BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Patil PO, Pandey GR, Patil AG, Borse VB, Deshmukh PK, Patil DR, Tade RS, Nangare SN, Khan ZG, Patil AM, More MP, Veerapandian M, Bari SB. Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review. Biosens Bioelectron 2019;139:111324. [PMID: 31121435 DOI: 10.1016/j.bios.2019.111324] [Cited by in Crossref: 95] [Cited by in F6Publishing: 75] [Article Influence: 31.7] [Reference Citation Analysis]
Number Citing Articles
1 Bahri M, Gebre SH, Elaguech MA, Dajan FT, Sendeku MG, Tlili C, Wang D. Recent advances in chemical vapour deposition techniques for graphene-based nanoarchitectures: From synthesis to contemporary applications. Coordination Chemistry Reviews 2023;475:214910. [DOI: 10.1016/j.ccr.2022.214910] [Reference Citation Analysis]
2 Zahmatkesh S, Ni B, Klemeš JJ, Bokhari A, Hajiaghaei-keshteli M. Carbon quantum dots-Ag nanoparticle membrane for preventing emerging contaminants in oil produced water. Journal of Water Process Engineering 2022;50:103309. [DOI: 10.1016/j.jwpe.2022.103309] [Reference Citation Analysis]
3 Preethi M, Roy L, Lahkar S, Borse V. Outlook of various diagnostics and nanodiagnostic techniques for COVID-19. Biosensors and Bioelectronics: X 2022. [DOI: 10.1016/j.biosx.2022.100276] [Reference Citation Analysis]
4 Xiao W, Li B, Yan J, Wang L, Huang X, Gao J. Three dimensional graphene composites: preparation, morphology and their multi-functional applications. Composites Part A: Applied Science and Manufacturing 2022. [DOI: 10.1016/j.compositesa.2022.107335] [Reference Citation Analysis]
5 Nangare SN, Khan ZG, Patil AG, Patil PO. Design of monoelemental based two dimensional nanoarchitectures for therapeutic, chemical sensing and in vitro diagnosis applications: A case of borophene. Journal of Molecular Structure 2022;1265:133387. [DOI: 10.1016/j.molstruc.2022.133387] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Nangare S, Patil S, Patil S, Khan Z, Patil A, Patil P. Design of graphene quantum dots decorated MnO2 nanosheet based fluorescence turn “On-Off-On” nanoprobe for highly sensitive detection of lactoferrin. Inorganic Chemistry Communications 2022;143:109751. [DOI: 10.1016/j.inoche.2022.109751] [Reference Citation Analysis]
7 Kushwah H, Kaur Anand J, Sachdeva A. Solutions of electric flux lines in transverse-magnetic surface plasmon modes at metal-dielectric interface. Materials Today: Proceedings 2022. [DOI: 10.1016/j.matpr.2022.08.422] [Reference Citation Analysis]
8 Zain HA, Batumalay M, Harith Z, Rahim HRA, Harun SW. A Graphene/Gold-Coated Surface Plasmon Sensor for Sodium Nitrate Detection. Photonics 2022;9:588. [DOI: 10.3390/photonics9080588] [Reference Citation Analysis]
9 Zhang K, Tang Y, Chen Q, Liu Y. The Screening of Therapeutic Peptides for Anti-Inflammation through Phage Display Technology. IJMS 2022;23:8554. [DOI: 10.3390/ijms23158554] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Liu W, Liu Z, Zhang Y, Li S, Zhang Y, Yang X, Zhang J, Yuan L. Specialty optical fibers and 2D materials for sensitivity enhancement of fiber optic SPR sensors: A review. Optics & Laser Technology 2022;152:108167. [DOI: 10.1016/j.optlastec.2022.108167] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Patil U, Nerkar D, Paliwal N. Visible active enhanced adsorptive performance of the green synthesized Sulphur and Nitrogen codoped reduced graphene Oxide towards Degradation of reactive blue 4. Inorganic Chemistry Communications 2022;142:109636. [DOI: 10.1016/j.inoche.2022.109636] [Reference Citation Analysis]
12 Jia B, Chen J, Zhou J, Zeng Y, Ho H, Shao Y. Passively and actively enhanced surface plasmon resonance sensing strategies towards single molecular detection. Nano Res . [DOI: 10.1007/s12274-022-4515-z] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
13 Mulyanti B, Nugroho HS, Wulandari C, Rahmawati Y, Hasanah L, Hamidah I, Pawinanto RE, Majlis BY. SPR-Based Sensor for the Early Detection or Monitoring of Kidney Problems. Int J Biomater 2022;2022:9135172. [PMID: 35755268 DOI: 10.1155/2022/9135172] [Reference Citation Analysis]
14 Nangare S, Patil P. Chitosan mediated layer-by-layer assembly based graphene oxide decorated surface plasmon resonance biosensor for highly sensitive detection of β-amyloid. Int J Biol Macromol 2022:S0141-8130(22)01343-5. [PMID: 35752342 DOI: 10.1016/j.ijbiomac.2022.06.129] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Zhuo L, Tang J, Zhu W, Zheng H, Guan H, Lu H, Chen Y, Luo Y, Zhang J, Zhong Y, Yu J, Chen Z. Side Polished Fiber: A Versatile Platform for Compact Fiber Devices and Sensors. Photonic Sens 2023;13. [DOI: 10.1007/s13320-022-0661-x] [Reference Citation Analysis]
16 Shu C, Zhang N, Gao Y, An J, Wen X, Ma W, Liu Z, Sun B, Li S. Multifunctional Sensors Based on Doped Indium Oxide Nanocrystals. ACS Appl Mater Interfaces 2022;14:24648-58. [PMID: 35581001 DOI: 10.1021/acsami.2c05280] [Reference Citation Analysis]
17 Yang W, Jiang M, Jiang S, Du L, Cheng Y, Li P, Wang C. Design and fabrication of Gr/Ag-coated tilted grating sensor for ultra-sensitive detection of DNA hybridization. Sensors and Actuators B: Chemical 2022;359:131587. [DOI: 10.1016/j.snb.2022.131587] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Roy L, Buragohain P, Borse V. Strategies for sensitivity enhancement of point-of-care devices. Biosensors and Bioelectronics: X 2022;10:100098. [DOI: 10.1016/j.biosx.2021.100098] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Long S, Wang E, Wu M, Zhu H, Xu N, Wang Y, Cao J. Sensing absorptive fluids with backside illuminated grating coupled SPR sensor fabricated by nanoimprint technology. Sensors and Actuators A: Physical 2022;337:113416. [DOI: 10.1016/j.sna.2022.113416] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Dai Z, Xu X, Wang Y, Li M, Zhou K, Zhang L, Tan Y. Surface plasmon resonance biosensor with laser heterodyne feedback for highly-sensitive and rapid detection of COVID-19 spike antigen. Biosens Bioelectron 2022;206:114163. [PMID: 35272216 DOI: 10.1016/j.bios.2022.114163] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
21 Chen S, Lin Z, Bai G, Lin C. Comparative study on sensitivity enhancement of a graphene based nearly guided-wave surface plasmon resonance biosensor optimized using genetic algorithm in the visible region. Opt Quant Electron 2022;54. [DOI: 10.1007/s11082-022-03584-0] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Khan ZG, Patil MR, Nangare SN, Patil AG, Boddu SHS, Tade RS, Patil PO. Surface nanoarchitectured metal–organic frameworks-based sensor for reduced glutathione sensing: a review. J Nanostruct Chem. [DOI: 10.1007/s40097-022-00480-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Anh NT, Dinh NX, Van Tuan H, Doan MQ, Anh NH, Khi NT, Trang VT, Tri DQ, Le A. Eco-friendly copper nanomaterials-based dual-mode optical nanosensors for ultrasensitive trace determination of amoxicillin antibiotics residue in tap water samples. Materials Research Bulletin 2022;147:111649. [DOI: 10.1016/j.materresbull.2021.111649] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Chen Y, Chen Y, Shi W, Hu S, Huang Q, Liu GS, Shi J, Chen L, Azeman NH, Ashrif A Bakar A, Luo Y, Chen Z. MoS2-nanoflower enhanced programmable adsorption/desorption plasmonic detection for bipolar-molecules with high sensitivity. Biosens Bioelectron 2021;198:113787. [PMID: 34864241 DOI: 10.1016/j.bios.2021.113787] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Zhou Z, Yang Z, Xia L, Zhang H. Construction of an enzyme-based all-fiber SPR biosensor for detection of enantiomers. Biosens Bioelectron 2022;198:113836. [PMID: 34847363 DOI: 10.1016/j.bios.2021.113836] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
26 Azzouz A, Hejji L, Kim KH, Kukkar D, Souhail B, Bhardwaj N, Brown RJC, Zhang W. Advances in surface plasmon resonance-based biosensor technologies for cancer biomarker detection. Biosens Bioelectron 2022;197:113767. [PMID: 34768064 DOI: 10.1016/j.bios.2021.113767] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 18.0] [Reference Citation Analysis]
27 Shang Y, Xiang X, Ye Q, Wu Q, Zhang J, Lin J. Advances in nanomaterial-based microfluidic platforms for on-site detection of foodborne bacteria. TrAC Trends in Analytical Chemistry 2022;147:116509. [DOI: 10.1016/j.trac.2021.116509] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
28 Meng F, Aihaiti A, Li X, Zhang W, Qin Y, Zhu N, Zhang M. Functional graphene paper from smart building to sensor application. Biosensors and Bioelectronics 2022. [DOI: 10.1016/j.bios.2022.114031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Salahandish R, Haghayegh F, Ayala-charca G, Hyun JE, Khalghollah M, Zare A, Far B, Berenger BM, Niu YD, Ghafar-zadeh E, Sanati-nezhad A. Bi-ECDAQ: An electrochemical dual-immuno-biosensor accompanied by a customized bi-potentiostat for clinical detection of SARS-CoV-2 Nucleocapsid proteins. Biosensors and Bioelectronics 2022. [DOI: 10.1016/j.bios.2022.114018] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
30 Bhagat B, Mehta K, Sinha TK, Baruah PK, Mukherjee K. Recent Advances and Opportunities of Plasmonic Sensors. Lecture Notes in Nanoscale Science and Technology 2022. [DOI: 10.1007/978-3-030-87544-2_12] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Suwanwong Y, Boonpangrak S. Molecularly imprinted polymers for the extraction and determination of water-soluble vitamins: A review from 2001 to 2020. European Polymer Journal 2021;161:110835. [DOI: 10.1016/j.eurpolymj.2021.110835] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
32 Nouri A, Adelpour Z, Sadeghi M. A theoretical study of grating effects on the performance of surface plasmon resonance sensing surface. Phys Scr 2021;96:125519. [DOI: 10.1088/1402-4896/ac2f7c] [Reference Citation Analysis]
33 Usha SP, Manoharan H, Deshmukh R, Álvarez-Diduk R, Calucho E, Sai VVR, Merkoçi A. Attomolar analyte sensing techniques (AttoSens): a review on a decade of progress on chemical and biosensing nanoplatforms. Chem Soc Rev 2021;50:13012-89. [PMID: 34673860 DOI: 10.1039/d1cs00137j] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
34 Han Q, Pang J, Li Y, Sun B, Ibarlucea B, Liu X, Gemming T, Cheng Q, Zhang S, Liu H, Wang J, Zhou W, Cuniberti G, Rümmeli MH. Graphene Biodevices for Early Disease Diagnosis Based on Biomarker Detection. ACS Sens 2021;6:3841-81. [PMID: 34696585 DOI: 10.1021/acssensors.1c01172] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]
35 Ly NH, Son SJ, Kim HH, Joo S. Recent Developments in Plasmonic Sensors of Phenol and Its Derivatives. Applied Sciences 2021;11:10519. [DOI: 10.3390/app112210519] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
36 Tran BN, Bhattacharyya S, Yao Y, Agarwal V, Zetterlund PB. In Situ Surfactant Effects on Polymer/Reduced Graphene Oxide Nanocomposite Films: Implications for Coating and Biomedical Applications. ACS Appl Nano Mater 2021;4:12461-71. [DOI: 10.1021/acsanm.1c02950] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Muthu Meenakshi M, Annasamy G, Sankaranarayanan M. Green synthesis of graphene gold nanocomposites for optical sensing of ferritin biomarker. Materials Letters 2021;303:130446. [DOI: 10.1016/j.matlet.2021.130446] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Fang L, Jia M, Zhao H, Kang L, Shi L, Zhou L, Kong W. Molecularly imprinted polymer-based optical sensors for pesticides in foods: Recent advances and future trends. Trends in Food Science & Technology 2021;116:387-404. [DOI: 10.1016/j.tifs.2021.07.039] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 15.0] [Reference Citation Analysis]
39 Javadian-Saraf A, Hosseini E, Wiltshire BD, Zarifi MH, Arjmand M. Graphene oxide/polyaniline-based microwave split-ring resonator: A versatile platform towards ammonia sensing. J Hazard Mater 2021;418:126283. [PMID: 34116273 DOI: 10.1016/j.jhazmat.2021.126283] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 11.0] [Reference Citation Analysis]
40 Yuan Z, Wang L, Chen J, Su W, Li A, Su G, Liu P, Zhou X. Electrochemical strategies for the detection of cTnI. Analyst 2021;146:5474-95. [PMID: 34515706 DOI: 10.1039/d1an00808k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
41 Nangare SN, Landge S, Patil AG, Tade RS, Deshmukh PK, Patil PO. Green synthesis of Fe-doped Ag-loaded reduced graphene oxide ternary nanocomposite for efficient photocatalytic degradation of toxic dyes. Adv Nat Sci: Nanosci Nanotechnol 2021;12:035004. [DOI: 10.1088/2043-6262/ac204d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
42 Yu H, Guo W, Lu X, Xu H, Yang Q, Tan J, Zhang W. Reduced graphene oxide nanocomposite based electrochemical biosensors for monitoring foodborne pathogenic bacteria: A review. Food Control 2021;127:108117. [DOI: 10.1016/j.foodcont.2021.108117] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 25.0] [Reference Citation Analysis]
43 Abdullah H, Ahmed K, Alam MS, Rashed ANZ, Mitu SA, Al-zahrani FA, Anowar Kabir M. High sensitivity refractive index sensor based on triple layer MgF2-gold-MgF2 coated nano metal films photonic crystal fiber. Optik 2021;241:166950. [DOI: 10.1016/j.ijleo.2021.166950] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
44 Báez DF, Brito TP, Espinoza LC, Méndez-torres AM, Sierpe R, Sierra-rosales P, Venegas CJ, Yáñez C, Bollo S. Graphene-based sensors for small molecule determination in real samples. Microchemical Journal 2021;167:106303. [DOI: 10.1016/j.microc.2021.106303] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
45 Liu N, Wang S, Cheng Q, Pang B, Lv J. Characteristics of Refractive-Index Sensor in Graphene-Modified Long-Range Surface Exciton-Polaritons. Plasmonics 2021;16:1079-1088. [DOI: 10.1007/s11468-020-01366-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Thiruganasambanthan T, Thiagamani SMK, Siengchin S. Synthesis and characterization of graphene derived from biomass for optical sensing of milk proteins. Biomass Conv Bioref 2021. [DOI: 10.1007/s13399-021-01766-6] [Reference Citation Analysis]
47 Gerasimenko AY, Kuksin AV, Shaman YP, Kitsyuk EP, Fedorova YO, Sysa AV, Pavlov AA, Glukhova OE. Electrically Conductive Networks from Hybrids of Carbon Nanotubes and Graphene Created by Laser Radiation. Nanomaterials (Basel) 2021;11:1875. [PMID: 34443706 DOI: 10.3390/nano11081875] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
48 Chang CC. Recent Advancements in Aptamer-Based Surface Plasmon Resonance Biosensing Strategies. Biosensors (Basel) 2021;11:233. [PMID: 34356703 DOI: 10.3390/bios11070233] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
49 Budinski V, Donlagic D. All Silica Micro-Fluidic Flow Injection Sensor System for Colorimetric Chemical Sensing. Sensors (Basel) 2021;21:4082. [PMID: 34198500 DOI: 10.3390/s21124082] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
50 Moznuzzaman M, Khan I, Islam MR. Nano-layered surface plasmon resonance-based highly sensitive biosensor for virus detection: A theoretical approach to detect SARS-CoV-2. AIP Adv 2021;11:065023. [PMID: 34168915 DOI: 10.1063/5.0046574] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
51 Nangare S, Patil P. Black Phosphorus Nanostructure Based Highly Sensitive and Selective Surface Plasmon Resonance Sensor for Biological and Chemical Sensing: A Review. Crit Rev Anal Chem 2021;:1-26. [PMID: 34053388 DOI: 10.1080/10408347.2021.1927669] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
52 Drozd M, Karoń S, Malinowska E. Recent Advancements in Receptor Layer Engineering for Applications in SPR-Based Immunodiagnostics. Sensors (Basel) 2021;21:3781. [PMID: 34072572 DOI: 10.3390/s21113781] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
53 Shamim Anower M, Mahabubur Rahman M, Saifur Rahman M. Hybrid Heterostructures for SPR Biosensor. Biosensors - Current and Novel Strategies for Biosensing 2021. [DOI: 10.5772/intechopen.94932] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
54 Kaur J, Srivastava R, Borse V. Recent advances in point-of-care diagnostics for oral cancer. Biosens Bioelectron 2021;178:112995. [PMID: 33515983 DOI: 10.1016/j.bios.2021.112995] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
55 Mashrafi M, Kamrunnahar QM, Haider F, Haider R, Aoni RA, Ahmed R. Bio-inspired butterfly core-shaped photonic crystal fiber-based refractive index sensor. OSA Continuum 2021;4:1179. [DOI: 10.1364/osac.416953] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
56 Electrical Properties and Sensitivity of SnO2 Nanostructures to Organic Compounds. Nanosistemi, Nanomateriali, Nanotehnologii 2021;19. [DOI: 10.15407/nnn.19.01.053] [Reference Citation Analysis]
57 Amin M, Siddiqui O, Abutarboush H, Farhat M, Ramzan R. A THz graphene metasurface for polarization selective virus sensing. Carbon N Y 2021;176:580-91. [PMID: 33612849 DOI: 10.1016/j.carbon.2021.02.051] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 31.0] [Reference Citation Analysis]
58 Tade RS, Nangare SN, Patil PO. Fundamental aspects of graphene and its biosensing applications. Funct Compos Struct 2021;3:012001. [DOI: 10.1088/2631-6331/abdab6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
59 Alexaki K, Giust D, Kyriazi M, El-sagheer AH, Brown T, Muskens OL, Kanaras AG. A DNA sensor based on upconversion nanoparticles and two-dimensional dichalcogenide materials. Front Chem Sci Eng 2021;15:935-43. [DOI: 10.1007/s11705-020-2023-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
60 Wang C, Liu M, Wang Z, Li S, Deng Y, He N. Point-of-care diagnostics for infectious diseases: From methods to devices. Nano Today 2021;37:101092. [PMID: 33584847 DOI: 10.1016/j.nantod.2021.101092] [Cited by in Crossref: 98] [Cited by in F6Publishing: 70] [Article Influence: 98.0] [Reference Citation Analysis]
61 Ying Y, Cheng S, Hu N, Gao Z, Guo X, Si G. Temperature and humidity sensor based on a double D-shaped optical fiber with incorporated toluene and polyethylene. Instrumentation Science & Technology 2021;49:404-15. [DOI: 10.1080/10739149.2021.1874978] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
62 Nekrasov N, Yakunina N, Pushkarev AV, Orlov AV, Gadjanski I, Pesquera A, Centeno A, Zurutuza A, Nikitin PI, Bobrinetskiy I. Spectral-Phase Interferometry Detection of Ochratoxin A via Aptamer-Functionalized Graphene Coated Glass. Nanomaterials (Basel) 2021;11:226. [PMID: 33467115 DOI: 10.3390/nano11010226] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
63 Nangare S, Patil P. Nanoarchitectured Bioconjugates and Bioreceptors Mediated Surface Plasmon Resonance Biosensor for In Vitro Diagnosis of Alzheimer’s Disease: Development and Future Prospects. Critical Reviews in Analytical Chemistry. [DOI: 10.1080/10408347.2020.1864716] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
64 Gomes JCM, Souza LC, Oliveira LC. SmartSPR sensor: Machine learning approaches to create intelligent surface plasmon based sensors. Biosensors and Bioelectronics 2021;172:112760. [DOI: 10.1016/j.bios.2020.112760] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 15.0] [Reference Citation Analysis]
65 Mele G, Del Sole R, Lü X. Applications of TiO2 in sensor devices. Titanium Dioxide (Tio₂) and Its Applications 2021. [DOI: 10.1016/b978-0-12-819960-2.00004-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
66 Sousa RPCL, Figueira RB, Costa SPG, M Raposo MM. Optical Fiber Sensors for Biocide Monitoring: Examples, Transduction Materials, and Prospects. ACS Sens 2020;5:3678-709. [PMID: 33226221 DOI: 10.1021/acssensors.0c01615] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
67 Nangare SN, Patil PO. Affinity-Based Nanoarchitectured Biotransducer for Sensitivity Enhancement of Surface Plasmon Resonance Sensors for In Vitro Diagnosis: A Review. ACS Biomater Sci Eng 2021;7:2-30. [DOI: 10.1021/acsbiomaterials.0c01203] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 12.0] [Reference Citation Analysis]
68 Zhu H, Dong Y, Zhang P, Hu X, Zhang H, Zhao H, Wang E, Jin Y, Yang X. Silver transfer based plasmonic nanoprobe for highly sensitive detection of hydrogen sulfide. Microchemical Journal 2020;159:105526. [DOI: 10.1016/j.microc.2020.105526] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
69 Long S, Cao J, Geng S, Xu N, Qian W, Gao S. Optimization of plasmonic sensors based on sinusoidal and rectangular gratings. Optics Communications 2020;476:126310. [DOI: 10.1016/j.optcom.2020.126310] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
70 Jin X, Feng C, Ponnamma D, Yi Z, Parameswaranpillai J, Thomas S, Salim NV. Review on exploration of graphene in the design and engineering of smart sensors, actuators and soft robotics. Chemical Engineering Journal Advances 2020;4:100034. [DOI: 10.1016/j.ceja.2020.100034] [Cited by in Crossref: 23] [Cited by in F6Publishing: 11] [Article Influence: 11.5] [Reference Citation Analysis]
71 Rezk MY, Sharma J, Gartia MR. Nanomaterial-Based CO2 Sensors. Nanomaterials (Basel) 2020;10:E2251. [PMID: 33202957 DOI: 10.3390/nano10112251] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
72 Singh H, Bamrah A, Bhardwaj SK, Deep A, Khatri M, Kim KH, Bhardwaj N. Nanomaterial-based fluorescent sensors for the detection of lead ions. J Hazard Mater 2021;407:124379. [PMID: 33309138 DOI: 10.1016/j.jhazmat.2020.124379] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 18.0] [Reference Citation Analysis]
73 Saylan Y, Akgönüllü S, Denizli A. Plasmonic Sensors for Monitoring Biological and Chemical Threat Agents. Biosensors (Basel) 2020;10:E142. [PMID: 33076308 DOI: 10.3390/bios10100142] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
74 Qin L, Liu W, Liu X, Yang Y, Zhang L. A review of nano-carbon based molecularly imprinted polymer adsorbents and their adsorption mechanism. New Carbon Materials 2020;35:459-85. [DOI: 10.1016/s1872-5805(20)60503-0] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
75 Mudusu D, Nandanapalli KR, Lee S, Hahn YB. Recent advances in graphene monolayers growth and their biological applications: A review. Adv Colloid Interface Sci 2020;283:102225. [PMID: 32777519 DOI: 10.1016/j.cis.2020.102225] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
76 Wang B, Park B. Immunoassay Biosensing of Foodborne Pathogens with Surface Plasmon Resonance Imaging: A Review. J Agric Food Chem 2020;68:12927-39. [DOI: 10.1021/acs.jafc.0c02295] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
77 More MP, Deshmukh PK. Computational studies and biosensory applications of graphene-based nanomaterials: a state-of-the-art review. Nanotechnology 2020;31:432001. [DOI: 10.1088/1361-6528/ab996e] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
78 Lu D, Li W, Zhou H, Cao X, Zhu Y, Wang K, Luo H, Li J, Zhang X, He M, Xu L, Liu J. Waveguide-Coupled Surface Plasmon Resonance Sensor for Both Liquid and Gas Detections. Plasmonics 2020;15:1123-1131. [DOI: 10.1007/s11468-020-01123-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
79 Bouzari N, Amjad JM, Mohammadkhani R, Jahanshahi P. Introducing S-RILS and D-RILS as refractive index limited optical biosensors in multiple nanolayers. Mater Res Express 2020;7:086201. [DOI: 10.1088/2053-1591/abb059] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
80 Brill AR, Kuntumalla MK, de Ruiter G, Koren E. Formation of Highly Ordered Self-Assembled Monolayers on Two-Dimensional Materials via Noncovalent Functionalization. ACS Appl Mater Interfaces 2020;12:33941-9. [PMID: 32589020 DOI: 10.1021/acsami.0c09722] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
81 Jiang Z, Feng B, Xu J, Qing T, Zhang P, Qing Z. Graphene biosensors for bacterial and viral pathogens. Biosens Bioelectron 2020;166:112471. [PMID: 32777726 DOI: 10.1016/j.bios.2020.112471] [Cited by in Crossref: 70] [Cited by in F6Publishing: 52] [Article Influence: 35.0] [Reference Citation Analysis]
82 Kou J, Nguyen EP, Merkoçi A, Guo Z. 2-dimensional materials-based electrical/optical platforms for smart on-off diagnostics applications. 2D Mater 2020;7:032001. [DOI: 10.1088/2053-1583/ab896a] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
83 Lebyedyeva T, Shpylovyy P, Frolov Y, Budnyk M. Development and manufacture of high-sensitivity SPR sensors based on Au/niobium oxide thin-film structures. 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO) 2020. [DOI: 10.1109/elnano50318.2020.9088900] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
84 Stanković V, Đurđić S, Ognjanović M, Antić B, Kalcher K, Mutić J, Stanković DM. Anti-human albumin monoclonal antibody immobilized on EDC-NHS functionalized carboxylic graphene/AuNPs composite as promising electrochemical HSA immunosensor. Journal of Electroanalytical Chemistry 2020;860:113928. [DOI: 10.1016/j.jelechem.2020.113928] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
85 Yang M, Luo L, Chen G. Microfluidic synthesis of ultrasmall Co nanoparticles over reduced graphene oxide and their catalytic properties. AIChE J 2020;66. [DOI: 10.1002/aic.16950] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
86 Jiang Y, Xiao X, Li C, Luo Y, Chen S, Shi G, Han K, Gu H. Facile Ratiometric Electrochemical Sensor for In Vivo/Online Repetitive Measurements of Cerebral Ascorbic Acid in Brain Microdiaysate. Anal Chem 2020;92:3981-9. [PMID: 32037799 DOI: 10.1021/acs.analchem.9b05484] [Cited by in Crossref: 27] [Cited by in F6Publishing: 32] [Article Influence: 13.5] [Reference Citation Analysis]
87 Wu Q, Li N, Wang Y, Xu Y, Wu J, Jia G, Ji F, Fang X, Chen F, Cui X. Ultrasensitive and Selective Determination of Carcinoembryonic Antigen Using Multifunctional Ultrathin Amino-Functionalized Ti 3 C 2 -MXene Nanosheets. Anal Chem 2020;92:3354-60. [DOI: 10.1021/acs.analchem.9b05372] [Cited by in Crossref: 57] [Cited by in F6Publishing: 65] [Article Influence: 28.5] [Reference Citation Analysis]
88 Bai Y, Xu T, Zhang X. Graphene-Based Biosensors for Detection of Biomarkers. Micromachines (Basel) 2020;11:E60. [PMID: 31947894 DOI: 10.3390/mi11010060] [Cited by in Crossref: 71] [Cited by in F6Publishing: 75] [Article Influence: 35.5] [Reference Citation Analysis]
89 Konwar AN, Borse V. Current status of point-of-care diagnostic devices in the Indian healthcare system with an update on COVID-19 pandemic. Sensors International 2020;1:100015. [DOI: 10.1016/j.sintl.2020.100015] [Cited by in Crossref: 34] [Cited by in F6Publishing: 38] [Article Influence: 17.0] [Reference Citation Analysis]
90 Borse VB, Konwar AN, Srivastava R. Nanobiotechnology approaches for miniaturized diagnostics. Handbook on Miniaturization in Analytical Chemistry 2020. [DOI: 10.1016/b978-0-12-819763-9.00013-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
91 Kou R, Kobayashi Y, Inoue S, Tsuchizawa T, Ueno Y, Suzuki S, Hibino H, Yamamoto T, Nakajima H, Yamada K. Dopamine detection on activated reaction field consisting of graphene-integrated silicon photonic cavity. Opt Express 2019;27:32058-68. [PMID: 31684425 DOI: 10.1364/OE.27.032058] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
92 Mahmoudpour M, Ezzati Nazhad Dolatabadi J, Torbati M, Pirpour Tazehkand A, Homayouni-rad A, de la Guardia M. Nanomaterials and new biorecognition molecules based surface plasmon resonance biosensors for mycotoxin detection. Biosensors and Bioelectronics 2019;143:111603. [DOI: 10.1016/j.bios.2019.111603] [Cited by in Crossref: 63] [Cited by in F6Publishing: 68] [Article Influence: 21.0] [Reference Citation Analysis]