580. [PMID: 33781874 DOI: 10.1016/j.phrs.2021.105580] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
21 Wang M, Xue Y, Shen L, Qin P, Sang X, Tao Z, Yi J, Wang J, Liu P, Cheng H. Inhibition of SGK1 confers vulnerability to redox dysregulation in cervical cancer. Redox Biol 2019;24:101225. [PMID: 31136958 DOI: 10.1016/j.redox.2019.101225] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
22 Ashrafizadeh M, Yaribeygi H, Sahebkar A. Therapeutic Effects of Curcumin against Bladder Cancer: A Review of Possible Molecular Pathways. Anticancer Agents Med Chem 2020;20:667-77. [PMID: 32013836 DOI: 10.2174/1871520620666200203143803] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
23 Chauhan SS, Warfel NA. Targeting PIM kinases to oppose hypoxia-mediated therapeutic resistance. Oncoscience 2018;5:254-5. [PMID: 30460324 DOI: 10.18632/oncoscience.458] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
24 Cai Y, Xu J, Chen M, Wang D, Yang Y, Manavalan A, Wu X, Liu Y, Cao S. Compound Analysis of Jing Liqueur and nrf2 Activation by Jing Liqueur—One of the Most Popular Beverages in China. Beverages 2020;6:1. [DOI: 10.3390/beverages6010001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
25 Ortega MA, Fraile-Martínez O, Guijarro LG, Casanova C, Coca S, Álvarez-Mon M, Buján J, García-Honduvilla N, Asúnsolo Á. The Regulatory Role of Mitochondrial MicroRNAs (MitomiRs) in Breast Cancer: Translational Implications Present and Future. Cancers (Basel) 2020;12:E2443. [PMID: 32872155 DOI: 10.3390/cancers12092443] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
26 Wufuer R, Fan Z, Liu K, Zhang Y. Differential Yet Integral Contributions of Nrf1 and Nrf2 in the Human HepG2 Cells on Antioxidant Cytoprotective Response against Tert-Butylhydroquinone as a Pro-Oxidative Stressor. Antioxidants (Basel) 2021;10:1610. [PMID: 34679746 DOI: 10.3390/antiox10101610] [Reference Citation Analysis]
27 Siddiqui SS, Rahman S, Rupasinghe HPV, Vazhappilly CG. Dietary Flavonoids in p53-Mediated Immune Dysfunctions Linking to Cancer Prevention. Biomedicines 2020;8:E286. [PMID: 32823757 DOI: 10.3390/biomedicines8080286] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
28 Kunder R, Velyunskiy M, Dunne SF, Cho BK, Kanojia D, Begg L, Orriols AM, Fleming-Trujillo E, Vadlamani P, Vialichka A, Bolin R, Perrino JN, Roth D, Clutter MR, Zielinski-Mozny NA, Goo YA, Cristofanilli M, Mendillo ML, Vassilopoulos A, Horiuchi D. Synergistic PIM kinase and proteasome inhibition as a therapeutic strategy for MYC-overexpressing triple-negative breast cancer. Cell Chem Biol 2021:S2451-9456(21)00400-1. [PMID: 34525344 DOI: 10.1016/j.chembiol.2021.08.011] [Reference Citation Analysis]
29 Ikehata H, Yamamoto M. Roles of the KEAP1-NRF2 system in mammalian skin exposed to UV radiation. Toxicology and Applied Pharmacology 2018;360:69-77. [DOI: 10.1016/j.taap.2018.09.038] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
30 Ge C, Zhang S, Mu H, Zheng S, Tan Z, Huang X, Xu C, Zou J, Zhu Y, Feng D, Aa J. Emerging Mechanisms and Disease Implications of Ferroptosis: Potential Applications of Natural Products. Front Cell Dev Biol 2022;9:774957. [DOI: 10.3389/fcell.2021.774957] [Reference Citation Analysis]
31 Schmidlin CJ, Shakya A, Dodson M, Chapman E, Zhang DD. The intricacies of NRF2 regulation in cancer. Semin Cancer Biol 2021:S1044-579X(21)00146-2. [PMID: 34020028 DOI: 10.1016/j.semcancer.2021.05.016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Nam LB, Choi WJ, Keum YS. Triptolide Downregulates the Expression of NRF2 Target Genes by Increasing Cytoplasmic Localization of NRF2 in A549 Cells. Front Pharmacol 2021;12:680167. [PMID: 34566633 DOI: 10.3389/fphar.2021.680167] [Reference Citation Analysis]
33 Denisenko TV, Gorbunova AS, Zhivotovsky B. Mitochondrial Involvement in Migration, Invasion and Metastasis. Front Cell Dev Biol 2019;7:355. [PMID: 31921862 DOI: 10.3389/fcell.2019.00355] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 8.7] [Reference Citation Analysis]
34 Zhou X, Li L, Guo X, Zhang C, Du Y, Li T, Tong K, Zhu C, Wang Z. HBXIP induces anoikis resistance by forming a reciprocal feedback loop with Nrf2 to maintain redox homeostasis and stabilize Prdx1 in breast cancer. NPJ Breast Cancer 2022;8:7. [PMID: 35027562 DOI: 10.1038/s41523-021-00374-x] [Reference Citation Analysis]
35 Zhou H, Lu J, Chinnaswamy K, Stuckey JA, Liu L, McEachern D, Yang CY, Bernard D, Shen H, Rui L, Sun Y, Wang S. Selective inhibition of cullin 3 neddylation through covalent targeting DCN1 protects mice from acetaminophen-induced liver toxicity. Nat Commun 2021;12:2621. [PMID: 33976147 DOI: 10.1038/s41467-021-22924-4] [Reference Citation Analysis]
36 Alboushi L, Hackett AP, Naeli P, Bakhti M, Jafarnejad SM. Multifaceted control of mRNA translation machinery in cancer. Cell Signal 2021;84:110037. [PMID: 33975011 DOI: 10.1016/j.cellsig.2021.110037] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Gao Q, Zhang G, Zheng Y, Yang Y, Chen C, Xia J, Liang L, Lei C, Hu Y, Cai X, Zhang W, Tang H, Chen Y, Huang A, Wang K, Tang N. SLC27A5 deficiency activates NRF2/TXNRD1 pathway by increased lipid peroxidation in HCC. Cell Death Differ 2020;27:1086-104. [PMID: 31367013 DOI: 10.1038/s41418-019-0399-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
38 Yuan M, Zhao B, Jia H, Zhang C, Zuo X. Sinomenine ameliorates cardiac hypertrophy by activating Nrf2/ARE signaling pathway. Bioengineered 2021;12:12778-88. [PMID: 34895050 DOI: 10.1080/21655979.2021.2000195] [Reference Citation Analysis]
39 Garufi A, Giorno E, Gilardini Montani MS, Pistritto G, Crispini A, Cirone M, D'Orazi G. P62/SQSTM1/Keap1/NRF2 Axis Reduces Cancer Cells Death-Sensitivity in Response to Zn(II)-Curcumin Complex. Biomolecules 2021;11:348. [PMID: 33669070 DOI: 10.3390/biom11030348] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Liu P, Rojo de la Vega M, Sammani S, Mascarenhas JB, Kerins M, Dodson M, Sun X, Wang T, Ooi A, Garcia JGN, Zhang DD. RPA1 binding to NRF2 switches ARE-dependent transcriptional activation to ARE-NRE-dependent repression. Proc Natl Acad Sci U S A 2018;115:E10352-61. [PMID: 30309964 DOI: 10.1073/pnas.1812125115] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
41 Ismail T, Kim Y, Lee H, Lee DS, Lee HS. Interplay Between Mitochondrial Peroxiredoxins and ROS in Cancer Development and Progression. Int J Mol Sci 2019;20:E4407. [PMID: 31500275 DOI: 10.3390/ijms20184407] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 7.3] [Reference Citation Analysis]
42 Haley JA, Ruiz CF, Montal ED, Wang D, Haley JD, Girnun GD. Decoupling of Nrf2 Expression Promotes Mesenchymal State Maintenance in Non-Small Cell Lung Cancer. Cancers (Basel) 2019;11:E1488. [PMID: 31581742 DOI: 10.3390/cancers11101488] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
43 Jenkins T, Gouge J. Nrf2 in Cancer, Detoxifying Enzymes and Cell Death Programs. Antioxidants (Basel) 2021;10:1030. [PMID: 34202320 DOI: 10.3390/antiox10071030] [Reference Citation Analysis]
44 Ramadori P, Li X, Heikenwalder M. PKCλ/ι Loss Induces Metabolic Reprogramming in Liver Cancer: Hitting Two Birds with One Stone? Cancer Cell 2020;38:152-4. [PMID: 32781040 DOI: 10.1016/j.ccell.2020.07.003] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
45 Ebert T, Neytchev O, Witasp A, Kublickiene K, Stenvinkel P, Shiels PG. Inflammation and Oxidative Stress in Chronic Kidney Disease and Dialysis Patients. Antioxid Redox Signal 2021. [PMID: 34006115 DOI: 10.1089/ars.2020.8184] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
46 Bao J, Li M, Liang S, Yang Y, Wu J, Zou Q, Fang S, Chen S, Guo L. Integrated high-throughput analysis identifies super enhancers associated with chemoresistance in SCLC. BMC Med Genomics 2019;12:67. [PMID: 31118037 DOI: 10.1186/s12920-019-0520-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
47 Zoccarato A, Nabeebaccus AA, Oexner RR, Santos CXC, Shah AM. The nexus between redox state and intermediary metabolism. FEBS J 2021. [PMID: 34496138 DOI: 10.1111/febs.16191] [Reference Citation Analysis]
48 Lin H, Qiao Y, Yang H, Nan Q, Qu W, Feng F, Liu W, Chen Y, Sun H. Small molecular Nrf2 inhibitors as chemosensitizers for cancer therapy. Future Med Chem 2020;12:243-67. [PMID: 31950858 DOI: 10.4155/fmc-2019-0285] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
49 Liu Y, Lang F, Yang C. NRF2 in human neoplasm: Cancer biology and potential therapeutic target. Pharmacology & Therapeutics 2021;217:107664. [DOI: 10.1016/j.pharmthera.2020.107664] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 13.0] [Reference Citation Analysis]
50 Lu M, Zhang X, Zhao J, You Q, Jiang Z. A hydrogen peroxide responsive prodrug of Keap1-Nrf2 inhibitor for improving oral absorption and selective activation in inflammatory conditions. Redox Biol 2020;34:101565. [PMID: 32422540 DOI: 10.1016/j.redox.2020.101565] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
51 Schmidlin CJ, Tian W, Dodson M, Chapman E, Zhang DD. FAM129B-dependent activation of NRF2 promotes an invasive phenotype in BRAF mutant melanoma cells. Mol Carcinog 2021;60:331-41. [PMID: 33684228 DOI: 10.1002/mc.23295] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Gao P, Peng T, Lin S, Zhi W, Cao C, Wu P, Xi L, Wu P, Yang Q, Ding W. Key Role of MCUR1 in Malignant Progression of Breast Cancer. Onco Targets Ther 2021;14:4163-75. [PMID: 34285508 DOI: 10.2147/OTT.S306854] [Reference Citation Analysis]
53 Taniguchi S, Elhance A, Van Duzer A, Kumar S, Leitenberger JJ, Oshimori N. Tumor-initiating cells establish an IL-33-TGF-β niche signaling loop to promote cancer progression. Science 2020;369:eaay1813. [PMID: 32675345 DOI: 10.1126/science.aay1813] [Cited by in Crossref: 19] [Cited by in F6Publishing: 26] [Article Influence: 9.5] [Reference Citation Analysis]
54 Takayama KI, Kosaka T, Suzuki T, Hongo H, Oya M, Fujimura T, Suzuki Y, Inoue S. Subtype-specific collaborative transcription factor networks are promoted by OCT4 in the progression of prostate cancer. Nat Commun 2021;12:3766. [PMID: 34145268 DOI: 10.1038/s41467-021-23974-4] [Reference Citation Analysis]
55 Chang C, Worley BL, Phaëton R, Hempel N. Extracellular Glutathione Peroxidase GPx3 and Its Role in Cancer. Cancers (Basel) 2020;12:E2197. [PMID: 32781581 DOI: 10.3390/cancers12082197] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
56 Pisoschi AM, Pop A, Iordache F, Stanca L, Predoi G, Serban AI. Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. Eur J Med Chem 2021;209:112891. [PMID: 33032084 DOI: 10.1016/j.ejmech.2020.112891] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 12.5] [Reference Citation Analysis]
57 Sun S, Zhang Y, Xu W, Yang R, Yang Y, Guo J, Ma Q, Ma K, Zhang J, Xu J. Plumbagin reduction by thioredoxin reductase 1 possesses synergy effects with GLUT1 inhibitor on KEAP1-mutant NSCLC cells. Biomed Pharmacother 2021;146:112546. [PMID: 34954641 DOI: 10.1016/j.biopha.2021.112546] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Sanghvi VR, Leibold J, Mina M, Mohan P, Berishaj M, Li Z, Miele MM, Lailler N, Zhao C, de Stanchina E, Viale A, Akkari L, Lowe SW, Ciriello G, Hendrickson RC, Wendel HG. The Oncogenic Action of NRF2 Depends on De-glycation by Fructosamine-3-Kinase. Cell 2019;178:807-819.e21. [PMID: 31398338 DOI: 10.1016/j.cell.2019.07.031] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 20.5] [Reference Citation Analysis]
59 Sanghvi VR, Mohan P, Singh K, Cao L, Berishaj M, Wolfe AL, Schatz JH, Lailler N, de Stanchina E, Viale A, Wendel HG. NRF2 Activation Confers Resistance to eIF4A Inhibitors in Cancer Therapy. Cancers (Basel) 2021;13:639. [PMID: 33562682 DOI: 10.3390/cancers13040639] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
60 Liu X, Olszewski K, Zhang Y, Lim EW, Shi J, Zhang X, Zhang J, Lee H, Koppula P, Lei G, Zhuang L, You MJ, Fang B, Li W, Metallo CM, Poyurovsky MV, Gan B. Cystine transporter regulation of pentose phosphate pathway dependency and disulfide stress exposes a targetable metabolic vulnerability in cancer. Nat Cell Biol 2020;22:476-86. [PMID: 32231310 DOI: 10.1038/s41556-020-0496-x] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 17.5] [Reference Citation Analysis]
61 Demény MA, Virág L. The PARP Enzyme Family and the Hallmarks of Cancer Part 1. Cell Intrinsic Hallmarks. Cancers (Basel) 2021;13:2042. [PMID: 33922595 DOI: 10.3390/cancers13092042] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
62 Ceder S, Eriksson SE, Liang YY, Cheteh EH, Zhang SM, Fujihara KM, Bianchi J, Bykov VJN, Abrahmsen L, Clemons NJ, Nordlund P, Rudd SG, Wiman KG. Mutant p53-reactivating compound APR-246 synergizes with asparaginase in inducing growth suppression in acute lymphoblastic leukemia cells. Cell Death Dis 2021;12:709. [PMID: 34267184 DOI: 10.1038/s41419-021-03988-y] [Reference Citation Analysis]
63 Peng Y, Yang H, Li S. The role of glycometabolic plasticity in cancer. Pathol Res Pract 2021;226:153595. [PMID: 34481210 DOI: 10.1016/j.prp.2021.153595] [Reference Citation Analysis]
64 Zhou LL, Guan Q, Li WY, Zhang Z, Li YA, Dong YB. A Ferrocene-Functionalized Covalent Organic Framework for Enhancing Chemodynamic Therapy via Redox Dyshomeostasis. Small 2021;17:e2101368. [PMID: 34216420 DOI: 10.1002/smll.202101368] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
65 Scuto M, Ontario ML, Salinaro AT, Caligiuri I, Rampulla F, Zimbone V, Modafferi S, Rizzolio F, Canzonieri V, Calabrese EJ, Calabrese V. Redox modulation by plant polyphenols targeting vitagenes for chemoprevention and therapy: Relevance to novel anti-cancer interventions and mini-brain organoid technology. Free Radic Biol Med 2021;179:59-75. [PMID: 34929315 DOI: 10.1016/j.freeradbiomed.2021.12.267] [Reference Citation Analysis]
66 Renaudin X. Reactive oxygen species and DNA damage response in cancer. Int Rev Cell Mol Biol 2021;364:139-61. [PMID: 34507782 DOI: 10.1016/bs.ircmb.2021.04.001] [Reference Citation Analysis]
67 Sun X, Wang Y, Ji K, Liu Y, Kong Y, Nie S, Li N, Hao J, Xie Y, Xu C, Du L, Liu Q. NRF2 preserves genomic integrity by facilitating ATR activation and G2 cell cycle arrest. Nucleic Acids Res 2020;48:9109-23. [PMID: 32729622 DOI: 10.1093/nar/gkaa631] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
68 Zhang DD, Chapman E. The role of natural products in revealing NRF2 function. Nat Prod Rep 2020;37:797-826. [PMID: 32400766 DOI: 10.1039/c9np00061e] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
69 Chen J, Wang M, Xiang Y, Ru X, Ren Y, Liu X, Qiu L, Zhang Y. Nrf1 Is Endowed with a Dominant Tumor-Repressing Effect onto the Wnt/β-Catenin-Dependent and Wnt/β-Catenin-Independent Signaling Networks in the Human Liver Cancer. Oxid Med Cell Longev 2020;2020:5138539. [PMID: 32273945 DOI: 10.1155/2020/5138539] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
70 Park HH, Hwang W, Ham S, Kim E, Altintas O, Park S, Son HG, Lee Y, Lee D, Heo WD, Lee SV. A PTEN variant uncouples longevity from impaired fitness in Caenorhabditis elegans with reduced insulin/IGF-1 signaling. Nat Commun 2021;12:5631. [PMID: 34561453 DOI: 10.1038/s41467-021-25920-w] [Reference Citation Analysis]
71 El-Emam SZ, Soubh AA, Al-Mokaddem AK, Abo El-Ella DM. Geraniol activates Nrf-2/HO-1 signaling pathway mediating protection against oxidative stress-induced apoptosis in hepatic ischemia-reperfusion injury. Naunyn Schmiedebergs Arch Pharmacol 2020;393:1849-58. [PMID: 32417955 DOI: 10.1007/s00210-020-01887-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
72 Paul S, Ghosh S, Mandal S, Sau S, Pal M. NRF2 transcriptionally activates the heat shock factor 1 promoter under oxidative stress and affects survival and migration potential of MCF7 cells. J Biol Chem 2018;293:19303-16. [PMID: 30309986 DOI: 10.1074/jbc.RA118.003376] [Cited by in Crossref: 25] [Cited by in F6Publishing: 11] [Article Influence: 6.3] [Reference Citation Analysis]
73 Patra S, Bhol CS, Panigrahi DP, Praharaj PP, Pradhan B, Jena M, Bhutia SK. Gamma irradiation promotes chemo-sensitization potential of gallic acid through attenuation of autophagic flux to trigger apoptosis in an NRF2 inactivation signalling pathway. Free Radic Biol Med 2020;160:111-24. [PMID: 32755671 DOI: 10.1016/j.freeradbiomed.2020.06.022] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
74 Liu W, Tang P, Wang J, Ye W, Ge X, Rong Y, Ji C, Wang Z, Bai J, Fan J, Yin G, Cai W. Extracellular vesicles derived from melatonin-preconditioned mesenchymal stem cells containing USP29 repair traumatic spinal cord injury by stabilizing NRF2. J Pineal Res 2021;71:e12769. [PMID: 34562326 DOI: 10.1111/jpi.12769] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Leung HW, Lau EYT, Leung CON, Lei MML, Mok EHK, Ma VWS, Cho WCS, Ng IOL, Yun JP, Cai SH, Yu HJ, Ma S, Lee TKW. NRF2/SHH signaling cascade promotes tumor-initiating cell lineage and drug resistance in hepatocellular carcinoma. Cancer Lett 2020;476:48-56. [PMID: 32061952 DOI: 10.1016/j.canlet.2020.02.008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
76 Staurengo-Ferrari L, Badaro-Garcia S, Hohmann MSN, Manchope MF, Zaninelli TH, Casagrande R, Verri WA Jr. Contribution of Nrf2 Modulation to the Mechanism of Action of Analgesic and Anti-inflammatory Drugs in Pre-clinical and Clinical Stages. Front Pharmacol 2018;9:1536. [PMID: 30687097 DOI: 10.3389/fphar.2018.01536] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 12.0] [Reference Citation Analysis]
77 Yao X, Sun K, Yu S, Luo J, Guo J, Lin J, Wang G, Guo Z, Ye Y, Guo F. Chondrocyte ferroptosis contribute to the progression of osteoarthritis. J Orthop Translat 2021;27:33-43. [PMID: 33376672 DOI: 10.1016/j.jot.2020.09.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
78 Kahroba H, Shirmohamadi M, Hejazi MS, Samadi N. The Role of Nrf2 signaling in cancer stem cells: From stemness and self-renewal to tumorigenesis and chemoresistance. Life Sci. 2019;239:116986. [PMID: 31678283 DOI: 10.1016/j.lfs.2019.116986] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 6.7] [Reference Citation Analysis]
79 Ramesh PS, Devegowda D, Singh A, Thimmulappa RK. NRF2, p53, and p16: Predictive biomarkers to stratify human papillomavirus associated head and neck cancer patients for de-escalation of cancer therapy. Crit Rev Oncol Hematol 2020;148:102885. [PMID: 32062315 DOI: 10.1016/j.critrevonc.2020.102885] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
80 Jasmer KJ, Hou J, Mannino P, Cheng J, Hannink M. Heme oxygenase promotes B-Raf-dependent melanosphere formation. Pigment Cell Melanoma Res 2020;33:850-68. [PMID: 32558263 DOI: 10.1111/pcmr.12905] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
81 N Kolodkin A, Sharma RP, Colangelo AM, Ignatenko A, Martorana F, Jennen D, Briedé JJ, Brady N, Barberis M, Mondeel TDGA, Papa M, Kumar V, Peters B, Skupin A, Alberghina L, Balling R, Westerhoff HV. ROS networks: designs, aging, Parkinson's disease and precision therapies. NPJ Syst Biol Appl 2020;6:34. [PMID: 33106503 DOI: 10.1038/s41540-020-00150-w] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
82 Yang B, Chen Q. Cross-Talk between Oxidative Stress and m6A RNA Methylation in Cancer. Oxid Med Cell Longev 2021;2021:6545728. [PMID: 34484567 DOI: 10.1155/2021/6545728] [Reference Citation Analysis]
83 Ko E, Kim D, Min DW, Kwon SH, Lee JY. Nrf2 regulates cell motility through RhoA-ROCK1 signalling in non-small-cell lung cancer cells. Sci Rep 2021;11:1247. [PMID: 33441941 DOI: 10.1038/s41598-021-81021-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
84 Liu L, Locascio LM, Doré S. Critical Role of Nrf2 in Experimental Ischemic Stroke. Front Pharmacol 2019;10:153. [PMID: 30890934 DOI: 10.3389/fphar.2019.00153] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 14.3] [Reference Citation Analysis]
85 Fischhuber K, Matzinger M, Heiss EH. AMPK Enhances Transcription of Selected Nrf2 Target Genes via Negative Regulation of Bach1. Front Cell Dev Biol 2020;8:628. [PMID: 32760724 DOI: 10.3389/fcell.2020.00628] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
86 Cheung EC, DeNicola GM, Nixon C, Blyth K, Labuschagne CF, Tuveson DA, Vousden KH. Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer Cell 2020;37:168-182.e4. [PMID: 31983610 DOI: 10.1016/j.ccell.2019.12.012] [Cited by in Crossref: 55] [Cited by in F6Publishing: 54] [Article Influence: 27.5] [Reference Citation Analysis]
87 Kumar N, Perez-Novo C, Shaw P, Logie E, Privat-Maldonado A, Dewilde S, Smits E, Berghe WV, Bogaerts A. Physical plasma-derived oxidants sensitize pancreatic cancer cells to ferroptotic cell death. Free Radic Biol Med 2021;166:187-200. [PMID: 33636332 DOI: 10.1016/j.freeradbiomed.2021.02.026] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
88 Takahashi N, Cho P, Selfors LM, Kuiken HJ, Kaul R, Fujiwara T, Harris IS, Zhang T, Gygi SP, Brugge JS. 3D Culture Models with CRISPR Screens Reveal Hyperactive NRF2 as a Prerequisite for Spheroid Formation via Regulation of Proliferation and Ferroptosis. Mol Cell 2020;80:828-844.e6. [PMID: 33128871 DOI: 10.1016/j.molcel.2020.10.010] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 10.5] [Reference Citation Analysis]
89 Yun HR, Jo YH, Kim J, Shin Y, Kim SS, Choi TG. Roles of Autophagy in Oxidative Stress. Int J Mol Sci 2020;21:E3289. [PMID: 32384691 DOI: 10.3390/ijms21093289] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 12.0] [Reference Citation Analysis]
90 Kudo Y, Sugimoto M, Arias E, Kasashima H, Cordes T, Linares JF, Duran A, Nakanishi Y, Nakanishi N, L'Hermitte A, Campos A, Senni N, Rooslid T, Roberts LR, Cuervo AM, Metallo CM, Karin M, Diaz-Meco MT, Moscat J. PKCλ/ι Loss Induces Autophagy, Oxidative Phosphorylation, and NRF2 to Promote Liver Cancer Progression. Cancer Cell 2020;38:247-262.e11. [PMID: 32589943 DOI: 10.1016/j.ccell.2020.05.018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
91 Alsherbiny MA, Abd-Elsalam WH, El Badawy SA, Taher E, Fares M, Torres A, Chang D, Li CG. Ameliorative and protective effects of ginger and its main constituents against natural, chemical and radiation-induced toxicities: A comprehensive review. Food Chem Toxicol 2019;123:72-97. [PMID: 30352300 DOI: 10.1016/j.fct.2018.10.048] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
92 Jaune-Pons E, Vasseur S. Role of amino acids in regulation of ROS balance in cancer. Arch Biochem Biophys 2020;689:108438. [PMID: 32497547 DOI: 10.1016/j.abb.2020.108438] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
93 Bowman BM, Montgomery SA, Schrank TP, Simon JM, Ptacek TS, Tamir TY, Mulvaney KM, Weir SJ, Nguyen TT, Murphy RM, Makowski L, Hayes DN, Chen XL, Randell SH, Weissman BE, Major MB. A conditional mouse expressing an activating mutation in NRF2 displays hyperplasia of the upper gastrointestinal tract and decreased white adipose tissue. J Pathol 2020;252:125-37. [PMID: 32619021 DOI: 10.1002/path.5504] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
94 Guo H, Xu J, Zheng Q, He J, Zhou W, Wang K, Huang X, Fan Q, Ma J, Cheng J, Mei W, Xing R, Cai R. NRF2 SUMOylation promotes de novo serine synthesis and maintains HCC tumorigenesis. Cancer Lett 2019;466:39-48. [PMID: 31546024 DOI: 10.1016/j.canlet.2019.09.010] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
95 Barrera G, Cucci MA, Grattarola M, Dianzani C, Muzio G, Pizzimenti S. Control of Oxidative Stress in Cancer Chemoresistance: Spotlight on Nrf2 Role. Antioxidants (Basel) 2021;10:510. [PMID: 33805928 DOI: 10.3390/antiox10040510] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
96 Ryoo IG, Kwak MK. Regulatory crosstalk between the oxidative stress-related transcription factor Nfe2l2/Nrf2 and mitochondria. Toxicol Appl Pharmacol 2018;359:24-33. [PMID: 30236989 DOI: 10.1016/j.taap.2018.09.014] [Cited by in Crossref: 70] [Cited by in F6Publishing: 62] [Article Influence: 17.5] [Reference Citation Analysis]
97 Chen D, Li Z, Bao P, Chen M, Zhang M, Yan F, Xu Y, Ji C, Hu X, Sanchis D, Zhang Y, Ye J. Nrf2 deficiency aggravates Angiotensin II-induced cardiac injury by increasing hypertrophy and enhancing IL-6/STAT3-dependent inflammation. Biochim Biophys Acta Mol Basis Dis 2019;1865:1253-64. [PMID: 30668979 DOI: 10.1016/j.bbadis.2019.01.020] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
98 Walters TS, McIntosh DJ, Ingram SM, Tillery L, Motley ED, Arinze IJ, Misra S. SUMO-Modification of Human Nrf2 at K110 and K533 Regulates Its Nucleocytoplasmic Localization, Stability and Transcriptional Activity. Cell Physiol Biochem 2021;55:141-59. [PMID: 33770425 DOI: 10.33594/000000351] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
99 Ghergurovich JM, Esposito M, Chen Z, Wang JZ, Bhatt V, Lan T, White E, Kang Y, Guo JY, Rabinowitz JD. Glucose-6-Phosphate Dehydrogenase Is Not Essential for K-Ras-Driven Tumor Growth or Metastasis. Cancer Res 2020;80:3820-9. [PMID: 32661137 DOI: 10.1158/0008-5472.CAN-19-2486] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
100 Hagiwara M, Fushimi A, Yamashita N, Bhattacharya A, Rajabi H, Long MD, Yasumizu Y, Oya M, Liu S, Kufe D. MUC1-C activates the PBAF chromatin remodeling complex in integrating redox balance with progression of human prostate cancer stem cells. Oncogene 2021;40:4930-40. [PMID: 34163028 DOI: 10.1038/s41388-021-01899-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
101 Vangala JR, Radhakrishnan SK. Nrf1-mediated transcriptional regulation of the proteasome requires a functional TIP60 complex. J Biol Chem 2019;294:2036-45. [PMID: 30559296 DOI: 10.1074/jbc.RA118.006290] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
102 Kirtonia A, Sethi G, Garg M. The multifaceted role of reactive oxygen species in tumorigenesis. Cell Mol Life Sci 2020;77:4459-83. [PMID: 32358622 DOI: 10.1007/s00018-020-03536-5] [Cited by in Crossref: 61] [Cited by in F6Publishing: 62] [Article Influence: 30.5] [Reference Citation Analysis]
103 Xia D, Zhang XR, Ma YL, Zhao ZJ, Zhao R, Wang YY. Nrf2 promotes esophageal squamous cell carcinoma (ESCC) resistance to radiotherapy through the CaMKIIα-associated activation of autophagy. Cell Biosci 2020;10:90. [PMID: 32760495 DOI: 10.1186/s13578-020-00456-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
104 Florean C, Song S, Dicato M, Diederich M. Redox biology of regulated cell death in cancer: A focus on necroptosis and ferroptosis. Free Radic Biol Med 2019;134:177-89. [PMID: 30639617 DOI: 10.1016/j.freeradbiomed.2019.01.008] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 10.3] [Reference Citation Analysis]
105 Hsu MY, Mina E, Roetto A, Porporato PE. Iron: An Essential Element of Cancer Metabolism. Cells 2020;9:E2591. [PMID: 33287315 DOI: 10.3390/cells9122591] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
106 Chen RH. Cullin 3 and Its Role in Tumorigenesis. Adv Exp Med Biol 2020;1217:187-210. [PMID: 31898229 DOI: 10.1007/978-981-15-1025-0_12] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
107 López-Barrera LD, Díaz-Torres R, Martínez-Rosas JR, Salazar AM, Rosales C, Ramírez-Noguera P. Modification of Proliferation and Apoptosis in Breast Cancer Cells by Exposure of Antioxidant Nanoparticles Due to Modulation of the Cellular Redox State Induced by Doxorubicin Exposure. Pharmaceutics 2021;13:1251. [PMID: 34452212 DOI: 10.3390/pharmaceutics13081251] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
108 Panieri E, Telkoparan-Akillilar P, Suzen S, Saso L. The NRF2/KEAP1 Axis in the Regulation of Tumor Metabolism: Mechanisms and Therapeutic Perspectives. Biomolecules. 2020;10:791. [PMID: 32443774 DOI: 10.3390/biom10050791] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
109 Liu Q, Zhao S, Meng F, Wang H, Sun L, Li G, Gao F, Chen F. Nrf2 Down-Regulation by Camptothecin Favors Inhibiting Invasion, Metastasis and Angiogenesis in Hepatocellular Carcinoma. Front Oncol 2021;11:661157. [PMID: 34178646 DOI: 10.3389/fonc.2021.661157] [Reference Citation Analysis]
110 Cosentino G, Plantamura I, Cataldo A, Iorio MV. MicroRNA and Oxidative Stress Interplay in the Context of Breast Cancer Pathogenesis. Int J Mol Sci 2019;20:E5143. [PMID: 31627322 DOI: 10.3390/ijms20205143] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
111 Friedmann Angeli JP, Meierjohann S. NRF2-dependent stress defense in tumor antioxidant control and immune evasion. Pigment Cell Melanoma Res 2021;34:268-79. [PMID: 33205526 DOI: 10.1111/pcmr.12946] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
112 Hu Z, Wang X, Li D, Cao L, Cui H, Xu G. UFBP1, a key component in ufmylation, enhances drug sensitivity by promoting proteasomal degradation of oxidative stress-response transcription factor Nrf2. Oncogene 2021;40:647-62. [PMID: 33219317 DOI: 10.1038/s41388-020-01551-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
113 Jaganjac M, Milkovic L, Sunjic SB, Zarkovic N. The NRF2, Thioredoxin, and Glutathione System in Tumorigenesis and Anticancer Therapies. Antioxidants (Basel) 2020;9:E1151. [PMID: 33228209 DOI: 10.3390/antiox9111151] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
114 Lambert M, Jambon S, Depauw S, David-Cordonnier MH. Targeting Transcription Factors for Cancer Treatment. Molecules 2018;23:E1479. [PMID: 29921764 DOI: 10.3390/molecules23061479] [Cited by in Crossref: 110] [Cited by in F6Publishing: 89] [Article Influence: 27.5] [Reference Citation Analysis]
115 Kobayashi A. Roles of NRF3 in the Hallmarks of Cancer: Proteasomal Inactivation of Tumor Suppressors. Cancers (Basel) 2020;12:E2681. [PMID: 32962187 DOI: 10.3390/cancers12092681] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
116 Wang B, Zhang QH, Li XJ, Wang SQ, Chen XB, Yu B, Liu HM. Discovery of a cinnamyl piperidine derivative as new neddylation inhibitor for gastric cancer treatment. Eur J Med Chem 2021;226:113896. [PMID: 34624825 DOI: 10.1016/j.ejmech.2021.113896] [Reference Citation Analysis]
117 Fabrizio FP, Sparaneo A, Muscarella LA. NRF2 Regulation by Noncoding RNAs in Cancers: The Present Knowledge and the Way Forward. Cancers (Basel) 2020;12:E3621. [PMID: 33287295 DOI: 10.3390/cancers12123621] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
118 Saeidi S, Kim SJ, Han HJ, Kim SH, Zheng J, Lee HB, Han W, Noh DY, Na HK, Surh YJ. H-Ras induces Nrf2-Pin1 interaction: Implications for breast cancer progression. Toxicol Appl Pharmacol 2020;402:115121. [PMID: 32621833 DOI: 10.1016/j.taap.2020.115121] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
119 Towers CG, Wodetzki D, Thorburn A. Autophagy-dependent cancer cells circumvent loss of the upstream regulator RB1CC1/FIP200 and loss of LC3 conjugation by similar mechanisms. Autophagy 2020;16:1332-40. [PMID: 32160093 DOI: 10.1080/15548627.2020.1741204] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
120 Afrin S, Forbes-hernández TY, Cianciosi D, Pistollato F, Zhang J, Pacetti M, Amici A, Reboredo-rodríguez P, Simal-gandara J, Bompadre S, Quiles JL, Giampieri F, Battino M. Strawberry tree honey as a new potential functional food. Part 2: Strawberry tree honey increases ROS generation by suppressing Nrf2-ARE and NF-кB signaling pathways and decreases metabolic phenotypes and metastatic activity in colon cancer cells. Journal of Functional Foods 2019;57:477-87. [DOI: 10.1016/j.jff.2019.04.037] [Cited by in Crossref: 21] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
121 Liu J, Kang R, Tang D. Signaling pathways and defense mechanisms of ferroptosis. FEBS J 2021. [PMID: 34092035 DOI: 10.1111/febs.16059] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
122 Li T, Jiang D, Wu K. p62 promotes bladder cancer cell growth by activating KEAP1/NRF2-dependent antioxidative response. Cancer Sci 2020;111:1156-64. [PMID: 31967368 DOI: 10.1111/cas.14321] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
123 Abdel Hadi N, Reyes-Castellanos G, Carrier A. Targeting Redox Metabolism in Pancreatic Cancer. Int J Mol Sci 2021;22:1534. [PMID: 33546421 DOI: 10.3390/ijms22041534] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
124 Knatko EV, Tatham MH, Zhang Y, Castro C, Higgins M, Dayalan Naidu S, Leonardi C, de la Vega L, Honda T, Griffin JL, Hay RT, Dinkova-Kostova AT. Downregulation of Keap1 Confers Features of a Fasted Metabolic State. iScience 2020;23:101638. [PMID: 33103077 DOI: 10.1016/j.isci.2020.101638] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
125 Oronsky B, Scribner C, Aggarwal R, Cabrales P. RRx-001 protects normal tissues but not tumors via Nrf2 induction and Bcl-2 inhibition. J Cancer Res Clin Oncol 2019;145:2045-50. [PMID: 31250159 DOI: 10.1007/s00432-019-02958-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
126 Zhang HS, Zhang ZG, Du GY, Sun HL, Liu HY, Zhou Z, Gou XM, Wu XH, Yu XY, Huang YH. Nrf2 promotes breast cancer cell migration via up-regulation of G6PD/HIF-1α/Notch1 axis. J Cell Mol Med 2019;23:3451-63. [PMID: 30809937 DOI: 10.1111/jcmm.14241] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 15.3] [Reference Citation Analysis]
127 Camara AB, Brandao IA. The Role of Vitamin D and Sunlight Incidence in Cancer. Anticancer Agents Med Chem 2019;19:1418-36. [PMID: 30864510 DOI: 10.2174/1389557519666190312123212] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
128 Knatko EV, Castro C, Higgins M, Zhang Y, Honda T, Henderson CJ, Wolf CR, Griffin JL, Dinkova-Kostova AT. Nrf2 activation does not affect adenoma development in a mouse model of colorectal cancer. Commun Biol 2021;4:1081. [PMID: 34526660 DOI: 10.1038/s42003-021-02552-w] [Reference Citation Analysis]
129 Prasad S, Srivastava SK. Oxidative Stress and Cancer: Chemopreventive and Therapeutic Role of Triphala. Antioxidants (Basel) 2020;9:E72. [PMID: 31941067 DOI: 10.3390/antiox9010072] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
130 [DOI: 10.1101/556084] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
131 Nakano-Kobayashi A, Fukumoto A, Morizane A, Nguyen DT, Le TM, Hashida K, Hosoya T, Takahashi R, Takahashi J, Hori O, Hagiwara M. Therapeutics potentiating microglial p21-Nrf2 axis can rescue neurodegeneration caused by neuroinflammation. Sci Adv 2020;6:eabc1428. [PMID: 33188020 DOI: 10.1126/sciadv.abc1428] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
132 Mokrane N, Snabi Y, Cens T, Guiramand J, Charnet P, Bertaud A, Menard C, Rousset M, de Jesus Ferreira MC, Thibaud JB, Cohen-Solal C, Vignes M, Roussel J. Manipulations of Glutathione Metabolism Modulate IP3-Mediated Store-Operated Ca2+ Entry on Astroglioma Cell Line. Front Aging Neurosci 2021;13:785727. [PMID: 34975458 DOI: 10.3389/fnagi.2021.785727] [Reference Citation Analysis]
133 Beeraka NM, Bovilla VR, Doreswamy SH, Puttalingaiah S, Srinivasan A, Madhunapantula SV. The Taming of Nuclear Factor Erythroid-2-Related Factor-2 (Nrf2) Deglycation by Fructosamine-3-Kinase (FN3K)-Inhibitors-A Novel Strategy to Combat Cancers. Cancers (Basel) 2021;13:281. [PMID: 33466626 DOI: 10.3390/cancers13020281] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
134 Liang KH, Wang ML. Deep proteogenomic investigations elucidate the NRF2 antioxidant mechanism as a major driving mechanism of lung adenocarcinoma in Asia. J Chin Med Assoc 2021;84:766-71. [PMID: 34183593 DOI: 10.1097/JCMA.0000000000000577] [Reference Citation Analysis]
135 Song ZL, Hou Y, Bai F, Fang J. Generation of potent Nrf2 activators via tuning the electrophilicity and steric hindrance of vinyl sulfones for neuroprotection. Bioorg Chem 2021;107:104520. [PMID: 33323273 DOI: 10.1016/j.bioorg.2020.104520] [Reference Citation Analysis]
136 Kobayashi A, Waku T. New addiction to the NRF2-related factor NRF3 in cancer cells: Ubiquitin-independent proteolysis through the 20S proteasome. Cancer Sci 2020;111:6-14. [PMID: 31742837 DOI: 10.1111/cas.14244] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
137 Ulasov AV, Rosenkranz AA, Georgiev GP, Sobolev AS. Nrf2/Keap1/ARE signaling: Towards specific regulation. Life Sci 2021;:120111. [PMID: 34732330 DOI: 10.1016/j.lfs.2021.120111] [Reference Citation Analysis]
138 Bender D, Hildt E. Effect of Hepatitis Viruses on the Nrf2/Keap1-Signaling Pathway and Its Impact on Viral Replication and Pathogenesis. Int J Mol Sci 2019;20:E4659. [PMID: 31546975 DOI: 10.3390/ijms20184659] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
139 Arefin S, Buchanan S, Hobson S, Steinmetz J, Alsalhi S, Shiels PG, Kublickiene K, Stenvinkel P. Nrf2 in early vascular ageing: Calcification, senescence and therapy. Clin Chim Acta 2020;505:108-18. [PMID: 32097628 DOI: 10.1016/j.cca.2020.02.026] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 11.0] [Reference Citation Analysis]
140 Wang P, Yang W, Guo H, Dong HP, Guo YY, Gan H, Wang Z, Cheng Y, Deng Y, Xie S, Yang X, Lin D, Zhong B. IL-36γ and IL-36Ra Reciprocally Regulate NSCLC Progression by Modulating GSH Homeostasis and Oxidative Stress-Induced Cell Death. Adv Sci (Weinh) 2021;:e2101501. [PMID: 34369094 DOI: 10.1002/advs.202101501] [Reference Citation Analysis]
141 Aboelella NS, Brandle C, Kim T, Ding ZC, Zhou G. Oxidative Stress in the Tumor Microenvironment and Its Relevance to Cancer Immunotherapy. Cancers (Basel) 2021;13:986. [PMID: 33673398 DOI: 10.3390/cancers13050986] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
142 Schmidlin CJ, Dodson MB, Zhang DD. Filtering through the role of NRF2 in kidney disease. Arch Pharm Res 2020;43:361-9. [PMID: 31372933 DOI: 10.1007/s12272-019-01177-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
143 Sezgin-Bayindir Z, Losada-Barreiro S, Bravo-Díaz C, Sova M, Kristl J, Saso L. Nanotechnology-Based Drug Delivery to Improve the Therapeutic Benefits of NRF2 Modulators in Cancer Therapy. Antioxidants (Basel) 2021;10:685. [PMID: 33925605 DOI: 10.3390/antiox10050685] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
144 Oshimori N. Cancer stem cells and their niche in the progression of squamous cell carcinoma. Cancer Sci 2020;111:3985-92. [PMID: 32888236 DOI: 10.1111/cas.14639] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
145 Hämäläinen M, Teppo HR, Skarp S, Haapasaari KM, Porvari K, Vuopala K, Kietzmann T, Karihtala P. NRF1 and NRF2 mRNA and Protein Expression Decrease Early during Melanoma Carcinogenesis: An Insight into Survival and MicroRNAs. Oxid Med Cell Longev 2019;2019:2647068. [PMID: 31687076 DOI: 10.1155/2019/2647068] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
146 Dodson M, Anandhan A, Zhang DD. MGST1, a new soldier of NRF2 in the battle against ferroptotic death. Cell Chem Biol 2021;28:741-2. [PMID: 34143955 DOI: 10.1016/j.chembiol.2021.05.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
147 Han M, Li N, Li F, Wang H, Ma L. MiR-27b-3p exerts tumor suppressor effects in esophageal squamous cell carcinoma by targeting Nrf2. Hum Cell 2020;33:641-51. [PMID: 32419118 DOI: 10.1007/s13577-020-00329-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
148 Pathria G, Ronai ZA. Harnessing the Co-vulnerabilities of Amino Acid-Restricted Cancers. Cell Metab 2021;33:9-20. [PMID: 33406406 DOI: 10.1016/j.cmet.2020.12.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
149 Palamaris K, Felekouras E, Sakellariou S. Epithelial to Mesenchymal Transition: Key Regulator of Pancreatic Ductal Adenocarcinoma Progression and Chemoresistance. Cancers (Basel) 2021;13:5532. [PMID: 34771695 DOI: 10.3390/cancers13215532] [Reference Citation Analysis]
150 Hong T, Lei G, Chen X, Li H, Zhang X, Wu N, Zhao Y, Zhang Y, Wang J. PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer. Redox Biol 2021;42:101928. [PMID: 33722571 DOI: 10.1016/j.redox.2021.101928] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
151 Saidu NEB, Kavian N, Leroy K, Jacob C, Nicco C, Batteux F, Alexandre J. Dimethyl fumarate, a two-edged drug: Current status and future directions. Med Res Rev 2019;39:1923-52. [PMID: 30756407 DOI: 10.1002/med.21567] [Cited by in Crossref: 40] [Cited by in F6Publishing: 38] [Article Influence: 13.3] [Reference Citation Analysis]
152 Kwon HC, Sohn H, Kim DH, Jeong CH, Kim DW, Han SG. Effects of Flutriafol Fungicide on the Lipid Accumulation in Human Liver Cells and Rat Liver. Foods 2021;10:1346. [PMID: 34200939 DOI: 10.3390/foods10061346] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
153 Xue D, Zhou X, Qiu J. Emerging role of NRF2 in ROS-mediated tumor chemoresistance. Biomed Pharmacother 2020;131:110676. [PMID: 32858502 DOI: 10.1016/j.biopha.2020.110676] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
154 Iosub-Amir A, Bai F, Sohn YS, Song L, Tamir S, Marjault HB, Mayer G, Karmi O, Jennings PA, Mittler R, Onuchic JN, Friedler A, Nechushtai R. The anti-apoptotic proteins NAF-1 and iASPP interact to drive apoptosis in cancer cells. Chem Sci 2019;10:665-73. [PMID: 30774867 DOI: 10.1039/c8sc03390k] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
155 Kerins MJ, Liu P, Tian W, Mannheim W, Zhang DD, Ooi A. Genome-Wide CRISPR Screen Reveals Autophagy Disruption as the Convergence Mechanism That Regulates the NRF2 Transcription Factor. Mol Cell Biol 2019;39:e00037-19. [PMID: 31010806 DOI: 10.1128/MCB.00037-19] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
156 Yumimoto K, Yamauchi Y, Nakayama KI. F-Box Proteins and Cancer. Cancers (Basel) 2020;12:E1249. [PMID: 32429232 DOI: 10.3390/cancers12051249] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
157 Yang F, Li J, Deng H, Wang Y, Lei C, Wang Q, Xiang J, Liang L, Xia J, Pan X, Li X, Long Q, Chang L, Xu P, Huang A, Wang K, Tang N. GSTZ1-1 Deficiency Activates NRF2/IGF1R Axis in HCC via Accumulation of Oncometabolite Succinylacetone. EMBO J 2019;38:e101964. [PMID: 31267557 DOI: 10.15252/embj.2019101964] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
158 Du Y, Wang Q, Tian N, Lu M, Zhang XL, Dai SM. Knockdown of nrf2 Exacerbates TNF-α-Induced Proliferation and Invasion of Rheumatoid Arthritis Fibroblast-Like Synoviocytes through Activating JNK Pathway. J Immunol Res 2020;2020:6670464. [PMID: 33426091 DOI: 10.1155/2020/6670464] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
159 Guo C, Zhang Y, Nie Q, Cao D, Wang X, Wan X, Liu M, Cui J, Sun J, Bai Y, Li L. SQSTM1/ p62 oligomerization contributes to Aβ-induced inhibition of Nrf2 signaling. Neurobiol Aging 2021;98:10-20. [PMID: 33227565 DOI: 10.1016/j.neurobiolaging.2020.05.018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
160 Schmidlin CJ, Zeng T, Liu P, Wei Y, Dodson M, Chapman E, Zhang DD. Chronic arsenic exposure enhances metastatic potential via NRF2-mediated upregulation of SOX9. Toxicol Appl Pharmacol 2020;402:115138. [PMID: 32682831 DOI: 10.1016/j.taap.2020.115138] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
161 Badr CE, da Hora CC, Kirov AB, Tabet E, Amante R, Maksoud S, Nibbs AE, Fitzsimons E, Boukhali M, Chen JW, Chiu NHL, Nakano I, Haas W, Mazitschek R, Tannous BA. Obtusaquinone: A Cysteine-Modifying Compound That Targets Keap1 for Degradation. ACS Chem Biol 2020;15:1445-54. [PMID: 32338864 DOI: 10.1021/acschembio.0c00104] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
162 Liu P, Luo G, Dodson M, Schmidlin CJ, Wei Y, Kerimoglu B, Ooi A, Chapman E, Garcia JG, Zhang DD. The NRF2-LOC344887 signaling axis suppresses pulmonary fibrosis. Redox Biol 2021;38:101766. [PMID: 33126057 DOI: 10.1016/j.redox.2020.101766] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
163 Yen CH, Hsiao HH. NRF2 Is One of the Players Involved in Bone Marrow Mediated Drug Resistance in Multiple Myeloma. Int J Mol Sci 2018;19:E3503. [PMID: 30405034 DOI: 10.3390/ijms19113503] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
164 D'Este F, Della Pietra E, Badillo Pazmay GV, Xodo LE, Rapozzi V. Role of nitric oxide in the response to photooxidative stress in prostate cancer cells. Biochem Pharmacol 2020;182:114205. [PMID: 32828802 DOI: 10.1016/j.bcp.2020.114205] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
165 Li J, Wang Q, Yang Y, Lei C, Yang F, Liang L, Chen C, Xia J, Wang K, Tang N. GSTZ1 deficiency promotes hepatocellular carcinoma proliferation via activation of the KEAP1/NRF2 pathway. J Exp Clin Cancer Res 2019;38:438. [PMID: 31666108 DOI: 10.1186/s13046-019-1459-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
166 Qiu L, Wang M, Hu S, Ru X, Ren Y, Zhang Z, Yu S, Zhang Y. Oncogenic Activation of Nrf2, Though as a Master Antioxidant Transcription Factor, Liberated by Specific Knockout of the Full-Length Nrf1α that Acts as a Dominant Tumor Repressor. Cancers (Basel) 2018;10:E520. [PMID: 30562963 DOI: 10.3390/cancers10120520] [Cited by in Crossref: 20] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
167 Matsumori T, Uza N, Kakiuchi N, Morita T, Nishikawa Y, Shiokawa M, Taura K, Kodama Y, Seno H. Whole-exome sequencing for a more accurate diagnosis of intraductal papillary neoplasms of the bile duct. Gastroenterology Report 2021. [DOI: 10.1093/gastro/goab014] [Reference Citation Analysis]
168 Jessen C, Kreß JKC, Baluapuri A, Hufnagel A, Schmitz W, Kneitz S, Roth S, Marquardt A, Appenzeller S, Ade CP, Glutsch V, Wobser M, Friedmann-Angeli JP, Mosteo L, Goding CR, Schilling B, Geissinger E, Wolf E, Meierjohann S. The transcription factor NRF2 enhances melanoma malignancy by blocking differentiation and inducing COX2 expression. Oncogene 2020;39:6841-55. [PMID: 32978520 DOI: 10.1038/s41388-020-01477-8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
169 Ashrafizadeh M, Bakhoda MR, Bahmanpour Z, Ilkhani K, Zarrabi A, Makvandi P, Khan H, Mazaheri S, Darvish M, Mirzaei H. Apigenin as Tumor Suppressor in Cancers: Biotherapeutic Activity, Nanodelivery, and Mechanisms With Emphasis on Pancreatic Cancer. Front Chem 2020;8:829. [PMID: 33195038 DOI: 10.3389/fchem.2020.00829] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
170 Feng X, Jiang T, Yang C, Pang S, Ding Z, Hu H, Wang H, Dong L, Yang N. RPRD1A stabilizes NRF2 and aggravates HCC progression through competing with p62 for TRIM21 binding. Cell Death Dis 2021;13:6. [PMID: 34921137 DOI: 10.1038/s41419-021-04447-4] [Reference Citation Analysis]
171 Yang Y, Zheng J, Wang M, Zhang J, Tian T, Wang Z, Yuan S, Liu L, Zhu P, Gu F, Fu S, Shan Y, Pan Z, Zhou W. NQO1 promotes an aggressive phenotype in hepatocellular carcinoma via amplifying ERK-NRF2 signaling. Cancer Sci 2021;112:641-54. [PMID: 33222332 DOI: 10.1111/cas.14744] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
172 Xu D, Li X, Shao F, Lv G, Lv H, Lee JH, Qian X, Wang Z, Xia Y, Du L, Zheng Y, Wang H, Lyu J, Lu Z. The protein kinase activity of fructokinase A specifies the antioxidant responses of tumor cells by phosphorylating p62. Sci Adv 2019;5:eaav4570. [PMID: 31032410 DOI: 10.1126/sciadv.aav4570] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
173 Sun CY, Zhang QY, Zheng GJ, Feng B. Phytochemicals: Current strategy to sensitize cancer cells to cisplatin. Biomed Pharmacother 2019;110:518-27. [PMID: 30530287 DOI: 10.1016/j.biopha.2018.12.010] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 9.8] [Reference Citation Analysis]
174 Dobani S, Latimer C, McDougall GJ, Allwood JW, Pereira-Caro G, Moreno-Rojas JM, Ternan NG, Pourshahidi LK, Lawther R, Tuohy KM, Del Rio D, O'Connor G, Rowland I, Almutairi TM, Crozier A, Gill CIR. Ex vivo fecal fermentation of human ileal fluid collected after raspberry consumption modifies (poly)phenolics and modulates genoprotective effects in colonic epithelial cells. Redox Biol 2021;40:101862. [PMID: 33486151 DOI: 10.1016/j.redox.2021.101862] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
175 Banerjee S. Aldo Keto Reductases AKR1B1 and AKR1B10 in Cancer: Molecular Mechanisms and Signaling Networks. Adv Exp Med Biol 2021. [PMID: 33945128 DOI: 10.1007/5584_2021_634] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
176 Tang YC, Hsiao JR, Jiang SS, Chang JY, Chu PY, Liu KJ, Fang HL, Lin LM, Chen HH, Huang YW, Chen YT, Tsai FY, Lin SF, Chuang YJ, Kuo CC. c-MYC-directed NRF2 drives malignant progression of head and neck cancer via glucose-6-phosphate dehydrogenase and transketolase activation. Theranostics 2021;11:5232-47. [PMID: 33859744 DOI: 10.7150/thno.53417] [Reference Citation Analysis]
177 Gao L, Liu Y, Du X, Ma S, Ge M, Tang H, Han C, Zhao X, Liu Y, Shao Y, Wu Z, Zhang L, Meng F, Xiao-Feng Qin F. The intrinsic role and mechanism of tumor expressed-CD38 on lung adenocarcinoma progression. Cell Death Dis 2021;12:680. [PMID: 34226519 DOI: 10.1038/s41419-021-03968-2] [Reference Citation Analysis]
178 Cui Y, Chen H, Xi R, Cui H, Zhao Y, Xu E, Yan T, Lu X, Huang F, Kong P, Li Y, Zhu X, Wang J, Zhu W, Ma Y, Zhou Y, Guo S, Zhang L, Liu Y, Wang B, Xi Y, Sun R, Yu X, Zhai Y, Wang F, Yang J, Yang B, Cheng C, Liu J, Song B, Li H, Wang Y, Zhang Y, Cheng X, Zhan Q, Liu Z. Whole-genome sequencing of 508 patients identifies key molecular features associated with poor prognosis in esophageal squamous cell carcinoma. Cell Res. 2020;30:902-913. [PMID: 32398863 DOI: 10.1038/s41422-020-0333-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
179 Schmidt C, Sciacovelli M, Frezza C. Fumarate hydratase in cancer: A multifaceted tumour suppressor. Semin Cell Dev Biol 2020;98:15-25. [PMID: 31085323 DOI: 10.1016/j.semcdb.2019.05.002] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 9.0] [Reference Citation Analysis]
180 Petragnano F, Pietrantoni I, Di Nisio V, Fasciani I, Del Fattore A, Capalbo C, Cheleschi S, Tini P, Orelli S, Codenotti S, Mazzei MA, D'Ermo G, Pannitteri G, Tombolini M, De Cesaris P, Riccioli A, Filippini A, Milazzo L, Vulcano F, Fanzani A, Maggio R, Marampon F, Tombolini V. Modulating the dose-rate differently affects the responsiveness of human epithelial prostate- and mesenchymal rhabdomyosarcoma-cancer cell line to radiation. Int J Radiat Biol 2020;96:823-35. [PMID: 32149569 DOI: 10.1080/09553002.2020.1739774] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
181 Zhang X, Liu X, Zhang Y, Yang A, Zhang Y, Tong Z, Wang Y, Qiu Y. Wan-Nian-Qing, a Herbal Composite Prescription, Suppresses the Progression of Liver Cancer in Mice by Regulating Immune Response. Front Oncol 2021;11:696282. [PMID: 34307161 DOI: 10.3389/fonc.2021.696282] [Reference Citation Analysis]
182 Butt G, Farooqi AA, Adylova A, Attar R, Yilmaz S, Konysbayevna KK, Sabitaliyevich UY, Gasparri ML, Xu B. Vitamin C as an Anticancer Agent: Regulation of Signaling Pathways. Curr Top Med Chem 2020;20:1868-75. [PMID: 32648842 DOI: 10.2174/1568026620666200710102841] [Reference Citation Analysis]
183 Clerici S, Boletta A. Role of the KEAP1-NRF2 Axis in Renal Cell Carcinoma. Cancers (Basel) 2020;12:E3458. [PMID: 33233657 DOI: 10.3390/cancers12113458] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
184 Lee D, Zhang MS, Tsang FH, Bao MH, Xu IM, Lai RK, Chiu DK, Tse AP, Law CT, Chan CY, Yuen VW, Chui NN, Ng IO, Wong CM, Wong CC. Adaptive and Constitutive Activations of Malic Enzymes Confer Liver Cancer Multilayered Protection Against Reactive Oxygen Species. Hepatology 2021;74:776-96. [PMID: 33619771 DOI: 10.1002/hep.31761] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
185 Garufi A, Baldari S, Pettinari R, Gilardini Montani MS, D'Orazi V, Pistritto G, Crispini A, Giorno E, Toietta G, Marchetti F, Cirone M, D'Orazi G. A ruthenium(II)-curcumin compound modulates NRF2 expression balancing the cancer cell death/survival outcome according to p53 status. J Exp Clin Cancer Res 2020;39:122. [PMID: 32605658 DOI: 10.1186/s13046-020-01628-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
186 Zhang B, Ma Z, Tan B, Lin N. Targeting the cell signaling pathway Keap1-Nrf2 as a therapeutic strategy for adenocarcinomas of the lung. Expert Opin Ther Targets 2019;23:241-50. [PMID: 30556750 DOI: 10.1080/14728222.2019.1559824] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
187 Ryu H, Kim HJ, Song JY, Hwang SG, Kim JS, Kim J, Bui THN, Choi HK, Ahn J. A Small Compound KJ-28d Enhances the Sensitivity of Non-Small Cell Lung Cancer to Radio- and Chemotherapy. Int J Mol Sci 2019;20:E6026. [PMID: 31795418 DOI: 10.3390/ijms20236026] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
188 Zhan X, Li J, Zhou T. Targeting Nrf2-Mediated Oxidative Stress Response Signaling Pathways as New Therapeutic Strategy for Pituitary Adenomas. Front Pharmacol 2021;12:565748. [PMID: 33841137 DOI: 10.3389/fphar.2021.565748] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
189 Chen W, Deng M, Wang H, Wang Y, Zhou W, Yu T. ROS‑associated mechanism of different concentrations of pinacidil postconditioning in the rat cardiac Nrf2‑ARE signaling pathway. Mol Med Rep 2021;23:433. [PMID: 33846798 DOI: 10.3892/mmr.2021.12072] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
190 Chen X, Wu Q, Chen Y, Zhang J, Li H, Yang Z, Yang Y, Deng Y, Zhang L, Liu B. Diosmetin induces apoptosis and enhances the chemotherapeutic efficacy of paclitaxel in non-small cell lung cancer cells via Nrf2 inhibition. Br J Pharmacol 2019;176:2079-94. [PMID: 30825187 DOI: 10.1111/bph.14652] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 10.7] [Reference Citation Analysis]
191 Kuran D, Pogorzelska A, Wiktorska K. Breast Cancer Prevention-Is there a Future for Sulforaphane and Its Analogs? Nutrients 2020;12:E1559. [PMID: 32471217 DOI: 10.3390/nu12061559] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
192 Santamaría PG, Mazón MJ, Eraso P, Portillo F. UPR: An Upstream Signal to EMT Induction in Cancer. J Clin Med 2019;8:E624. [PMID: 31071975 DOI: 10.3390/jcm8050624] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
193 Manda G, Hinescu ME, Neagoe IV, Ferreira LF, Boscencu R, Vasos P, Basaga SH, Cuadrado A. Emerging Therapeutic Targets in Oncologic Photodynamic Therapy. CPD 2019;24:5268-95. [DOI: 10.2174/1381612825666190122163832] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
194 Bi Z, Zhang Q, Fu Y, Seno A, Wadgaonkar P, Qiu Y, Almutairy B, Xu L, Zhang W, Thakur C, Chen F. Cooperation between NRF2-mediated transcription and MDIG-dependent epigenetic modifications in arsenic-induced carcinogenesis and cancer stem cells. Semin Cancer Biol 2021:S1044-579X(21)00080-8. [PMID: 33823236 DOI: 10.1016/j.semcancer.2021.03.030] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
195 Telkoparan-Akillilar P, Suzen S, Saso L. Pharmacological Applications of Nrf2 Inhibitors as Potential Antineoplastic Drugs. Int J Mol Sci 2019;20:E2025. [PMID: 31022969 DOI: 10.3390/ijms20082025] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
196 Lai HL, Fan XX, Li RZ, Wang YW, Zhang J, Liu L, Neher E, Yao XJ, Leung EL. Roles of Ion Fluxes, Metabolism, and Redox Balance in Cancer Therapy. Antioxid Redox Signal 2021;34:1108-27. [PMID: 33115253 DOI: 10.1089/ars.2020.8125] [Reference Citation Analysis]
197 Kim M, Jee SC, Kim KS, Kim HS, Yu KN, Sung JS. Quercetin and Isorhamnetin Attenuate Benzo[a]pyrene-Induced Toxicity by Modulating Detoxification Enzymes through the AhR and NRF2 Signaling Pathways. Antioxidants (Basel) 2021;10:787. [PMID: 34065697 DOI: 10.3390/antiox10050787] [Reference Citation Analysis]
198 Marzio A, Kurz E, Sahni JM, Di Feo G, Puccini J, Jiang S, Hirsch CA, Arbini AA, Wu WL, Pass HI, Bar-sagi D, Papagiannakopoulos T, Pagano M. EMSY inhibits homologous recombination repair and the interferon response, promoting lung cancer immune evasion. Cell 2021. [DOI: 10.1016/j.cell.2021.12.005] [Reference Citation Analysis]
199 Xie W, Tan B, Yang Z, Yu X, Chen L, Ran D, Xu Q, Zhou X. Nrf2/ARE pathway activation is involved in negatively regulating heat-induced apoptosis in non-small cell lung cancer cells. Acta Biochim Biophys Sin (Shanghai) 2020;52:439-45. [PMID: 32255482 DOI: 10.1093/abbs/gmaa013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
200 Gilardini Montani MS, Cecere N, Granato M, Romeo MA, Falcinelli L, Ciciarelli U, D'Orazi G, Faggioni A, Cirone M. Mutant p53, Stabilized by Its Interplay with HSP90, Activates a Positive Feed-Back Loop Between NRF2 and p62 that Induces Chemo-Resistance to Apigenin in Pancreatic Cancer Cells. Cancers (Basel) 2019;11:E703. [PMID: 31121848 DOI: 10.3390/cancers11050703] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
201 Towers CG, Fitzwalter BE, Regan D, Goodspeed A, Morgan MJ, Liu CW, Gustafson DL, Thorburn A. Cancer Cells Upregulate NRF2 Signaling to Adapt to Autophagy Inhibition. Dev Cell 2019;50:690-703.e6. [PMID: 31378590 DOI: 10.1016/j.devcel.2019.07.010] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 11.0] [Reference Citation Analysis]
202 Wang H, Lu J, Mandel JA, Zhang W, Schwalbe M, Gorka J, Liu Y, Marburger B, Wang J, Ranganathan S, Prochownik EV. Patient-Derived Mutant Forms of NFE2L2/NRF2 Drive Aggressive Murine Hepatoblastomas. Cell Mol Gastroenterol Hepatol 2021;12:199-228. [PMID: 33618031 DOI: 10.1016/j.jcmgh.2021.02.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
203 Choi BH, Kim JM, Kwak MK. The multifaceted role of NRF2 in cancer progression and cancer stem cells maintenance. Arch Pharm Res 2021;44:263-80. [PMID: 33754307 DOI: 10.1007/s12272-021-01316-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
204 Banas K, Rivera-Torres N, Bialk P, Yoo BC, Kmiec EB. Kinetics of Nuclear Uptake and Site-Specific DNA Cleavage during CRISPR-Directed Gene Editing in Solid Tumor Cells. Mol Cancer Res 2020;18:891-902. [PMID: 32184217 DOI: 10.1158/1541-7786.MCR-19-1208] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
205 Xu D, Xu M, Jeong S, Qian Y, Wu H, Xia Q, Kong X. The Role of Nrf2 in Liver Disease: Novel Molecular Mechanisms and Therapeutic Approaches. Front Pharmacol. 2018;9:1428. [PMID: 30670963 DOI: 10.3389/fphar.2018.01428] [Cited by in Crossref: 78] [Cited by in F6Publishing: 78] [Article Influence: 26.0] [Reference Citation Analysis]
206 Rahban M, Habibi-Rezaei M, Mazaheri M, Saso L, Moosavi-Movahedi AA. Anti-Viral Potential and Modulation of Nrf2 by Curcumin: Pharmacological Implications. Antioxidants (Basel) 2020;9:E1228. [PMID: 33291560 DOI: 10.3390/antiox9121228] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
207 Saito Y, Kimura W. Roles of Phase Separation for Cellular Redox Maintenance. Front Genet 2021;12:691946. [PMID: 34306032 DOI: 10.3389/fgene.2021.691946] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
208 Wei Q, Qian Y, Yu J, Wong CC. Metabolic rewiring in the promotion of cancer metastasis: mechanisms and therapeutic implications. Oncogene. 2020;39:6139-6156. [PMID: 32839493 DOI: 10.1038/s41388-020-01432-7] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 11.5] [Reference Citation Analysis]
209 Li D, Peng W, Wu B, Liu H, Zhang R, Zhou R, Yao L, Ye L. Metallothionein MT1M Suppresses Carcinogenesis of Esophageal Carcinoma Cells through Inhibition of the Epithelial-Mesenchymal Transition and the SOD1/PI3K Axis. Mol Cells 2021;44:267-78. [PMID: 33820882 DOI: 10.14348/molcells.2021.2179] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
210 Bi Z, Zhang Q, Fu Y, Wadgaonkar P, Zhang W, Almutairy B, Xu L, Rice M, Qiu Y, Thakur C, Chen F. Nrf2 and HIF1α converge to arsenic-induced metabolic reprogramming and the formation of the cancer stem-like cells. Theranostics 2020;10:4134-49. [PMID: 32226544 DOI: 10.7150/thno.42903] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
211 Beretti F, Farnetani F, Reggiani Bonetti L, Fabbiani L, Zavatti M, Maiorana A, Pellacani G, Maraldi T. The Interplay between HGF/c-met Axis and Nox4 in BRAF Mutated Melanoma. Int J Mol Sci 2021;22:E761. [PMID: 33451139 DOI: 10.3390/ijms22020761] [Reference Citation Analysis]
212 Oshimori N, Guo Y, Taniguchi S. An emerging role for cellular crosstalk in the cancer stem cell niche. J Pathol 2021;254:384-94. [DOI: 10.1002/path.5655] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
213 Mesmar J, Fardoun MM, Abdallah R, Al Dhaheri Y, Yassine HM, Iratni R, Badran A, Eid AH, Baydoun E. Ziziphus nummularia Attenuates the Malignant Phenotype of Human Pancreatic Cancer Cells: Role of ROS. Molecules 2021;26:4295. [PMID: 34299570 DOI: 10.3390/molecules26144295] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
214 Sun J, Zhou C, Zhao Y, Zhang X, Chen W, Zhou Q, Hu B, Gao D, Raatz L, Wang Z, Nelson PJ, Jiang Y, Ren N, Bruns CJ, Zhou H. Quiescin sulfhydryl oxidase 1 promotes sorafenib-induced ferroptosis in hepatocellular carcinoma by driving EGFR endosomal trafficking and inhibiting NRF2 activation. Redox Biol 2021;41:101942. [PMID: 33770521 DOI: 10.1016/j.redox.2021.101942] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
215 Tao S, Yang Y, Li J, Wang H, Ma Y. Bixin Attenuates High-Fat Diet-Caused Liver Steatosis and Inflammatory Injury through Nrf2/PPARα Signals. Oxid Med Cell Longev 2021;2021:6610124. [PMID: 33603948 DOI: 10.1155/2021/6610124] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
216 Wang RH, Chu YH, Lin KT. The Hidden Role of Hydrogen Sulfide Metabolism in Cancer. Int J Mol Sci 2021;22:6562. [PMID: 34207284 DOI: 10.3390/ijms22126562] [Reference Citation Analysis]
217 Knany A, Engelman R, Hariri HA, Biswal S, Wolfenson H, Benhar M. S-nitrosocysteine and glutathione depletion synergize to induce cell death in human tumor cells: Insights into the redox and cytotoxic mechanisms. Free Radic Biol Med 2020;160:566-74. [PMID: 32898624 DOI: 10.1016/j.freeradbiomed.2020.08.026] [Reference Citation Analysis]
218 Chang LC, Fan CW, Tseng WK, Hua CC. The level of S-glutathionylated protein is a predictor for metastasis in colorectal cancer and correlated with those of Nrf2/Keap1 pathway. Biomarkers 2021;26:780-7. [PMID: 34704878 DOI: 10.1080/1354750X.2021.1999503] [Reference Citation Analysis]
219 He F, Antonucci L, Yamachika S, Zhang Z, Taniguchi K, Umemura A, Hatzivassiliou G, Roose-Girma M, Reina-Campos M, Duran A, Diaz-Meco MT, Moscat J, Sun B, Karin M. NRF2 activates growth factor genes and downstream AKT signaling to induce mouse and human hepatomegaly. J Hepatol 2020;72:1182-95. [PMID: 32105670 DOI: 10.1016/j.jhep.2020.01.023] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 10.5] [Reference Citation Analysis]
220 Zhang Y, Sun S, Xu W, Yang R, Yang Y, Guo J, Ma K, Xu J. Thioredoxin reductase 1 inhibitor shikonin promotes cell necroptosis via SecTRAPs generation and oxygen-coupled redox cycling. Free Radic Biol Med 2021;180:52-62. [PMID: 34973363 DOI: 10.1016/j.freeradbiomed.2021.12.314] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
221 Koppula P, Olszewski K, Zhang Y, Kondiparthi L, Liu X, Lei G, Das M, Fang B, Poyurovsky MV, Gan B. KEAP1 deficiency drives glucose dependency and sensitizes lung cancer cells and tumors to GLUT inhibition. iScience 2021;24:102649. [PMID: 34151236 DOI: 10.1016/j.isci.2021.102649] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
222 Sun W, Yi Y, Xia G, Zhao Y, Yu Y, Li L, Hua C, He B, Yang B, Yu C, Ye C, Tu F, Chen C, Xu X, Zheng Z, Wang W, Shen X. Nrf2-miR-129-3p-mTOR Axis Controls an miRNA Regulatory Network Involved in HDACi-Induced Autophagy. Mol Ther 2019;27:1039-50. [PMID: 30852137 DOI: 10.1016/j.ymthe.2019.02.010] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 8.7] [Reference Citation Analysis]
223 Zhang Q, Zhang ZY, Du H, Li SZ, Tu R, Jia YF, Zheng Z, Song XM, Du RL, Zhang XD. DUB3 deubiquitinates and stabilizes NRF2 in chemotherapy resistance of colorectal cancer. Cell Death Differ 2019;26:2300-13. [PMID: 30778200 DOI: 10.1038/s41418-019-0303-z] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 8.3] [Reference Citation Analysis]
224 Wang M, Zhang S, Zhong R, Wan F, Chen L, Liu L, Yi B, Zhang H. Olive Fruit Extracts Supplement Improve Antioxidant Capacity via Altering Colonic Microbiota Composition in Mice. Front Nutr 2021;8:645099. [PMID: 33889594 DOI: 10.3389/fnut.2021.645099] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
225 Li R, Zeng X, Yang M, Xu X, Feng J, Bao L, Xue B, Wang X, Huang Y. Antidiabetic Agent DPP-4i Facilitates Murine Breast Cancer Metastasis by Oncogenic ROS-NRF2-HO-1 Axis via a Positive NRF2-HO-1 Feedback Loop. Front Oncol 2021;11:679816. [PMID: 34123848 DOI: 10.3389/fonc.2021.679816] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
226 Süntar I, Çetinkaya S, Panieri E, Saha S, Buttari B, Profumo E, Saso L. Regulatory Role of Nrf2 Signaling Pathway in Wound Healing Process. Molecules 2021;26:2424. [PMID: 33919399 DOI: 10.3390/molecules26092424] [Reference Citation Analysis]
227 Panigrahi DP, Bhol CS, R N, Nagini S, Patil S, Maiti TK, Bhutia SK. Abrus agglutinin inhibits oral carcinogenesis through inactivation of NRF2 signaling pathway. Int J Biol Macromol 2020;155:1123-32. [PMID: 31715238 DOI: 10.1016/j.ijbiomac.2019.11.079] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
228 Panieri E, Saso L. Potential Applications of NRF2 Inhibitors in Cancer Therapy. Oxid Med Cell Longev 2019;2019:8592348. [PMID: 31097977 DOI: 10.1155/2019/8592348] [Cited by in Crossref: 61] [Cited by in F6Publishing: 60] [Article Influence: 20.3] [Reference Citation Analysis]
229 Zhao X, Wang J, Deng Y, Liao L, Zhou M, Peng C, Li Y. Quercetin as a protective agent for liver diseases: A comprehensive descriptive review of the molecular mechanism. Phytother Res 2021. [PMID: 34159683 DOI: 10.1002/ptr.7104] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
230 Nadal E, Palmero R, Muñoz-Pinedo C. Mutations in the Antioxidant KEAP1/NRF2 Pathway Define an Aggressive Subset of NSCLC Resistant to Conventional Treatments. J Thorac Oncol 2019;14:1881-3. [PMID: 31668314 DOI: 10.1016/j.jtho.2019.08.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
231 Kang C, Song CH, Kim N, Nam RH, Choi SI, Yu JE, Nho H, Choi JA, Kim JW, Na HY, Lee HN, Surh YJ. The Enhanced Inhibitory Effect of Estrogen on PD-L1 Expression Following Nrf2 Deficiency in the AOM/DSS Model of Colitis-Associated Cancer. Front Oncol 2021;11:679324. [PMID: 34307147 DOI: 10.3389/fonc.2021.679324] [Reference Citation Analysis]
232 Pouliquen DL, Boissard A, Coqueret O, Guette C. Biomarkers of tumor invasiveness in proteomics (Review). Int J Oncol 2020;57:409-32. [PMID: 32468071 DOI: 10.3892/ijo.2020.5075] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
233 Shen E, Han Y, Cai C, Liu P, Chen Y, Gao L, Huang Q, Shen H, Zeng S, He M. Low expression of NLRP1 is associated with a poor prognosis and immune infiltration in lung adenocarcinoma patients. Aging (Albany NY) 2021;13:7570-88. [PMID: 33658393 DOI: 10.18632/aging.202620] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
234 Farina M, Vieira LE, Buttari B, Profumo E, Saso L. The Nrf2 Pathway in Ischemic Stroke: A Review. Molecules 2021;26:5001. [PMID: 34443584 DOI: 10.3390/molecules26165001] [Reference Citation Analysis]
235 Huang Y, Xie Y, Yang D, Xiong M, Chen X, Wu D, Wang Q, Chen H, Zheng L, Huang K. Histone demethylase UTX aggravates acetaminophen overdose induced hepatotoxicity through dual mechanisms. Pharmacol Res 2021;175:106021. [PMID: 34883214 DOI: 10.1016/j.phrs.2021.106021] [Reference Citation Analysis]
236 Nie Q, Hu Y, Yu X, Li X, Fang X. Induction and application of ferroptosis in cancer therapy. Cancer Cell Int 2022;22:12. [PMID: 34996454 DOI: 10.1186/s12935-021-02366-0] [Reference Citation Analysis]
237 Kovács P, Csonka T, Kovács T, Sári Z, Ujlaki G, Sipos A, Karányi Z, Szeőcs D, Hegedűs C, Uray K, Jankó L, Kiss M, Kiss B, Laoui D, Virág L, Méhes G, Bai P, Mikó E. Lithocholic Acid, a Metabolite of the Microbiome, Increases Oxidative Stress in Breast Cancer. Cancers (Basel) 2019;11:E1255. [PMID: 31461945 DOI: 10.3390/cancers11091255] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
238 Celano M, Maggisano V, Lepore SM, Russo D, Bulotta S. Secoiridoids of olive and derivatives as potential coadjuvant drugs in cancer: A critical analysis of experimental studies. Pharmacol Res 2019;142:77-86. [PMID: 30772463 DOI: 10.1016/j.phrs.2019.01.045] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
239 Pomatto LCD, Dill T, Carboneau B, Levan S, Kato J, Mercken EM, Pearson KJ, Bernier M, de Cabo R. Deletion of Nrf2 shortens lifespan in C57BL6/J male mice but does not alter the health and survival benefits of caloric restriction. Free Radic Biol Med 2020;152:650-8. [PMID: 31953150 DOI: 10.1016/j.freeradbiomed.2020.01.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
240 Qin Z, Ou S, Xu L, Sorensen K, Zhang Y, Hu DP, Yang Z, Hu WY, Chen F, Prins GS. Design and synthesis of isothiocyanate-containing hybrid androgen receptor (AR) antagonist to downregulate AR and induce ferroptosis in GSH-Deficient prostate cancer cells. Chem Biol Drug Des 2021;97:1059-78. [PMID: 33470049 DOI: 10.1111/cbdd.13826] [Reference Citation Analysis]
241 Edwards MR, Liu G, De S, Sourimant J, Pietzsch C, Johnson B, Amarasinghe GK, Leung DW, Bukreyev A, Plemper RK, Aron Z, Bowlin TL, Moir DT, Basler CF. Small Molecule Compounds That Inhibit Antioxidant Response Gene Expression in an Inducer-Dependent Manner. ACS Infect Dis 2020;6:489-502. [PMID: 31899866 DOI: 10.1021/acsinfecdis.9b00416] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
242 Nabih HK. Crosstalk between NRF2 and Dicer through metastasis regulating MicroRNAs; mir-34a, mir-200 family and mir-103/107 family. Archives of Biochemistry and Biophysics 2020;686:108326. [DOI: 10.1016/j.abb.2020.108326] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
243 Kuang F, Liu J, Xie Y, Tang D, Kang R. MGST1 is a redox-sensitive repressor of ferroptosis in pancreatic cancer cells. Cell Chem Biol 2021;28:765-775.e5. [PMID: 33539732 DOI: 10.1016/j.chembiol.2021.01.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
244 Golonko A, Pienkowski T, Swislocka R, Lazny R, Roszko M, Lewandowski W. Another look at phenolic compounds in cancer therapy the effect of polyphenols on ubiquitin-proteasome system. Eur J Med Chem 2019;167:291-311. [PMID: 30776692 DOI: 10.1016/j.ejmech.2019.01.044] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
245 Ebert T, Pawelzik SC, Witasp A, Arefin S, Hobson S, Kublickiene K, Shiels PG, Bäck M, Stenvinkel P. Inflammation and Premature Ageing in Chronic Kidney Disease. Toxins (Basel) 2020;12:E227. [PMID: 32260373 DOI: 10.3390/toxins12040227] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 12.0] [Reference Citation Analysis]
246 Peng X, Zhang S, Jiao W, Zhong Z, Yang Y, Claret FX, Elkabets M, Wang F, Wang R, Zhong Y, Chen ZS, Kong D. Hydroxychloroquine synergizes with the PI3K inhibitor BKM120 to exhibit antitumor efficacy independent of autophagy. J Exp Clin Cancer Res 2021;40:374. [PMID: 34844627 DOI: 10.1186/s13046-021-02176-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
247 Li S, Li W, Wang C, Wu R, Yin R, Kuo HC, Wang L, Kong AN. Pelargonidin reduces the TPA induced transformation of mouse epidermal cells -potential involvement of Nrf2 promoter demethylation. Chem Biol Interact 2019;309:108701. [PMID: 31181187 DOI: 10.1016/j.cbi.2019.06.014] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
248 O'Cathail SM, Wu CH, Lewis A, Holmes C, Hawkins MA, Maughan T. NRF2 metagene signature is a novel prognostic biomarker in colorectal cancer. Cancer Genet 2020;248-249:1-10. [PMID: 32871287 DOI: 10.1016/j.cancergen.2020.08.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
249 Qin F, Sun Y, Deng K, Qin J, Xu Z, Wei J, Yuan L, Zheng T, Li S. Comprehensive analysis of DNA damage repair in squamous cell carcinoma subtypes. Life Sci 2021;278:119559. [PMID: 33932441 DOI: 10.1016/j.lfs.2021.119559] [Reference Citation Analysis]
250 Robertson H, Dinkova-Kostova AT, Hayes JD. NRF2 and the Ambiguous Consequences of Its Activation during Initiation and the Subsequent Stages of Tumourigenesis. Cancers (Basel) 2020;12:E3609. [PMID: 33276631 DOI: 10.3390/cancers12123609] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
251 Liu YC, Peng BR, Hsu KC, El-Shazly M, Shih SP, Lin TE, Kuo FW, Chou YC, Lin HY, Lu MC. 13-Acetoxysarcocrassolide Exhibits Cytotoxic Activity Against Oral Cancer Cells Through the Interruption of the Keap1/Nrf2/p62/SQSTM1 Pathway: The Need to Move Beyond Classical Concepts. Mar Drugs 2020;18:E382. [PMID: 32718084 DOI: 10.3390/md18080382] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
252 Luo M, Wicha MS. Targeting Cancer Stem Cell Redox Metabolism to Enhance Therapy Responses. Semin Radiat Oncol. 2019;29:42-54. [PMID: 30573183 DOI: 10.1016/j.semradonc.2018.10.003] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
253 Ait Ali Said A, Perrot A, Dupuy C. [Mechanisms underlying BACH-induced metastases of lung adenocarcin]. Med Sci (Paris) 2021;37:400-2. [PMID: 33908860 DOI: 10.1051/medsci/2021041] [Reference Citation Analysis]
254 Wang L, Bayanbold K, Zhao L, Wang Y, Adamcakova-Dodd A, Thorne PS, Yang H, Jiang BH, Liu LZ. Redox sensitive miR-27a/b/Nrf2 signaling in Cr(VI)-induced carcinogenesis. Sci Total Environ 2021;:151118. [PMID: 34718002 DOI: 10.1016/j.scitotenv.2021.151118] [Reference Citation Analysis]
255 Sriramajayam K, Peng D, Lu H, Zhou S, Bhat N, McDonald OG, Que J, Zaika A, El-Rifai W. Activation of NRF2 by APE1/REF1 is redox-dependent in Barrett's related esophageal adenocarcinoma cells. Redox Biol 2021;43:101970. [PMID: 33887608 DOI: 10.1016/j.redox.2021.101970] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
256 Tao M, Liu T, You Q, Jiang Z. p62 as a therapeutic target for tumor. Eur J Med Chem 2020;193:112231. [PMID: 32193054 DOI: 10.1016/j.ejmech.2020.112231] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
257 Zhang YL, Chen GL, Liu Y, Zhuang XC, Guo MQ. Stimulation of ROS Generation by Extract of Warburgia ugandensis Leading to G0/G1 Cell Cycle Arrest and Antiproliferation in A549 Cells. Antioxidants (Basel) 2021;10:1559. [PMID: 34679694 DOI: 10.3390/antiox10101559] [Reference Citation Analysis]
258 Tamir TY, Bowman BM, Agajanian MJ, Goldfarb D, Schrank TP, Stohrer T, Hale AE, Siesser PF, Weir SJ, Murphy RM, LaPak KM, Weissman BE, Moorman NJ, Major MB. Gain-of-function genetic screen of the kinome reveals BRSK2 as an inhibitor of the NRF2 transcription factor. J Cell Sci 2020;133:jcs241356. [PMID: 32546533 DOI: 10.1242/jcs.241356] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
259 Raut PK, Lee HS, Joo SH, Chun KS. Thymoquinone induces oxidative stress-mediated apoptosis through downregulation of Jak2/STAT3 signaling pathway in human melanoma cells. Food Chem Toxicol 2021;157:112604. [PMID: 34627931 DOI: 10.1016/j.fct.2021.112604] [Reference Citation Analysis]
260 Lu MC, Zhao J, Liu YT, Liu T, Tao MM, You QD, Jiang ZY. CPUY192018, a potent inhibitor of the Keap1-Nrf2 protein-protein interaction, alleviates renal inflammation in mice by restricting oxidative stress and NF-κB activation. Redox Biol 2019;26:101266. [PMID: 31279986 DOI: 10.1016/j.redox.2019.101266] [Cited by in Crossref: 37] [Cited by in F6Publishing: 42] [Article Influence: 12.3] [Reference Citation Analysis]
261 D'Orazi G, Cirone M. Mutant p53 and Cellular Stress Pathways: A Criminal Alliance That Promotes Cancer Progression. Cancers (Basel) 2019;11:E614. [PMID: 31052524 DOI: 10.3390/cancers11050614] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 10.0] [Reference Citation Analysis]
262 Hu ZW, Wen YH, Ma RQ, Chen L, Zeng XL, Wen WP, Sun W. Ferroptosis Driver SOCS1 and Suppressor FTH1 Independently Correlate With M1 and M2 Macrophage Infiltration in Head and Neck Squamous Cell Carcinoma. Front Cell Dev Biol 2021;9:727762. [PMID: 34527677 DOI: 10.3389/fcell.2021.727762] [Reference Citation Analysis]
263 Purohit V, Wang L, Yang H, Li J, Ney GM, Gumkowski ER, Vaidya AJ, Wang A, Bhardwaj A, Zhao E, Dolgalev I, Zamperone A, Abel EV, Magliano MPD, Crawford HC, Diolaiti D, Papagiannakopoulos TY, Lyssiotis CA, Simeone DM. ATDC binds to KEAP1 to drive NRF2-mediated tumorigenesis and chemoresistance in pancreatic cancer. Genes Dev 2021;35:218-33. [PMID: 33446568 DOI: 10.1101/gad.344184.120] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
264 Huang D, Li Q, Sun X, Sun X, Tang Y, Qu Y, Liu D, Yu T, Li G, Tong T, Zhang Y. CRL4DCAF8 dependent opposing stability control over the chromatin remodeler LSH orchestrates epigenetic dynamics in ferroptosis. Cell Death Differ 2021;28:1593-609. [PMID: 33288900 DOI: 10.1038/s41418-020-00689-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
265 O'Cathail SM, Wu CH, Thomas R, Hawkins MA, Maughan TS, Lewis A. NRF2 Mediates Therapeutic Resistance to Chemoradiation in Colorectal Cancer through a Metabolic Switch. Antioxidants (Basel) 2021;10:1380. [PMID: 34573012 DOI: 10.3390/antiox10091380] [Reference Citation Analysis]
266 Hejazian SM, Hosseiniyan Khatibi SM, Barzegari A, Pavon-Djavid G, Razi Soofiyani S, Hassannejhad S, Ahmadian E, Ardalan M, Zununi Vahed S. Nrf-2 as a therapeutic target in acute kidney injury. Life Sci 2021;264:118581. [PMID: 33065149 DOI: 10.1016/j.lfs.2020.118581] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
267 Ambrosio L, Argenziano M, Cucci MA, Grattarola M, de Graaf IAM, Dianzani C, Barrera G, Sánchez Nieves J, Gomez R, Cavalli R, Pizzimenti S. Carbosilane Dendrimers Loaded with siRNA Targeting Nrf2 as a Tool to Overcome Cisplatin Chemoresistance in Bladder Cancer Cells. Antioxidants (Basel) 2020;9:E993. [PMID: 33066634 DOI: 10.3390/antiox9100993] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
268 Zhou F, Song Y, Liu X, Zhang C, Li F, Hu R, Huang Y, Ma W, Song K, Zhang M. Si-Wu-Tang facilitates ovarian function through improving ovarian microenvironment and angiogenesis in a mouse model of premature ovarian failure. J Ethnopharmacol 2021;280:114431. [PMID: 34293457 DOI: 10.1016/j.jep.2021.114431] [Reference Citation Analysis]
269 Peters A, Nawrot TS, Baccarelli AA. Hallmarks of environmental insults. Cell 2021;184:1455-68. [PMID: 33657411 DOI: 10.1016/j.cell.2021.01.043] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
270 Pizzimenti S, Ribero S, Cucci MA, Grattarola M, Monge C, Dianzani C, Barrera G, Muzio G. Oxidative Stress-Related Mechanisms in Melanoma and in the Acquired Resistance to Targeted Therapies. Antioxidants (Basel) 2021;10:1942. [PMID: 34943045 DOI: 10.3390/antiox10121942] [Reference Citation Analysis]
271 Wiel C, Le Gal K, Ibrahim MX, Jahangir CA, Kashif M, Yao H, Ziegler DV, Xu X, Ghosh T, Mondal T, Kanduri C, Lindahl P, Sayin VI, Bergo MO. BACH1 Stabilization by Antioxidants Stimulates Lung Cancer Metastasis. Cell 2019;178:330-345.e22. [PMID: 31257027 DOI: 10.1016/j.cell.2019.06.005] [Cited by in Crossref: 138] [Cited by in F6Publishing: 140] [Article Influence: 46.0] [Reference Citation Analysis]
272 Lennicke C, Cochemé HM. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell 2021;81:3691-707. [PMID: 34547234 DOI: 10.1016/j.molcel.2021.08.018] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
273 Wang M, Ren Y, Hu S, Liu K, Qiu L, Zhang Y. TCF11 Has a Potent Tumor-Repressing Effect Than Its Prototypic Nrf1α by Definition of Both Similar Yet Different Regulatory Profiles, With a Striking Disparity From Nrf2. Front Oncol 2021;11:707032. [PMID: 34268128 DOI: 10.3389/fonc.2021.707032] [Reference Citation Analysis]
274 Farnsworth DA, Chen YT, de Rappard Yuswack G, Lockwood WW. Emerging Molecular Dependencies of Mutant EGFR-Driven Non-Small Cell Lung Cancer. Cells 2021;10:3553. [DOI: 10.3390/cells10123553] [Reference Citation Analysis]
275 Kang L, Liu S, Li J, Tian Y, Xue Y, Liu X. Parkin and Nrf2 prevent oxidative stress-induced apoptosis in intervertebral endplate chondrocytes via inducing mitophagy and anti-oxidant defenses. Life Sci 2020;243:117244. [PMID: 31891721 DOI: 10.1016/j.lfs.2019.117244] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
276 Kleinschmidt EG, Miller NLG, Ozmadenci D, Tancioni I, Osterman CD, Barrie AM, Taylor KN, Ye A, Jiang S, Connolly DC, Stupack DG, Schlaepfer DD. Rgnef promotes ovarian tumor progression and confers protection from oxidative stress. Oncogene 2019;38:6323-37. [PMID: 31308489 DOI: 10.1038/s41388-019-0881-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
277 Cheng L, Wang H, Li S, Liu Z, Wang C. New insights into the mechanism of Keap1-Nrf2 interaction based on cancer-associated mutations. Life Sci 2021;282:119791. [PMID: 34229009 DOI: 10.1016/j.lfs.2021.119791] [Reference Citation Analysis]
278 Cucci MA, Grattarola M, Dianzani C, Damia G, Ricci F, Roetto A, Trotta F, Barrera G, Pizzimenti S. Ailanthone increases oxidative stress in CDDP-resistant ovarian and bladder cancer cells by inhibiting of Nrf2 and YAP expression through a post-translational mechanism. Free Radical Biology and Medicine 2020;150:125-35. [DOI: 10.1016/j.freeradbiomed.2020.02.021] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
279 Wang P, Song J, Ye D. CRL3s: The BTB-CUL3-RING E3 Ubiquitin Ligases. Adv Exp Med Biol 2020;1217:211-23. [PMID: 31898230 DOI: 10.1007/978-981-15-1025-0_13] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
280 Gambardella V, Tarazona N, Cejalvo JM, Lombardi P, Huerta M, Roselló S, Fleitas T, Roda D, Cervantes A. Personalized Medicine: Recent Progress in Cancer Therapy. Cancers (Basel) 2020;12:E1009. [PMID: 32325878 DOI: 10.3390/cancers12041009] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 13.0] [Reference Citation Analysis]
281 Sánchez-Ortega M, Carrera AC, Garrido A. Role of NRF2 in Lung Cancer. Cells 2021;10:1879. [PMID: 34440648 DOI: 10.3390/cells10081879] [Reference Citation Analysis]
282 Wohlhieter CA, Richards AL, Uddin F, Hulton CH, Quintanal-Villalonga À, Martin A, de Stanchina E, Bhanot U, Asher M, Shah NS, Hayatt O, Buonocore DJ, Rekhtman N, Shen R, Arbour KC, Donoghue M, Poirier JT, Sen T, Rudin CM. Concurrent Mutations in STK11 and KEAP1 Promote Ferroptosis Protection and SCD1 Dependence in Lung Cancer. Cell Rep 2020;33:108444. [PMID: 33264619 DOI: 10.1016/j.celrep.2020.108444] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
283 Wen L, Zhou T, Jiang Y, Chang SK, Yang B. Prenylated flavonoids in foods and their applications on cancer prevention. Crit Rev Food Sci Nutr 2021;:1-14. [PMID: 33543993 DOI: 10.1080/10408398.2021.1881437] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
284 Shah MA, Rogoff HA. Implications of reactive oxygen species on cancer formation and its treatment. Semin Oncol 2021;48:238-45. [PMID: 34548190 DOI: 10.1053/j.seminoncol.2021.05.002] [Reference Citation Analysis]
285 Ghosh S, Dutta N, Banerjee P, Gajbhiye RL, Sareng HR, Kapse P, Pal S, Burdelya L, Mandal NC, Ravichandiran V, Bhattacharjee A, Kundu GC, Gudkov AV, Pal M. Induction of monoamine oxidase A-mediated oxidative stress and impairment of NRF2-antioxidant defence response by polyphenol-rich fraction of Bergenia ligulata sensitizes prostate cancer cells in vitro and in vivo. Free Radic Biol Med 2021;172:136-51. [PMID: 34097996 DOI: 10.1016/j.freeradbiomed.2021.05.037] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
286 Wang MX, Zhao J, Zhang H, Li K, Niu LZ, Wang YP, Zheng YJ. Potential Protective and Therapeutic Roles of the Nrf2 Pathway in Ocular Diseases: An Update. Oxid Med Cell Longev 2020;2020:9410952. [PMID: 32273949 DOI: 10.1155/2020/9410952] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
287 Dai X, Yan X, Wintergerst KA, Cai L, Keller BB, Tan Y. Nrf2: Redox and Metabolic Regulator of Stem Cell State and Function. Trends Mol Med. 2020;26:185-200. [PMID: 31679988 DOI: 10.1016/j.molmed.2019.09.007] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 11.3] [Reference Citation Analysis]
288 Tanaka I, Furukawa T, Morise M. The current issues and future perspective of artificial intelligence for developing new treatment strategy in non-small cell lung cancer: harmonization of molecular cancer biology and artificial intelligence. Cancer Cell Int 2021;21:454. [PMID: 34446006 DOI: 10.1186/s12935-021-02165-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
289 Mahn A, Castillo A. Potential of Sulforaphane as a Natural Immune System Enhancer: A Review. Molecules 2021;26:752. [PMID: 33535560 DOI: 10.3390/molecules26030752] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
290 Cornelius RJ, Ferdaus MZ, Nelson JW, McCormick JA. Cullin-Ring ubiquitin ligases in kidney health and disease. Curr Opin Nephrol Hypertens 2019;28:490-7. [PMID: 31313673 DOI: 10.1097/MNH.0000000000000527] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
291 Ma CS, Lv QM, Zhang KR, Tang YB, Zhang YF, Shen Y, Lei HM, Zhu L. NRF2-GPX4/SOD2 axis imparts resistance to EGFR-tyrosine kinase inhibitors in non-small-cell lung cancer cells. Acta Pharmacol Sin 2021;42:613-23. [PMID: 32704041 DOI: 10.1038/s41401-020-0443-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
292 Fujihara KM, Zhang BZ, Clemons NJ. Opportunities for Ferroptosis in Cancer Therapy. Antioxidants (Basel) 2021;10:986. [PMID: 34205617 DOI: 10.3390/antiox10060986] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
293 Peng D, Zaika A, Que J, El-Rifai W. The antioxidant response in Barrett's tumorigenesis: A double-edged sword. Redox Biol 2021;41:101894. [PMID: 33621787 DOI: 10.1016/j.redox.2021.101894] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
294 Wang P, Ni M, Tian Y, Wang H, Qiu J, You W, Wei S, Shi Y, Zhou J, Cheng F, Rao J, Lu L. Myeloid Nrf2 deficiency aggravates non-alcoholic steatohepatitis progression by regulating YAP-mediated NLRP3 inflammasome signaling. iScience 2021;24:102427. [PMID: 34041450 DOI: 10.1016/j.isci.2021.102427] [Reference Citation Analysis]
295 Chen QM. Nrf2 for protection against oxidant generation and mitochondrial damage in cardiac injury. Free Radic Biol Med 2021;179:133-43. [PMID: 34921930 DOI: 10.1016/j.freeradbiomed.2021.12.001] [Reference Citation Analysis]
296 Jiang Y, Southam AD, Trova S, Beke F, Alhazmi B, Francis T, Radotra A, di Maio A, Drayson MT, Bunce CM, Khanim FL. Valproic acid disables the Nrf2 anti-oxidant response in acute myeloid leukaemia cells enhancing reactive oxygen species-mediated killing. Br J Cancer 2021. [PMID: 34686779 DOI: 10.1038/s41416-021-01570-z] [Reference Citation Analysis]
297 Jin Y, Qi G, Shou Y, Li D, Liu Y, Guan H, Zhang Q, Chen S, Luo J, Xu L, Li C, Ma W, Chen N, Zheng Y, Yu D. High throughput data-based, toxicity pathway-oriented development of a quantitative adverse outcome pathway network linking AHR activation to lung damages. J Hazard Mater 2022;425:128041. [PMID: 34906874 DOI: 10.1016/j.jhazmat.2021.128041] [Reference Citation Analysis]
298 Dai B, Augustine JJ, Kang Y, Roife D, Li X, Deng J, Tan L, Rusling LA, Weinstein JN, Lorenzi PL, Kim MP, Fleming JB. Compound NSC84167 selectively targets NRF2-activated pancreatic cancer by inhibiting asparagine synthesis pathway. Cell Death Dis 2021;12:693. [PMID: 34247201 DOI: 10.1038/s41419-021-03970-8] [Reference Citation Analysis]
299 Elgohary S, Elkhodiry AA, Amin NS, Stein U, El Tayebi HM. Thymoquinone: A Tie-Breaker in SARS-CoV2-Infected Cancer Patients? Cells 2021;10:302. [PMID: 33540625 DOI: 10.3390/cells10020302] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
300 Avolio R, Matassa DS, Criscuolo D, Landriscina M, Esposito F. Modulation of Mitochondrial Metabolic Reprogramming and Oxidative Stress to Overcome Chemoresistance in Cancer. Biomolecules 2020;10:E135. [PMID: 31947673 DOI: 10.3390/biom10010135] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
301 Luu Hoang KN, Anstee JE, Arnold JN. The Diverse Roles of Heme Oxygenase-1 in Tumor Progression. Front Immunol 2021;12:658315. [PMID: 33868304 DOI: 10.3389/fimmu.2021.658315] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
302 Li Z, Chen L, Chen C, Zhou Y, Hu D, Yang J, Chen Y, Zhuo W, Mao M, Zhang X, Xu L, Wang L, Zhou J. Targeting ferroptosis in breast cancer. Biomark Res 2020;8:58. [PMID: 33292585 DOI: 10.1186/s40364-020-00230-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
303 Wu A, Yang Z, Huang Y, Yuan H, Lin C, Wang T, Zhao Z, Zhou Y, Zhu C. Natural phenylethanoid glycosides isolated from Callicarpa kwangtungensis suppressed lipopolysaccharide-mediated inflammatory response via activating Keap1/Nrf2/HO-1 pathway in RAW 264.7 macrophages cell. J Ethnopharmacol 2020;258:112857. [PMID: 32298752 DOI: 10.1016/j.jep.2020.112857] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
304 Galiè M, Covi V, Tabaracci G, Malatesta M. The Role of Nrf2 in the Antioxidant Cellular Response to Medical Ozone Exposure. Int J Mol Sci 2019;20:E4009. [PMID: 31426459 DOI: 10.3390/ijms20164009] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
305 Talebi M, Talebi M, Farkhondeh T, Mishra G, İlgün S, Samarghandian S. New insights into the role of the Nrf2 signaling pathway in green tea catechin applications. Phytother Res 2021;35:3078-112. [PMID: 33569875 DOI: 10.1002/ptr.7033] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
306 Zhou H, Wang Y, You Q, Jiang Z. Recent progress in the development of small molecule Nrf2 activators: a patent review (2017-present). Expert Opin Ther Pat 2020;30:209-25. [PMID: 31922884 DOI: 10.1080/13543776.2020.1715365] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
307 Garufi A, Traversi G, Gilardini Montani MS, D'Orazi V, Pistritto G, Cirone M, D'Orazi G. Reduced chemotherapeutic sensitivity in high glucose condition: implication of antioxidant response. Oncotarget 2019;10:4691-702. [PMID: 31384396 DOI: 10.18632/oncotarget.27087] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
308 Ahmadi Z, Ashrafizadeh M. Melatonin as a potential modulator of Nrf2. Fundam Clin Pharmacol 2020;34:11-9. [PMID: 31283051 DOI: 10.1111/fcp.12498] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 13.7] [Reference Citation Analysis]
309 Wolf AM. The tumor suppression theory of aging. Mech Ageing Dev 2021;200:111583. [PMID: 34637937 DOI: 10.1016/j.mad.2021.111583] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
310 Panieri E, Buha A, Telkoparan-Akillilar P, Cevik D, Kouretas D, Veskoukis A, Skaperda Z, Tsatsakis A, Wallace D, Suzen S, Saso L. Potential Applications of NRF2 Modulators in Cancer Therapy. Antioxidants (Basel) 2020;9:E193. [PMID: 32106613 DOI: 10.3390/antiox9030193] [Cited by in F6Publishing: 41] [Reference Citation Analysis]
311 Beinse G, Just PA, Rance B, Izac B, Letourneur F, Saidu NEB, Chouzenoux S, Nicco C, Goldwasser F, Pasmant E, Batteux F, Borghese B, Alexandre J, Leroy K. The NRF2 transcriptional target NQO1 has low mRNA levels in TP53-mutated endometrial carcinomas. PLoS One 2019;14:e0214416. [PMID: 30908539 DOI: 10.1371/journal.pone.0214416] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
312 Li F, Aljahdali IAM, Zhang R, Nastiuk KL, Krolewski JJ, Ling X. Kidney cancer biomarkers and targets for therapeutics: survivin (BIRC5), XIAP, MCL-1, HIF1α, HIF2α, NRF2, MDM2, MDM4, p53, KRAS and AKT in renal cell carcinoma. J Exp Clin Cancer Res 2021;40:254. [PMID: 34384473 DOI: 10.1186/s13046-021-02026-1] [Reference Citation Analysis]
313 Chou MY, Yang MH. Interplay of Immunometabolism and Epithelial-Mesenchymal Transition in the Tumor Microenvironment. Int J Mol Sci 2021;22:9878. [PMID: 34576042 DOI: 10.3390/ijms22189878] [Reference Citation Analysis]
314 Kang JI, Kim DH, Sung KW, Shim SM, Cha-Molstad H, Soung NK, Lee KH, Hwang J, Lee HG, Kwon YT, Kim BY. p62-Induced Cancer-Associated Fibroblast Activation via the Nrf2-ATF6 Pathway Promotes Lung Tumorigenesis. Cancers (Basel) 2021;13:864. [PMID: 33670717 DOI: 10.3390/cancers13040864] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
315 Telkoparan-Akillilar P, Panieri E, Cevik D, Suzen S, Saso L. Therapeutic Targeting of the NRF2 Signaling Pathway in Cancer. Molecules 2021;26:1417. [PMID: 33808001 DOI: 10.3390/molecules26051417] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
316 Froeling FEM, Swamynathan MM, Deschênes A, Chio IIC, Brosnan E, Yao MA, Alagesan P, Lucito M, Li J, Chang AY, Trotman LC, Belleau P, Park Y, Rogoff HA, Watson JD, Tuveson DA. Bioactivation of Napabucasin Triggers Reactive Oxygen Species-Mediated Cancer Cell Death. Clin Cancer Res 2019;25:7162-74. [PMID: 31527169 DOI: 10.1158/1078-0432.CCR-19-0302] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
317 Xu X, Yang Y, Liu X, Cao N, Zhang P, Zhao S, Chen D, Li L, He Y, Dong X, Wang K, Lin H, Mao N, Liu L. NFE2L2/KEAP1 Mutations Correlate with Higher Tumor Mutational Burden Value/PD-L1 Expression and Potentiate Improved Clinical Outcome with Immunotherapy. Oncologist 2020;25:e955-63. [PMID: 32272498 DOI: 10.1634/theoncologist.2019-0885] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 6.5] [Reference Citation Analysis]
318 Kang JS, Nam LB, Yoo OK, Keum YS. Molecular mechanisms and systemic targeting of NRF2 dysregulation in cancer. Biochem Pharmacol 2020;177:114002. [PMID: 32360363 DOI: 10.1016/j.bcp.2020.114002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
319 Brown Y, Hua S, Tanwar PS. Extracellular matrix-mediated regulation of cancer stem cells and chemoresistance. The International Journal of Biochemistry & Cell Biology 2019;109:90-104. [DOI: 10.1016/j.biocel.2019.02.002] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
320 Choi EJ, Jeon SM. NRF2-driven redox metabolism takes center stage in cancer metabolism from an outside-in perspective. Arch Pharm Res 2020;43:321-36. [PMID: 32130657 DOI: 10.1007/s12272-020-01224-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
321 Pérez-Sala D, Domingues R. Lipoxidation targets: From basic mechanisms to pathophysiology. Redox Biol 2019;23:101208. [PMID: 31129033 DOI: 10.1016/j.redox.2019.101208] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
322 Luongo D, Treppiccione L, Maurano F, Rossi M, Bergamo P. The murine enterocyte cell line Mode-K is a novel and reliable in vitro model for studies on gluten toxicity. Food and Chemical Toxicology 2020;140:111331. [DOI: 10.1016/j.fct.2020.111331] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
323 Li G, Li A, Chen X, Zhang L, Wang T, Wang X, Shen T. Naturally-derived diterpenoid sphaeropsidin C as an activator of Nrf2/ARE pathway and its potential capability of relieving intracellular oxidative stress in human lung epithelial cells. Biomedicine & Pharmacotherapy 2020;121:109669. [DOI: 10.1016/j.biopha.2019.109669] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
324 Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, Rumsey WL, Attucks OC, Franklin S, Levonen AL, Kensler TW, Dinkova-Kostova AT. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov. 2019;18:295-317. [PMID: 30610225 DOI: 10.1038/s41573-018-0008-x] [Cited by in Crossref: 346] [Cited by in F6Publishing: 332] [Article Influence: 115.3] [Reference Citation Analysis]
325 Jin X, Zheng Y, Chen Z, Wang F, Bi G, Li M, Liang J, Sui Q, Bian Y, Hu Z, Qiao Y, Xu S. Integrated analysis of patients with KEAP1/NFE2L2/CUL3 mutations in lung adenocarcinomas. Cancer Med 2021. [PMID: 34617407 DOI: 10.1002/cam4.4338] [Reference Citation Analysis]
326 Qi W, Lu C, Huang H, Zhang W, Song S, Liu B. (+)-Usnic Acid Induces ROS-dependent Apoptosis via Inhibition of Mitochondria Respiratory Chain Complexes and Nrf2 Expression in Lung Squamous Cell Carcinoma. Int J Mol Sci 2020;21:E876. [PMID: 32013250 DOI: 10.3390/ijms21030876] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
327 Gonçalves AC, Richiardone E, Jorge J, Polónia B, Xavier CPR, Salaroglio IC, Riganti C, Vasconcelos MH, Corbet C, Sarmento-Ribeiro AB. Impact of cancer metabolism on therapy resistance - Clinical implications. Drug Resist Updat 2021;:100797. [PMID: 34955385 DOI: 10.1016/j.drup.2021.100797] [Reference Citation Analysis]
328 Klein MI, Cannataro VL, Townsend JP, Newman S, Stern DF, Zhao H. Identifying modules of cooperating cancer drivers. Mol Syst Biol 2021;17:e9810. [PMID: 33769711 DOI: 10.15252/msb.20209810] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
329 Li S, Huang Y. Ferroptosis: an iron-dependent cell death form linking metabolism, diseases, immune cell and targeted therapy. Clin Transl Oncol 2021. [PMID: 34160772 DOI: 10.1007/s12094-021-02669-8] [Reference Citation Analysis]
330 Yang Q, Li K, Huang X, Zhao C, Mei Y, Li X, Jiao L, Yang H. lncRNA SLC7A11-AS1 Promotes Chemoresistance by Blocking SCFβ-TRCP-Mediated Degradation of NRF2 in Pancreatic Cancer. Mol Ther Nucleic Acids 2020;19:974-85. [PMID: 32036249 DOI: 10.1016/j.omtn.2019.11.035] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 13.5] [Reference Citation Analysis]
331 Mornata F, Pepe G, Sfogliarini C, Brunialti E, Rovati G, Locati M, Maggi A, Vegeto E. Reciprocal interference between the NRF2 and LPS signaling pathways on the immune-metabolic phenotype of peritoneal macrophages. Pharmacol Res Perspect 2020;8:e00638. [PMID: 32794353 DOI: 10.1002/prp2.638] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
332 L Suraweera T, Rupasinghe HPV, Dellaire G, Xu Z. Regulation of Nrf2/ARE Pathway by Dietary Flavonoids: A Friend or Foe for Cancer Management? Antioxidants (Basel) 2020;9:E973. [PMID: 33050575 DOI: 10.3390/antiox9100973] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
333 Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell 2021;12:599-620. [PMID: 33000412 DOI: 10.1007/s13238-020-00789-5] [Cited by in Crossref: 41] [Cited by in F6Publishing: 50] [Article Influence: 20.5] [Reference Citation Analysis]
334 Liu X, Yang Q, Nakamura Y. Inhibition of Drug Resistance Mechanisms Improves the Benzyl Isothiocyanate–Induced Anti-Proliferation in Human Colorectal Cancer Cells. Curr Pharmacol Rep 2020;6:306-14. [DOI: 10.1007/s40495-020-00227-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
335 Huang G, Pan ST. ROS-Mediated Therapeutic Strategy in Chemo-/Radiotherapy of Head and Neck Cancer. Oxid Med Cell Longev 2020;2020:5047987. [PMID: 32774675 DOI: 10.1155/2020/5047987] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
336 Robledinos-Antón N, Fernández-Ginés R, Manda G, Cuadrado A. Activators and Inhibitors of NRF2: A Review of Their Potential for Clinical Development. Oxid Med Cell Longev 2019;2019:9372182. [PMID: 31396308 DOI: 10.1155/2019/9372182] [Cited by in Crossref: 136] [Cited by in F6Publishing: 130] [Article Influence: 45.3] [Reference Citation Analysis]
337 Gan B. DUBbing Ferroptosis in Cancer Cells. Cancer Res 2019;79:1749-50. [PMID: 30987975 DOI: 10.1158/0008-5472.CAN-19-0487] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
338 He F, Ru X, Wen T. NRF2, a Transcription Factor for Stress Response and Beyond. Int J Mol Sci 2020;21:E4777. [PMID: 32640524 DOI: 10.3390/ijms21134777] [Cited by in Crossref: 64] [Cited by in F6Publishing: 60] [Article Influence: 32.0] [Reference Citation Analysis]
339 Bu X, Qu X, Guo K, Meng X, Yang X, Huang Q, Dou W, Feng L, Wei X, Gao J, Sun W, Chao M, Han L, Hu Y, Shen L, Zhang J, Wang L. CD147 confers temozolomide resistance of glioma cells via the regulation of β-TrCP/Nrf2 pathway. Int J Biol Sci 2021;17:3013-23. [PMID: 34421346 DOI: 10.7150/ijbs.60894] [Reference Citation Analysis]
340 Chikkegowda P, Pookunoth BC, Bovilla VR, Veeresh PM, Leihang Z, Thippeswamy T, Padukudru MA, Hathur B, Kanchugarakoppal RS, Basappa, Madhunapantula SV. Design, Synthesis, Characterization, and Crystal Structure Studies of Nrf2 Modulators for Inhibiting Cancer Cell Growth In Vitro and In Vivo. ACS Omega 2021;6:10054-71. [PMID: 34056161 DOI: 10.1021/acsomega.0c06345] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
341 Hudlikar R, Wang L, Wu R, Li S, Peter R, Shannar A, Chou PJ, Liu X, Liu Z, Kuo HD, Kong AN. Epigenetics/Epigenomics and Prevention of Early Stages of Cancer by Isothiocyanates. Cancer Prev Res (Phila) 2021;14:151-64. [PMID: 33055265 DOI: 10.1158/1940-6207.CAPR-20-0217] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
342 Delgobo M, Gonçalves RM, Delazeri MA, Falchetti M, Zandoná A, Nascimento das Neves R, Almeida K, Fagundes AC, Gelain DP, Fracasso JI, Macêdo GB, Priori L, Bassani N, Bishop AJR, Forcelini CM, Moreira JCF, Zanotto-Filho A. Thioredoxin reductase-1 levels are associated with NRF2 pathway activation and tumor recurrence in non-small cell lung cancer. Free Radic Biol Med 2021;177:58-71. [PMID: 34673143 DOI: 10.1016/j.freeradbiomed.2021.10.020] [Reference Citation Analysis]
343 Chatterjee P, Yadav M, Chauhan N, Huang Y, Luo Y. Cancer Cell Metabolism Featuring Nrf2. Curr Drug Discov Technol 2020;17:263-71. [PMID: 30207221 DOI: 10.2174/1570163815666180911092443] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
344 Riis S, Murray JB, O'Connor R. IGF-1 Signalling Regulates Mitochondria Dynamics and Turnover through a Conserved GSK-3β-Nrf2-BNIP3 Pathway. Cells 2020;9:E147. [PMID: 31936236 DOI: 10.3390/cells9010147] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 9.5] [Reference Citation Analysis]
345 Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative Stress in Cancer. Cancer Cell 2020;38:167-97. [PMID: 32649885 DOI: 10.1016/j.ccell.2020.06.001] [Cited by in Crossref: 140] [Cited by in F6Publishing: 137] [Article Influence: 70.0] [Reference Citation Analysis]
346 Lammi MJ, Qu C. Selenium-Related Transcriptional Regulation of Gene Expression. Int J Mol Sci 2018;19:E2665. [PMID: 30205557 DOI: 10.3390/ijms19092665] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
347 D'Orazi G, Garufi A, Cirone M. Nuclear factor erythroid 2 (NF-E2) p45-related factor 2 interferes with homeodomain-interacting protein kinase 2/p53 activity to impair solid tumors chemosensitivity. IUBMB Life 2020;72:1634-9. [PMID: 32593231 DOI: 10.1002/iub.2334] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
348 Hammad A, Namani A, Elshaer M, Wang XJ, Tang X. "NRF2 addiction" in lung cancer cells and its impact on cancer therapy. Cancer Lett 2019;467:40-9. [PMID: 31574294 DOI: 10.1016/j.canlet.2019.09.016] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 7.7] [Reference Citation Analysis]
349 Ji L, Zhang R, Chen J, Xue Q, Moghal N, Tsao MS. PIDD interaction with KEAP1 as a new mutation-independent mechanism to promote NRF2 stabilization and chemoresistance in NSCLC. Sci Rep 2019;9:12437. [PMID: 31455821 DOI: 10.1038/s41598-019-48763-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
350 Rastogi A, Severance EG, Jacobs HM, Conlin SM, Islam ST, Timme-Laragy AR. Modulating glutathione thiol status alters pancreatic β-cell morphogenesis in the developing zebrafish (Danio rerio) embryo. Redox Biol 2021;38:101788. [PMID: 33321464 DOI: 10.1016/j.redox.2020.101788] [Reference Citation Analysis]
351 Dou R, Wang X, Zhang J, Yi M. Prognostic Value and Immune Infiltration Analysis of Nuclear Factor Erythroid-2 Family Members in Ovarian Cancer. BioMed Research International 2022;2022:1-9. [DOI: 10.1155/2022/8672258] [Reference Citation Analysis]
352 Tuy K, Rickenbacker L, Hjelmeland AB. Reactive oxygen species produced by altered tumor metabolism impacts cancer stem cell maintenance. Redox Biol 2021;44:101953. [PMID: 34052208 DOI: 10.1016/j.redox.2021.101953] [Reference Citation Analysis]
353 Thiruvengadam M, Venkidasamy B, Subramanian U, Samynathan R, Ali Shariati M, Rebezov M, Girish S, Thangavel S, Dhanapal AR, Fedoseeva N, Lee J, Chung IM. Bioactive Compounds in Oxidative Stress-Mediated Diseases: Targeting the NRF2/ARE Signaling Pathway and Epigenetic Regulation. Antioxidants (Basel) 2021;10:1859. [PMID: 34942962 DOI: 10.3390/antiox10121859] [Reference Citation Analysis]
354 Saeidi S, Kim S, Guillen‐quispe YN, Jagadeesh ASV, Han H, Kim SH, Zhong X, Piao J, Kim S, Jeong J, Shin YJ, Cha YJ, Lee H, Han W, Min S, Tian W, Kitamura H, Surh Y. Peptidyl‐prolyl cis‐trans isomerase NIMA‐interacting 1 directly binds and stabilizes Nrf2 in breast cancer. The FASEB Journal 2022;36. [DOI: 10.1096/fj.202100776rr] [Reference Citation Analysis]
355 Liu M, Wang D, Luo Y, Hu L, Bi Y, Ji J, Huang H, Wang G, Zhu L, Ma J, Kim E, Luo CK, Abbruzzese JL, Li X, Yang VW, Li Z, Lu W. Selective killing of cancer cells harboring mutant RAS by concomitant inhibition of NADPH oxidase and glutathione biosynthesis. Cell Death Dis 2021;12:189. [PMID: 33594044 DOI: 10.1038/s41419-021-03473-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
356 Mattu S, Zavattari P, Kowalik MA, Serra M, Sulas P, Pal R, Puliga E, Sutti S, Foglia B, Parola M, Albano E, Giordano S, Perra A, Columbano A. Nrf2 Mutation/Activation Is Dispensable for the Development of Chemically Induced Mouse HCC. Cell Mol Gastroenterol Hepatol 2021;13:113-27. [PMID: 34530178 DOI: 10.1016/j.jcmgh.2021.08.011] [Reference Citation Analysis]
357 Yu M, Lin Z, Tian X, Chen S, Liang X, Qin M, Zhu Q, Wu Y, Zhong S. Downregulation of Cx43 reduces cisplatin-induced acute renal injury by inhibiting ferroptosis. Food Chem Toxicol 2021;158:112672. [PMID: 34785303 DOI: 10.1016/j.fct.2021.112672] [Reference Citation Analysis]
358 Zhang W, Sun Y, Bai L, Zhi L, Yang Y, Zhao Q, Chen C, Qi Y, Gao W, He W, Wang L, Chen D, Fan S, Chen H, Piao HL, Qiao Q, Xu Z, Zhang J, Zhao J, Zhang S, Yin Y, Peng C, Li X, Liu Q, Liu H, Wang Y. RBMS1 regulates lung cancer ferroptosis through translational control of SLC7A11. J Clin Invest 2021;131:e152067. [PMID: 34609966 DOI: 10.1172/JCI152067] [Reference Citation Analysis]
359 Anandhan A, Dodson M, Schmidlin CJ, Liu P, Zhang DD. Breakdown of an Ironclad Defense System: The Critical Role of NRF2 in Mediating Ferroptosis. Cell Chem Biol 2020;27:436-47. [PMID: 32275864 DOI: 10.1016/j.chembiol.2020.03.011] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 18.5] [Reference Citation Analysis]
360 Qin JJ, Cheng XD, Zhang J, Zhang WD. Dual roles and therapeutic potential of Keap1-Nrf2 pathway in pancreatic cancer: a systematic review. Cell Commun Signal 2019;17:121. [PMID: 31511020 DOI: 10.1186/s12964-019-0435-2] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
361 Paiboonrungruang C, Simpson E, Xiong Z, Huang C, Li J, Li Y, Chen X. Development of targeted therapy of NRF2high esophageal squamous cell carcinoma. Cell Signal 2021;86:110105. [PMID: 34358647 DOI: 10.1016/j.cellsig.2021.110105] [Reference Citation Analysis]
362 Zhang X, Wang L, Li H, Zhang L, Zheng X, Cheng W. Crosstalk between noncoding RNAs and ferroptosis: new dawn for overcoming cancer progression. Cell Death Dis 2020;11:580. [PMID: 32709863 DOI: 10.1038/s41419-020-02772-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
363 Wang J, Yang J, Cao M, Zhao Z, Cao B, Yu S. The potential roles of Nrf2/Keap1 signaling in anticancer drug interactions. Curr Res Pharmacol Drug Discov 2021;2:100028. [PMID: 34909662 DOI: 10.1016/j.crphar.2021.100028] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
364 Yim SY, Lee JS. An Overview of the Genomic Characterization of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021;8:1077-88. [PMID: 34522690 DOI: 10.2147/JHC.S270533] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
365 Muri J, Kopf M. Redox regulation of immunometabolism. Nat Rev Immunol 2021;21:363-81. [PMID: 33340021 DOI: 10.1038/s41577-020-00478-8] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
366 Liu D, Qiu X, Xiong X, Chen X, Pan F. Current updates on the role of reactive oxygen species in bladder cancer pathogenesis and therapeutics. Clin Transl Oncol 2020;22:1687-97. [PMID: 32189139 DOI: 10.1007/s12094-020-02330-w] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
367 Wang Z, Yu K, Hu Y, Su F, Gao Z, Hu T, Yang Y, Cao X, Qian F. Schisantherin A induces cell apoptosis through ROS/JNK signaling pathway in human gastric cancer cells. Biochem Pharmacol 2020;173:113673. [PMID: 31629709 DOI: 10.1016/j.bcp.2019.113673] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
368 Eriksson SE, Ceder S, Bykov VJN, Wiman KG. p53 as a hub in cellular redox regulation and therapeutic target in cancer. J Mol Cell Biol 2019;11:330-41. [PMID: 30892598 DOI: 10.1093/jmcb/mjz005] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 17.5] [Reference Citation Analysis]
369 Li N, Wang J, Zang X, Wang Z, Zhang T, Zhao B, Miao J, Lin Z. H2S probe CPC inhibits autophagy and promotes apoptosis by inhibiting glutathionylation of Keap1 at Cys434. Apoptosis 2021;26:111-31. [PMID: 33389358 DOI: 10.1007/s10495-020-01652-y] [Reference Citation Analysis]
370 Lu Z, Ren Y, Yang L, Jia A, Hu Y, Zhao Y, Zhao W, Yu B, Zhao W, Zhang J, Hou G. Inhibiting autophagy enhances sulforaphane-induced apoptosis via targeting NRF2 in esophageal squamous cell carcinoma. Acta Pharm Sin B 2021;11:1246-60. [PMID: 34094831 DOI: 10.1016/j.apsb.2020.12.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
371 Egbujor MC, Saha S, Buttari B, Profumo E, Saso L. Activation of Nrf2 signaling pathway by natural and synthetic chalcones: a therapeutic road map for oxidative stress. Expert Rev Clin Pharmacol 2021;14:465-80. [PMID: 33691555 DOI: 10.1080/17512433.2021.1901578] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
372 Cloer EW, Goldfarb D, Schrank TP, Weissman BE, Major MB. NRF2 Activation in Cancer: From DNA to Protein. Cancer Res 2019;79:889-98. [PMID: 30760522 DOI: 10.1158/0008-5472.CAN-18-2723] [Cited by in Crossref: 68] [Cited by in F6Publishing: 39] [Article Influence: 22.7] [Reference Citation Analysis]
373 Zhang Q, Lai Y, Deng J, Wang M, Wang Z, Wang M, Zhang Y, Yang X, Zhou X, Jiang H. Vagus Nerve Stimulation Attenuates Hepatic Ischemia/Reperfusion Injury via the Nrf2/HO-1 Pathway. Oxid Med Cell Longev 2019;2019:9549506. [PMID: 31205591 DOI: 10.1155/2019/9549506] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
374 Feng L, Zhao K, Sun L, Yin X, Zhang J, Liu C, Li B. SLC7A11 regulated by NRF2 modulates esophageal squamous cell carcinoma radiosensitivity by inhibiting ferroptosis. J Transl Med 2021;19:367. [PMID: 34446045 DOI: 10.1186/s12967-021-03042-7] [Reference Citation Analysis]
375 Lignitto L, LeBoeuf SE, Homer H, Jiang S, Askenazi M, Karakousi TR, Pass HI, Bhutkar AJ, Tsirigos A, Ueberheide B, Sayin VI, Papagiannakopoulos T, Pagano M. Nrf2 Activation Promotes Lung Cancer Metastasis by Inhibiting the Degradation of Bach1. Cell 2019;178:316-329.e18. [PMID: 31257023 DOI: 10.1016/j.cell.2019.06.003] [Cited by in Crossref: 159] [Cited by in F6Publishing: 154] [Article Influence: 53.0] [Reference Citation Analysis]
376 Li AM, Ye J. Reprogramming of serine, glycine and one-carbon metabolism in cancer. Biochim Biophys Acta Mol Basis Dis 2020;1866:165841. [PMID: 32439610 DOI: 10.1016/j.bbadis.2020.165841] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
377 Ito M, Tanaka T, Nangaku M. Nuclear factor erythroid 2-related factor 2 as a treatment target of kidney diseases. Curr Opin Nephrol Hypertens 2020;29:128-35. [PMID: 31592832 DOI: 10.1097/MNH.0000000000000556] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 12.0] [Reference Citation Analysis]
378 Khatri I, Ganguly K, Sharma S, Carmicheal J, Kaur S, Batra SK, Bhasin MK. Systems Biology Approach to Identify Novel Genomic Determinants for Pancreatic Cancer Pathogenesis. Sci Rep 2019;9:123. [PMID: 30644396 DOI: 10.1038/s41598-018-36328-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
379 Chan Kwon Y, Sik Kim H, Lee BM. Detoxifying effects of optimal hyperoxia (40% oxygenation) exposure on benzo[a]pyrene-induced toxicity in human keratinocytes. J Toxicol Environ Health A 2020;83:82-94. [PMID: 32065759 DOI: 10.1080/15287394.2020.1730083] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
380 Hino K, Yanatori I, Hara Y, Nishina S. Iron and liver cancer: an inseparable connection. FEBS J 2021. [PMID: 34543507 DOI: 10.1111/febs.16208] [Reference Citation Analysis]
381 Bellezza I. Oxidative Stress in Age-Related Macular Degeneration: Nrf2 as Therapeutic Target. Front Pharmacol 2018;9:1280. [PMID: 30455645 DOI: 10.3389/fphar.2018.01280] [Cited by in Crossref: 59] [Cited by in F6Publishing: 54] [Article Influence: 14.8] [Reference Citation Analysis]
382 Jiang ZY, Lu MC, You QD. Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Inhibition: An Emerging Strategy in Cancer Therapy. J Med Chem 2019;62:3840-56. [PMID: 30444366 DOI: 10.1021/acs.jmedchem.8b01121] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
383 Ippolito L, Giannoni E, Chiarugi P, Parri M. Mitochondrial Redox Hubs as Promising Targets for Anticancer Therapy. Front Oncol 2020;10:256. [PMID: 32185131 DOI: 10.3389/fonc.2020.00256] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
384 Bi Z, Fu Y, Wadgaonkar P, Qiu Y, Almutairy B, Zhang W, Seno A, Thakur C, Chen F. New Discoveries and Ambiguities of Nrf2 and ATF3 Signaling in Environmental Arsenic-Induced Carcinogenesis. Antioxidants 2022;11:77. [DOI: 10.3390/antiox11010077] [Reference Citation Analysis]
385 Dempke WCM, Reck M. KEAP1/NRF2 (NFE2L2) mutations in NSCLC - Fuel for a superresistant phenotype? Lung Cancer 2021;159:10-7. [PMID: 34303275 DOI: 10.1016/j.lungcan.2021.07.006] [Reference Citation Analysis]
386 Salehi S, Kabeer F, Ceglia N, Andronescu M, Williams MJ, Campbell KR, Masud T, Wang B, Biele J, Brimhall J, Gee D, Lee H, Ting J, Zhang AW, Tran H, O'Flanagan C, Dorri F, Rusk N, de Algara TR, Lee SR, Cheng BYC, Eirew P, Kono T, Pham J, Grewal D, Lai D, Moore R, Mungall AJ, Marra MA, McPherson A, Bouchard-Côté A, Aparicio S, Shah SP; IMAXT Consortium. Clonal fitness inferred from time-series modelling of single-cell cancer genomes. Nature 2021;595:585-90. [PMID: 34163070 DOI: 10.1038/s41586-021-03648-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
387 Weitzenböck HP, Gschwendtner A, Wiesner C, Depke M, Schmidt F, Trautinger F, Hengstschläger M, Hundsberger H, Mikula M. Proteome analysis of NRF2 inhibition in melanoma reveals CD44 up-regulation and increased apoptosis resistance upon vemurafenib treatment. Cancer Med 2021. [PMID: 34951143 DOI: 10.1002/cam4.4506] [Reference Citation Analysis]
388 Connerty P, Lock RB, de Bock CE. Long Non-coding RNAs: Major Regulators of Cell Stress in Cancer. Front Oncol 2020;10:285. [PMID: 32266130 DOI: 10.3389/fonc.2020.00285] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
389 Orrù C, Giordano S, Columbano A. Nrf2 in Neoplastic and Non-Neoplastic Liver Diseases. Cancers (Basel) 2020;12:E2932. [PMID: 33053665 DOI: 10.3390/cancers12102932] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
390 Liu RM, Xu P, Chen Q, Feng SL, Xie Y. A multiple-targets alkaloid nuciferine overcomes paclitaxel-induced drug resistance in vitro and in vivo. Phytomedicine 2020;79:153342. [PMID: 32992085 DOI: 10.1016/j.phymed.2020.153342] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
391 Lee J, Zhong X, Lee J, Surh Y, Na H. 15-Keto prostaglandin E2 induces heme oxygenase-1 expression through activation of Nrf2 in human colon epithelial CCD 841 CoN cells. Archives of Biochemistry and Biophysics 2020;679:108162. [DOI: 10.1016/j.abb.2019.108162] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
392 Alavi MV. Targeted OMA1 therapies for cancer. Int J Cancer 2019;145:2330-41. [PMID: 30714136 DOI: 10.1002/ijc.32177] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
393 Nagaraja S, Quezada MA, Gillespie SM, Arzt M, Lennon JJ, Woo PJ, Hovestadt V, Kambhampati M, Filbin MG, Suva ML, Nazarian J, Monje M. Histone Variant and Cell Context Determine H3K27M Reprogramming of the Enhancer Landscape and Oncogenic State. Mol Cell 2019;76:965-980.e12. [PMID: 31588023 DOI: 10.1016/j.molcel.2019.08.030] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 11.3] [Reference Citation Analysis]
394 Liu P, Dodson M, Li H, Schmidlin CJ, Shakya A, Wei Y, Garcia JGN, Chapman E, Kiela PR, Zhang QY, White E, Ding X, Ooi A, Zhang DD. Non-canonical NRF2 activation promotes a pro-diabetic shift in hepatic glucose metabolism. Mol Metab 2021;51:101243. [PMID: 33933676 DOI: 10.1016/j.molmet.2021.101243] [Reference Citation Analysis]
395 Ward AO, Sala-Newby GB, Ladak S, Angelini GD, Caputo M, Suleiman MS, Evans PC, George SJ, Zakkar M. Nrf2-Keap-1 imbalance under acute shear stress induces inflammatory response in venous endothelial cells. Perfusion 2021;:2676591211012571. [PMID: 33899586 DOI: 10.1177/02676591211012571] [Reference Citation Analysis]
396 Meng C, Zhan J, Chen D, Shao G, Zhang H, Gu W, Luo J. The deubiquitinase USP11 regulates cell proliferation and ferroptotic cell death via stabilization of NRF2 USP11 deubiquitinates and stabilizes NRF2. Oncogene 2021;40:1706-20. [PMID: 33531626 DOI: 10.1038/s41388-021-01660-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
397 Pereira EJ, Burns JS, Lee CY, Marohl T, Calderon D, Wang L, Atkins KA, Wang CC, Janes KA. Sporadic activation of an oxidative stress-dependent NRF2-p53 signaling network in breast epithelial spheroids and premalignancies. Sci Signal 2020;13:eaba4200. [PMID: 32291314 DOI: 10.1126/scisignal.aba4200] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 5.5] [Reference Citation Analysis]
398 Tian L, Lu Y, Yang T, Deng Z, Xu L, Yao W, Ma C, Li X, Zhang J, Liu Y, Wang J. aPKCι promotes gallbladder cancer tumorigenesis and gemcitabine resistance by competing with Nrf2 for binding to Keap1. Redox Biol 2019;22:101149. [PMID: 30822690 DOI: 10.1016/j.redox.2019.101149] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
399 Li B, Huang Y, Ming H, Nice EC, Xuan R, Huang C. Redox Control of the Dormant Cancer Cell Life Cycle. Cells 2021;10:2707. [PMID: 34685686 DOI: 10.3390/cells10102707] [Reference Citation Analysis]
400 Xu Y, Yang Y, Huang Y, Ma Q, Shang J, Guo J, Cao X, Wang X, Li M. Inhibition of Nrf2/HO-1 signaling pathway by Dextran Sulfate suppresses angiogenesis of Gastric Cancer. J Cancer 2021;12:1042-60. [PMID: 33442403 DOI: 10.7150/jca.50605] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
401 Zhu G, Pan C, Bei JX, Li B, Liang C, Xu Y, Fu X. Mutant p53 in Cancer Progression and Targeted Therapies. Front Oncol 2020;10:595187. [PMID: 33240819 DOI: 10.3389/fonc.2020.595187] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
402 Clavo B, Rodríguez-Esparragón F, Rodríguez-Abreu D, Martínez-Sánchez G, Llontop P, Aguiar-Bujanda D, Fernández-Pérez L, Santana-Rodríguez N. Modulation of Oxidative Stress by Ozone Therapy in the Prevention and Treatment of Chemotherapy-Induced Toxicity: Review and Prospects. Antioxidants (Basel) 2019;8:E588. [PMID: 31779159 DOI: 10.3390/antiox8120588] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 6.3] [Reference Citation Analysis]
403 Li X, Zhou L, Zhang Y, He X, Lu H, Zhang L, Tian Y, Liu X, Zheng H, Shao J, Long M. mGPDH Deficiency leads to melanoma metastasis via induced NRF2. J Cell Mol Med 2021;25:5305-15. [PMID: 33939274 DOI: 10.1111/jcmm.16542] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
404 Cerda-Troncoso C, Varas-Godoy M, Burgos PV. Pro-Tumoral Functions of Autophagy Receptors in the Modulation of Cancer Progression. Front Oncol 2020;10:619727. [PMID: 33634029 DOI: 10.3389/fonc.2020.619727] [Reference Citation Analysis]
405 Ponte LGS, Pavan ICB, Mancini MCS, da Silva LGS, Morelli AP, Severino MB, Bezerra RMN, Simabuco FM. The Hallmarks of Flavonoids in Cancer. Molecules 2021;26:2029. [PMID: 33918290 DOI: 10.3390/molecules26072029] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
406 Zhu J, Berisa M, Schwörer S, Qin W, Cross JR, Thompson CB. Transsulfuration Activity Can Support Cell Growth upon Extracellular Cysteine Limitation. Cell Metab 2019;30:865-876.e5. [PMID: 31607565 DOI: 10.1016/j.cmet.2019.09.009] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 14.0] [Reference Citation Analysis]
407 Ryu D, Lee JH, Kwak MK. NRF2 level is negatively correlated with TGF-β1-induced lung cancer motility and migration via NOX4-ROS signaling. Arch Pharm Res 2020;43:1297-310. [PMID: 33242180 DOI: 10.1007/s12272-020-01298-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
408 Singh CK, Mintie CA, Ndiaye MA, Chhabra G, Dakup PP, Ye T, Yu M, Ahmad N. Chemoprotective Effects of Dietary Grape Powder on UVB Radiation-Mediated Skin Carcinogenesis in SKH-1 Hairless Mice. J Invest Dermatol 2019;139:552-61. [PMID: 30393084 DOI: 10.1016/j.jid.2018.09.028] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
409 Fang Y, Ye J, Zhao B, Sun J, Gu N, Chen X, Ren L, Chen J, Cai X, Zhang W, Yang Y, Cao P. Formononetin ameliorates oxaliplatin-induced peripheral neuropathy via the KEAP1-NRF2-GSTP1 axis. Redox Biol 2020;36:101677. [PMID: 32823168 DOI: 10.1016/j.redox.2020.101677] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
410 Li Z, Li Y, Wang X, Yang Q. PPP2R2B downregulation is associated with immune evasion and predicts poor clinical outcomes in triple-negative breast cancer. Cancer Cell Int 2021;21:13. [PMID: 33407498 DOI: 10.1186/s12935-020-01707-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
411 Nguyen L, Dobiasch S, Schneider G, Schmid RM, Azimzadeh O, Kanev K, Buschmann D, Pfaffl MW, Bartzsch S, Schmid TE, Schilling D, Combs SE. Impact of DNA repair and reactive oxygen species levels on radioresistance in pancreatic cancer. Radiother Oncol 2021;159:265-76. [PMID: 33839203 DOI: 10.1016/j.radonc.2021.03.038] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
412 Schiavello M, Gazzano E, Bergandi L, Silvagno F, Libener R, Riganti C, Aldieri E. Identification of Redox-Sensitive Transcription Factors as Markers of Malignant Pleural Mesothelioma. Cancers (Basel) 2021;13:1138. [PMID: 33799965 DOI: 10.3390/cancers13051138] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
413 Kong Q, Deng H, Li C, Wang X, Shimoda Y, Tao S, Kato K, Zhang J, Yamanaka K, An Y. Sustained high expression of NRF2 and its target genes induces dysregulation of cellular proliferation and apoptosis is associated with arsenite-induced malignant transformation of human bronchial epithelial cells. Science of The Total Environment 2021;756:143840. [DOI: 10.1016/j.scitotenv.2020.143840] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
414 Kang SW, Lee S, Lee JHS. Cancer-Associated Function of 2-Cys Peroxiredoxin Subtypes as a Survival Gatekeeper. Antioxidants (Basel) 2018;7:E161. [PMID: 30423872 DOI: 10.3390/antiox7110161] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
415 Wan ZH, Jiang TY, Shi YY, Pan YF, Lin YK, Ma YH, Yang C, Feng XF, Huang LF, Kong XN, Ding ZW, Tan YX, Dong LW, Wang HY. RPB5-Mediating Protein Promotes Cholangiocarcinoma Tumorigenesis and Drug Resistance by Competing With NRF2 for KEAP1 Binding. Hepatology 2020;71:2005-22. [PMID: 31541481 DOI: 10.1002/hep.30962] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
416 Ong AJ, Saeidi S, Chi NHK, Kim SJ, Kim DH, Kim SH, Park SA, Cha YN, Na HK, Surh YJ. The positive feedback loop between Nrf2 and phosphogluconate dehydrogenase stimulates proliferation and clonogenicity of human hepatoma cells. Free Radic Res 2020;54:906-17. [PMID: 32336239 DOI: 10.1080/10715762.2020.1761547] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
417 Sánchez-martín P, Komatsu M. Physiological Stress Response by Selective Autophagy. Journal of Molecular Biology 2020;432:53-62. [DOI: 10.1016/j.jmb.2019.06.013] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
418 Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021;. [PMID: 33514910 DOI: 10.1038/s41571-020-00462-0] [Cited by in Crossref: 48] [Cited by in F6Publishing: 68] [Article Influence: 48.0] [Reference Citation Analysis]
419 Mou Y, Wen S, Li YX, Gao XX, Zhang X, Jiang ZY. Recent progress in Keap1-Nrf2 protein-protein interaction inhibitors. Eur J Med Chem 2020;202:112532. [PMID: 32668381 DOI: 10.1016/j.ejmech.2020.112532] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
420 Li H, Zhang Q, Li W, Li H, Bao J, Yang C, Wang A, Wei J, Chen S, Jin H. Role of Nrf2 in the antioxidation and oxidative stress induced developmental toxicity of honokiol in zebrafish. Toxicology and Applied Pharmacology 2019;373:48-61. [DOI: 10.1016/j.taap.2019.04.016] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
421 Chen YS, Chang HS, Hsiao HH, Chen YF, Kuo YP, Yen FL, Yen CH. Identification of Beilschmiedia tsangii Root Extract as a Liver Cancer Cell-Normal Keratinocyte Dual-Selective NRF2 Regulator. Antioxidants (Basel) 2021;10:544. [PMID: 33915987 DOI: 10.3390/antiox10040544] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
422 Zheng F, Gonçalves FM, Abiko Y, Li H, Kumagai Y, Aschner M. Redox toxicology of environmental chemicals causing oxidative stress. Redox Biol 2020;34:101475. [PMID: 32336668 DOI: 10.1016/j.redox.2020.101475] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 14.0] [Reference Citation Analysis]
423 He F, Antonucci L, Karin M. NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis 2020;41:405-16. [PMID: 32347301 DOI: 10.1093/carcin/bgaa039] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]