BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huang Y, Xu T, Wang W, Wen Y, Li K, Qian L, Zhang X, Liu G. Lateral flow biosensors based on the use of micro- and nanomaterials: a review on recent developments. Mikrochim Acta 2019;187:70. [PMID: 31853644 DOI: 10.1007/s00604-019-3822-x] [Cited by in Crossref: 54] [Cited by in F6Publishing: 48] [Article Influence: 18.0] [Reference Citation Analysis]
Number Citing Articles
1 Mohammadinejad A, Nooranian S, Kazemi Oskuee R, Mirzaei S, Aleyaghoob G, Zarrabi A, Selda Gunduz E, Nuri Ertas Y, Sheikh Beig Goharrizi MA. Development of Lateral Flow Assays for Rapid Detection of Troponin I: A Review. Critical Reviews in Analytical Chemistry 2022. [DOI: 10.1080/10408347.2022.2144995] [Reference Citation Analysis]
2 Huang Y, Zhang Y, Hao W, Lu H, Dong H, Zhang X. Sensitive microRNA detection based on bimetallic label photothermal lateral flow locked nucleic acid biosensor with smartphone readout. Sensors and Actuators B: Chemical 2022. [DOI: 10.1016/j.snb.2022.132945] [Reference Citation Analysis]
3 Chen L, Hu X, Xing Y, Sun Y, Hu M, Zhang G. Highly sensitive immunochromatographic assay for simultaneous determination of azaperone and azaperol in pork. Food Chemistry: X 2022. [DOI: 10.1016/j.fochx.2022.100525] [Reference Citation Analysis]
4 Shyam K, Kim H, Kole S, Oh M, Kim C, Kim D, Kim W. Antibody-based lateral flow chromatographic assays for detecting fish and shrimp pathogens: A technical review. Aquaculture 2022;558:738345. [DOI: 10.1016/j.aquaculture.2022.738345] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Chen X, Yuan W, Zhou Q, Tan Y, Wang R, Dong S. Sensitive and visual identification of Chlamydia trachomatis using multiple cross displacement amplification integrated with a gold nanoparticle-based lateral flow biosensor for point-of-care use. Front Cell Infect Microbiol 2022;12:949514. [DOI: 10.3389/fcimb.2022.949514] [Reference Citation Analysis]
6 Kanjwal MA, Ghaferi AA. Advanced Waveguide Based LOC Biosensors: A Minireview. Sensors 2022;22:5443. [DOI: 10.3390/s22145443] [Reference Citation Analysis]
7 Chen X, Zhou Q, Tan Y, Wang R, Wu X, Liu J, Liu R, Wang S, Dong S. Nanoparticle-Based Lateral Flow Biosensor Integrated With Loop-Mediated Isothermal Amplification for Rapid and Visual Identification of Chlamydia trachomatis for Point-of-Care Use. Front Microbiol 2022;13:914620. [DOI: 10.3389/fmicb.2022.914620] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Salvador M, Marqués-Fernández JL, Bunge A, Martínez-García JC, Turcu R, Peddis D, García-Suárez MDM, Cima-Cabal MD, Rivas M. Magnetic Nanoclusters Increase the Sensitivity of Lateral Flow Immunoassays for Protein Detection: Application to Pneumolysin as a Biomarker for Streptococcus pneumoniae. Nanomaterials (Basel) 2022;12:2044. [PMID: 35745381 DOI: 10.3390/nano12122044] [Reference Citation Analysis]
9 Tang WS, Zhang B, Xu LD, Bao N, Zhang Q, Ding SN. CdSe/ZnS quantum dot-encoded maleic anhydride-grafted PLA microspheres prepared through membrane emulsification for multiplexed immunoassays of tumor markers. Analyst 2022;147:1873-80. [PMID: 35420086 DOI: 10.1039/d2an00350c] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Su Z, Dou W, Liu X, Ping J, Li D, Ying Y, Xie L. Nano-labeled materials as detection tags for signal amplification in immunochromatographic assay. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116673] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Celiker T, Ghorbanizamani F, Moulahoum H, Guler Celik E, Tok K, Zihnioglu F, Cicek C, Sertoz R, Arda B, Goksel T, Turhan K, Timur S, Yagci Y. Fluorescent bioassay for SARS-CoV-2 detection using polypyrene-g-poly(ε-caprolactone) prepared by simultaneous photoinduced step-growth and ring-opening polymerizations. Mikrochim Acta 2022;189:202. [PMID: 35474492 DOI: 10.1007/s00604-022-05244-2] [Reference Citation Analysis]
12 Zherdev AV, Dzantiev BB. Detection Limits of Immunoanalytical Systems: Limiting Factors and Methods of Reduction. J Anal Chem 2022;77:391-401. [DOI: 10.1134/s1061934822040141] [Reference Citation Analysis]
13 Tahmasebi M, Bamdad T, Svendsen WE, Forouzandeh-Moghadam M. An enzymatic nucleic acid vertical flow assay. Anal Bioanal Chem 2022. [PMID: 35352165 DOI: 10.1007/s00216-022-03988-7] [Reference Citation Analysis]
14 Abdelbasset WK, Jasim SA, Bokov DO, Oleneva MS, Islamov A, Hammid AT, Mustafa YF, Yasin G, Alguno AC, Kianfar E. Comparison and evaluation of the performance of graphene-based biosensors. Carbon Lett . [DOI: 10.1007/s42823-022-00338-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
15 Yao J, Xu X, Liu L, Kuang H, Xu C. Gold nanoparticle-based immunoassay for the detection of bifenthrin in vegetables. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022;39:531-41. [PMID: 35104182 DOI: 10.1080/19440049.2021.2020909] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Sun C, Xiao F, Fu J, Huang X, Jia N, Xu Z, Wang Y, Cui X. Loop-Mediated Isothermal Amplification Coupled With Nanoparticle-Based Lateral Biosensor for Rapid, Sensitive, and Specific Detection of Bordetella pertussis. Front Bioeng Biotechnol 2021;9:797957. [PMID: 35211469 DOI: 10.3389/fbioe.2021.797957] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Danthanarayana AN, Brgoch J, Willson RC. Photoluminescent Molecules and Materials as Diagnostic Reporters in Lateral Flow Assays. ACS Appl Bio Mater 2022;5:82-96. [PMID: 35014811 DOI: 10.1021/acsabm.1c01051] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Chen X, Ding L, Huang X, Xiong Y. Tailoring noble metal nanoparticle designs to enable sensitive lateral flow immunoassay. Theranostics 2022;12:574-602. [PMID: 34976202 DOI: 10.7150/thno.67184] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 12.0] [Reference Citation Analysis]
19 Chen H, Liu Y, Feng S, Cao Y, Wu T, Liu Z. Cotton thread-based multi-channel photothermal biosensor for simultaneous detection of multiple microRNAs. Biosens Bioelectron 2021;200:113913. [PMID: 34968855 DOI: 10.1016/j.bios.2021.113913] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
20 Xu Y, Wang T, Chen Z, Jin L, Wu Z, Yan J, Zhao X, Cai L, Deng Y, Guo Y, Li S, He N. The point-of-care-testing of nucleic acids by chip, cartridge and paper sensors. Chinese Chemical Letters 2021;32:3675-86. [DOI: 10.1016/j.cclet.2021.06.025] [Cited by in Crossref: 15] [Cited by in F6Publishing: 21] [Article Influence: 15.0] [Reference Citation Analysis]
21 Singh YD, Ningthoujam R, Panda MK, Jena B, Babu PJ, Mishra AK. Insight from nanomaterials and nanotechnology towards COVID-19. Sens Int 2021;2:100099. [PMID: 34766056 DOI: 10.1016/j.sintl.2021.100099] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
22 Chen X, Tan Y, Wang S, Wu X, Liu R, Yang X, Wang Y, Tai J, Li S. A CRISPR-Cas12b-Based Platform for Ultrasensitive, Rapid, and Highly Specific Detection of Hepatitis B Virus Genotypes B and C in Clinical Application. Front Bioeng Biotechnol 2021;9:743322. [PMID: 34692662 DOI: 10.3389/fbioe.2021.743322] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
23 Yan T, Zhang G, Chai H, Qu L, Zhang X. Flexible Biosensors Based on Colorimetry, Fluorescence, and Electrochemistry for Point-of-Care Testing. Front Bioeng Biotechnol 2021;9:753692. [PMID: 34650963 DOI: 10.3389/fbioe.2021.753692] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
24 Liu H, He Y, Cao K. Flexible Surface‐Enhanced Raman Scattering Substrates: A Review on Constructions, Applications, and Challenges. Adv Mater Interfaces 2021;8:2100982. [DOI: 10.1002/admi.202100982] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
25 Chen X, Wang S, Tan Y, Huang J, Yang X, Li S. Nanoparticle-Based Lateral Flow Biosensors Integrated With Loop-Mediated Isothermal Amplification for the Rapid and Visual Diagnosis of Hepatitis B Virus in Clinical Application. Front Bioeng Biotechnol 2021;9:731415. [PMID: 34595159 DOI: 10.3389/fbioe.2021.731415] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
26 Lim JW, Ahn YR, Park G, Kim HO, Haam S. Application of Nanomaterials as an Advanced Strategy for the Diagnosis, Prevention, and Treatment of Viral Diseases. Pharmaceutics 2021;13:1570. [PMID: 34683863 DOI: 10.3390/pharmaceutics13101570] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
27 Bordbar MM, Sheini A, Hashemi P, Hajian A, Bagheri H. Disposable Paper-Based Biosensors for the Point-of-Care Detection of Hazardous Contaminations-A Review. Biosensors (Basel) 2021;11:316. [PMID: 34562906 DOI: 10.3390/bios11090316] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 16.0] [Reference Citation Analysis]
28 Liu J, Zhang X, Zheng J, Yu Y, Huang X, Wei J, Mukama O, Wang S, Qin Q. A lateral flow biosensor for rapid detection of Singapore grouper iridovirus (SGIV). Aquaculture 2021;541:736756. [DOI: 10.1016/j.aquaculture.2021.736756] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Di Nardo F, Chiarello M, Cavalera S, Baggiani C, Anfossi L. Ten Years of Lateral Flow Immunoassay Technique Applications: Trends, Challenges and Future Perspectives. Sensors (Basel) 2021;21:5185. [PMID: 34372422 DOI: 10.3390/s21155185] [Cited by in Crossref: 66] [Cited by in F6Publishing: 76] [Article Influence: 66.0] [Reference Citation Analysis]
30 Asdaq SMB, Ikbal AMA, Sahu RK, Bhattacharjee B, Paul T, Deka B, Fattepur S, Widyowati R, Vijaya J, Al Mohaini M, Alsalman AJ, Imran M, Nagaraja S, Nair AB, Attimarad M, Venugopala KN. Nanotechnology Integration for SARS-CoV-2 Diagnosis and Treatment: An Approach to Preventing Pandemic. Nanomaterials (Basel) 2021;11:1841. [PMID: 34361227 DOI: 10.3390/nano11071841] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
31 Chen L, Hu X, Sun Y, Xing Y, Zhang G. Immunochromatographic assay based on high-affine monoclonal antibody for the detection of imidocarb in milk. J Food Sci 2021;86:3413-21. [PMID: 34268739 DOI: 10.1111/1750-3841.15831] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Díaz-González M, de la Escosura-Muñiz A. Strip modification and alternative architectures for signal amplification in nanoparticle-based lateral flow assays. Anal Bioanal Chem 2021;413:4111-7. [PMID: 34036400 DOI: 10.1007/s00216-021-03421-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
33 Wang Z, Yu W, Xie R, Yang S, Chen A. A strip of lateral flow gene assay using gold nanoparticles for point-of-care diagnosis of African swine fever virus in limited environment. Anal Bioanal Chem 2021;413:4665-72. [PMID: 34018036 DOI: 10.1007/s00216-021-03408-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
34 Calabria D, Calabretta MM, Zangheri M, Marchegiani E, Trozzi I, Guardigli M, Michelini E, Di Nardo F, Anfossi L, Baggiani C, Mirasoli M. Recent Advancements in Enzyme-Based Lateral Flow Immunoassays. Sensors (Basel) 2021;21:3358. [PMID: 34065971 DOI: 10.3390/s21103358] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 18.0] [Reference Citation Analysis]
35 Zhuang QQ, Chen RT, Zheng YJ, Huang KY, Peng HP, Lin Z, Xia XH, Chen W, Deng HH. Detection of tetanus toxoid with fluorescent tetanus human IgG-AuNC-based immunochromatography test strip. Biosens Bioelectron 2021;177:112977. [PMID: 33434779 DOI: 10.1016/j.bios.2021.112977] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
36 Liu Y, Zhan L, Qin Z, Sackrison J, Bischof JC. Ultrasensitive and Highly Specific Lateral Flow Assays for Point-of-Care Diagnosis. ACS Nano 2021;15:3593-611. [PMID: 33607867 DOI: 10.1021/acsnano.0c10035] [Cited by in Crossref: 88] [Cited by in F6Publishing: 101] [Article Influence: 88.0] [Reference Citation Analysis]
37 Shirshahi V, Liu G. Enhancing the analytical performance of paper lateral flow assays: From chemistry to engineering. TrAC Trends in Analytical Chemistry 2021;136:116200. [DOI: 10.1016/j.trac.2021.116200] [Cited by in Crossref: 30] [Cited by in F6Publishing: 14] [Article Influence: 30.0] [Reference Citation Analysis]
38 Dong T, Yin R, Yu Q, Qiu W, Li K, Qian L, Li H, Shen B, Liu G. Sensitive detection of microRNA-21 in cancer cells and human serum with Au@Si nanocomposite and lateral flow assay. Analytica Chimica Acta 2021;1147:56-63. [DOI: 10.1016/j.aca.2020.12.042] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
39 Huang Y, Xu T, Luo Y, Liu C, Gao X, Cheng Z, Wen Y, Zhang X. Ultra-Trace Protein Detection by Integrating Lateral Flow Biosensor with Ultrasound Enrichment. Anal Chem 2021;93:2996-3001. [DOI: 10.1021/acs.analchem.0c05032] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
40 Kawasaki H, Suzuki H, Maekawa M, Hariyama T. Combination of the NanoSuit method and gold/platinum particle-based lateral flow assay for quantitative and highly sensitive diagnosis using a desktop scanning electron microscope. J Pharm Biomed Anal 2021;196:113924. [PMID: 33581588 DOI: 10.1016/j.jpba.2021.113924] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
41 Huergo MAC, Thanh NTK. Current advances in the detection of COVID-19 and evaluation of the humoral response. Analyst 2021;146:382-402. [PMID: 33410826 DOI: 10.1039/d0an01686a] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 18.0] [Reference Citation Analysis]
42 Berlina AN, Komova NS, Zherdev AV, Dzantiev BB. Lateral flow test strips for mercury ions detection based on combination of oligonucleotide-modified gold nanoparticles and chelation by glutathione. MODERN SYNTHETIC METHODOLOGIES FOR CREATING DRUGS AND FUNCTIONAL MATERIALS (MOSM2020): PROCEEDINGS OF THE IV INTERNATIONAL CONFERENCE 2021. [DOI: 10.1063/5.0069419] [Reference Citation Analysis]
43 Syedmoradi L, Norton ML, Omidfar K. Point-of-care cancer diagnostic devices: From academic research to clinical translation. Talanta 2021;225:122002. [PMID: 33592810 DOI: 10.1016/j.talanta.2020.122002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
44 Aboul-Ella H, Hamed R, Abo-Elyazeed H. Recent trends in rapid diagnostic techniques for dermatophytosis. Int J Vet Sci Med 2020;8:115-23. [PMID: 33426048 DOI: 10.1080/23144599.2020.1850204] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
45 Pöhlmann C, Elßner T. Multiplex Immunoassay Techniques for On-Site Detection of Security Sensitive Toxins. Toxins (Basel) 2020;12:E727. [PMID: 33233770 DOI: 10.3390/toxins12110727] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
46 Cardoso VMDO, Moreira BJ, Comparetti EJ, Sampaio I, Ferreira LMB, Lins PMP, Zucolotto V. Is Nanotechnology Helping in the Fight Against COVID-19? Front Nanotechnol 2020;2:588915. [DOI: 10.3389/fnano.2020.588915] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
47 Yuan J, Chen X, Duan H, Cai X, Li Y, Guo L, Huang X, Xiong Y. Gold nanoparticle-decorated metal organic frameworks on immunochromatographic assay for human chorionic gonadotropin detection. Mikrochim Acta 2020;187:640. [PMID: 33151410 DOI: 10.1007/s00604-020-04617-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
48 Heeroma AJ, Gwenin C. Development of Solid-Phase RPA on a Lateral Flow Device for the Detection of Pathogens Related to Sepsis. Sensors (Basel) 2020;20:E4182. [PMID: 32731402 DOI: 10.3390/s20154182] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
49 Kawasaki H, Suzuki H, Maekawa M, Hariyama T. Sensitive quantitative and rapid immunochromatographic diagnosis of clinical samples by scanning electron microscopy - preparing for future outbreaks (Preprint).. [DOI: 10.2196/preprints.21941] [Reference Citation Analysis]
50 Bai Y, Shu T, Su L, Zhang X. Functional nucleic acid-based fluorescence polarization/anisotropy biosensors for detection of biomarkers. Anal Bioanal Chem 2020;412:6655-65. [PMID: 32601896 DOI: 10.1007/s00216-020-02754-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
51 Wu N, Wei Y, Pan L, Yang X, Qi H, Gao Q, Zhang C. Lateral flow immunostrips for the sensitive and rapid determination of 8-hydroxy-2'-deoxyguanosine using upconversion nanoparticles. Mikrochim Acta 2020;187:377. [PMID: 32519072 DOI: 10.1007/s00604-020-04349-w] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
52 Goryacheva OA, Guhrenz C, Schneider K, Beloglazova NV, Goryacheva IY, De Saeger S, Gaponik N. Silanized Luminescent Quantum Dots for the Simultaneous Multicolor Lateral Flow Immunoassay of Two Mycotoxins. ACS Appl Mater Interfaces 2020;12:24575-84. [DOI: 10.1021/acsami.0c05099] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 20.5] [Reference Citation Analysis]
53 Bai Y, Xu T, Zhang X. Graphene-Based Biosensors for Detection of Biomarkers. Micromachines (Basel) 2020;11:E60. [PMID: 31947894 DOI: 10.3390/mi11010060] [Cited by in Crossref: 71] [Cited by in F6Publishing: 75] [Article Influence: 35.5] [Reference Citation Analysis]