BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Han X, Xu Y, Geranpayehvaghei M, Anderson GJ, Li Y, Nie G. Emerging nanomedicines for anti-stromal therapy against desmoplastic tumors. Biomaterials 2020;232:119745. [DOI: 10.1016/j.biomaterials.2019.119745] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
Number Citing Articles
1 Tang H, Xue Y, Li B, Xu X, Zhang F, Guo J, Li Q, Yuan T, Chen Y, Pan Y, Ping Y, Li D. Membrane-camouflaged supramolecular nanoparticles for co-delivery of chemotherapeutic and molecular-targeted drugs with siRNA against patient-derived pancreatic carcinoma. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.02.007] [Reference Citation Analysis]
2 Brundel DH, Feeney OM, Nowell CJ, Suys EJ, Gracia G, Kaminskas LM, McIntosh MM, Kang DW, Porter CJ. Depolymerization of hyaluronan using PEGylated human recombinant hyaluronidase promotes nanoparticle tumor penetration. Nanomedicine (Lond) 2021;16:275-92. [PMID: 33560142 DOI: 10.2217/nnm-2020-0433] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Wang L, Liu Z, Zhou Q, Gu S, Liu X, Huang J, Jiang H, Wang H, Cao L, Sun J, Shen Y, Meng H, Liu X. Prodrug nanoparticles rationally integrating stroma modification and chemotherapy to treat metastatic pancreatic cancer. Biomaterials 2021;278:121176. [PMID: 34656882 DOI: 10.1016/j.biomaterials.2021.121176] [Reference Citation Analysis]
4 Noack AK, Lucas H, Chytil P, Etrych T, Mäder K, Mueller T. Intratumoral Distribution and pH-Dependent Drug Release of High Molecular Weight HPMA Copolymer Drug Conjugates Strongly Depend on Specific Tumor Substructure and Microenvironment. Int J Mol Sci 2020;21:E6029. [PMID: 32825790 DOI: 10.3390/ijms21176029] [Reference Citation Analysis]
5 Guo Y, Liu Y, Wu W, Ling D, Zhang Q, Zhao P, Hu X. Indoleamine 2,3-dioxygenase (Ido) inhibitors and their nanomedicines for cancer immunotherapy. Biomaterials 2021;276:121018. [PMID: 34284200 DOI: 10.1016/j.biomaterials.2021.121018] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Chen X, Jia F, Li Y, Deng Y, Huang Y, Liu W, Jin Q, Ji J. Nitric oxide-induced stromal depletion for improved nanoparticle penetration in pancreatic cancer treatment. Biomaterials 2020;246:119999. [PMID: 32247201 DOI: 10.1016/j.biomaterials.2020.119999] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 10.5] [Reference Citation Analysis]
7 Zhou Y, Chen X, Cao J, Gao H. Overcoming the biological barriers in the tumor microenvironment for improving drug delivery and efficacy. J Mater Chem B 2020;8:6765-81. [PMID: 32315375 DOI: 10.1039/d0tb00649a] [Cited by in Crossref: 34] [Cited by in F6Publishing: 16] [Article Influence: 17.0] [Reference Citation Analysis]
8 Wang Y, Gao Z, Du X, Chen S, Zhang W, Wang J, Li H, He X, Cao J, Wang J. Co-inhibition of the TGF-β pathway and the PD-L1 checkpoint by pH-responsive clustered nanoparticles for pancreatic cancer microenvironment regulation and anti-tumor immunotherapy. Biomater Sci 2020;8:5121-32. [PMID: 32820750 DOI: 10.1039/d0bm00916d] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 12.0] [Reference Citation Analysis]
9 Ferrara B, Pignatelli C, Cossutta M, Citro A, Courty J, Piemonti L. The Extracellular Matrix in Pancreatic Cancer: Description of a Complex Network and Promising Therapeutic Options. Cancers (Basel) 2021;13:4442. [PMID: 34503252 DOI: 10.3390/cancers13174442] [Reference Citation Analysis]
10 Liu Y, Zhou J, Li Q, Li L, Jia Y, Geng F, Zhou J, Yin T. Tumor microenvironment remodeling-based penetration strategies to amplify nanodrug accessibility to tumor parenchyma. Adv Drug Deliv Rev 2021;172:80-103. [PMID: 33705874 DOI: 10.1016/j.addr.2021.02.019] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
11 Ren J, Shu X, Wang Y, Wang D, Wu G, Zhang X, Jin Q, Liu J, Wu Z, Xu Z, Li C, Li H. Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2020. Chinese Chemical Letters 2021. [DOI: 10.1016/j.cclet.2021.10.052] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
12 Wang J, Wu Q, Wang Y, Xiang L, Feng J, Zhou Z, Fu Q, Zhang L. Collagenase-loaded pH-sensitive nanocarriers efficiently remodeled tumor stroma matrixes and improved the enrichment of nanomedicines. Nanoscale 2021;13:9402-14. [PMID: 34002757 DOI: 10.1039/d1nr00950h] [Reference Citation Analysis]
13 Li YJ, Wu JY, Hu XB, Ding T, Tang T, Xiang DX. Biomimetic Liposome with Surface-Bound Elastase for Enhanced Tumor Penetration and Chemo-Immumotherapy. Adv Healthc Mater 2021;10:e2100794. [PMID: 34160137 DOI: 10.1002/adhm.202100794] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 Loo YS, Zahid NI, Madheswaran T, Mat Azmi ID. Recent advances in the development of multifunctional lipid-based nanoparticles for co-delivery, combination treatment strategies, and theranostics in breast and lung cancer. Journal of Drug Delivery Science and Technology 2022;71:103300. [DOI: 10.1016/j.jddst.2022.103300] [Reference Citation Analysis]
15 Wang J, Zhu M, Nie G. Biomembrane-based nanostructures for cancer targeting and therapy: From synthetic liposomes to natural biomembranes and membrane-vesicles. Adv Drug Deliv Rev 2021;178:113974. [PMID: 34530015 DOI: 10.1016/j.addr.2021.113974] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
16 Hernandez-Oller L, Seras-Franzoso J, Andrade F, Rafael D, Abasolo I, Gener P, Schwartz S Jr. Extracellular Vesicles as Drug Delivery Systems in Cancer. Pharmaceutics 2020;12:E1146. [PMID: 33256036 DOI: 10.3390/pharmaceutics12121146] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
17 Oroojalian F, Beygi M, Baradaran B, Mokhtarzadeh A, Shahbazi MA. Immune Cell Membrane-Coated Biomimetic Nanoparticles for Targeted Cancer Therapy. Small 2021;17:e2006484. [PMID: 33577127 DOI: 10.1002/smll.202006484] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
18 Yan Y, Li Y, Zhang Z, Wang X, Niu Y, Zhang S, Xu W, Ren C. Advances of peptides for antibacterial applications. Colloids Surf B Biointerfaces 2021;202:111682. [PMID: 33714188 DOI: 10.1016/j.colsurfb.2021.111682] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
19 Hu X, Xia F, Lee J, Li F, Lu X, Zhuo X, Nie G, Ling D. Tailor-Made Nanomaterials for Diagnosis and Therapy of Pancreatic Ductal Adenocarcinoma. Adv Sci (Weinh) 2021;8:2002545. [PMID: 33854877 DOI: 10.1002/advs.202002545] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
20 Zhu X, Chen X, Jia Z, Huo D, Liu Y, Liu J. Cationic chitosan@Ruthenium dioxide hybrid nanozymes for photothermal therapy enhancing ROS-mediated eradicating multidrug resistant bacterial infection. J Colloid Interface Sci 2021;603:615-32. [PMID: 34225068 DOI: 10.1016/j.jcis.2021.06.073] [Reference Citation Analysis]
21 Nandi T, Pradyuth S, Singh AK, Chitkara D, Mittal A. Therapeutic agents for targeting desmoplasia: current status and emerging trends. Drug Discovery Today 2020;25:2046-55. [DOI: 10.1016/j.drudis.2020.09.008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
22 Li J, Wang Y, Xu C, Yu Q, Wang X, Xie H, Tian L, Qiu Y, Guo R, Lu Z, Li M, He Q. Rapid pH-responsive self-disintegrating nanoassemblies balance tumor accumulation and penetration for enhanced anti-breast cancer therapy. Acta Biomater 2021;134:546-58. [PMID: 33882357 DOI: 10.1016/j.actbio.2021.04.022] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
23 Sofias AM, De Lorenzi F, Peña Q, Azadkhah Shalmani A, Vucur M, Wang JW, Kiessling F, Shi Y, Consolino L, Storm G, Lammers T. Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders. Adv Drug Deliv Rev 2021;175:113831. [PMID: 34139255 DOI: 10.1016/j.addr.2021.113831] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
24 Yunna C, Mengru H, Fengling W, Lei W, Weidong C. Emerging strategies against tumor-associated fibroblast for improved the penetration of nanoparticle into desmoplastic tumor. Eur J Pharm Biopharm 2021;165:75-83. [PMID: 33991610 DOI: 10.1016/j.ejpb.2021.05.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Gao Y, Wang J, Chai M, Li X, Deng Y, Jin Q, Ji J. Size and Charge Adaptive Clustered Nanoparticles Targeting the Biofilm Microenvironment for Chronic Lung Infection Management. ACS Nano 2020;14:5686-99. [PMID: 32320228 DOI: 10.1021/acsnano.0c00269] [Cited by in Crossref: 76] [Cited by in F6Publishing: 62] [Article Influence: 38.0] [Reference Citation Analysis]
26 Li M, Bao Q, Guo J, Xie R, Shen C, Wei Q, Hu P, Qin H, Shi J. Low Colorectal Tumor Removal by E-Cadherin Destruction-Enabled Tumor Cell Dissociation. Nano Lett 2022. [PMID: 35333538 DOI: 10.1021/acs.nanolett.1c04797] [Reference Citation Analysis]