BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Patil RS, Shah SU, Shrikhande SV, Goel M, Dikshit RP, Chiplunkar SV. IL17 producing γδT cells induce angiogenesis and are associated with poor survival in gallbladder cancer patients. Int J Cancer 2016;139:869-81. [PMID: 27062572 DOI: 10.1002/ijc.30134] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 9.8] [Reference Citation Analysis]
Number Citing Articles
1 Szeponik L, Akeus P, Rodin W, Raghavan S, Quiding-Järbrink M. Regulatory T cells specifically suppress conventional CD8αβ T cells in intestinal tumors of APCMin/+ mice. Cancer Immunol Immunother 2020;69:1279-92. [PMID: 32185408 DOI: 10.1007/s00262-020-02540-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
2 Suzuki T, Hayman L, Kilbey A, Edwards J, Coffelt SB. Gut γδ T cells as guardians, disruptors, and instigators of cancer. Immunol Rev 2020;298:198-217. [DOI: 10.1111/imr.12916] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
3 Sureshbabu SK, Chaukar D, Chiplunkar SV. Hypoxia regulates the differentiation and anti-tumor effector functions of γδT cells in oral cancer. Clin Exp Immunol 2020;201:40-57. [PMID: 32255193 DOI: 10.1111/cei.13436] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
4 Liu B, He X, Wang Y, Huang J, Zheng Y, Li Y, Lu L. Bibliometric Analysis of γδ T Cells as Immune Regulators in Cancer Prognosis. Front Immunol 2022;13:874640. [DOI: 10.3389/fimmu.2022.874640] [Reference Citation Analysis]
5 Wu L, Saxena S, Singh RK. Neutrophils in the Tumor Microenvironment. Adv Exp Med Biol 2020;1224:1-20. [PMID: 32036601 DOI: 10.1007/978-3-030-35723-8_1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
6 Lo Presti E, Dieli F, Fourniè JJ, Meraviglia S. Deciphering human γδ T cell response in cancer: Lessons from tumor-infiltrating γδ T cells. Immunol Rev 2020;298:153-64. [PMID: 32691450 DOI: 10.1111/imr.12904] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
7 Godfrey DI, Le Nours J, Andrews DM, Uldrich AP, Rossjohn J. Unconventional T Cell Targets for Cancer Immunotherapy. Immunity 2018;48:453-73. [PMID: 29562195 DOI: 10.1016/j.immuni.2018.03.009] [Cited by in Crossref: 120] [Cited by in F6Publishing: 120] [Article Influence: 30.0] [Reference Citation Analysis]
8 Ma Y, Ou J, Lin T, Chen L, Wang J, Qiao D, Lai S, Duan C, Cheng Y, Chang R, Zhang C, Wang M. Phenotypic analysis of tumor-infiltrating lymphocytes from non-small cell lung cancer and their potential application for adoptive cell therapy. Immunopharmacol Immunotoxicol 2020;42:319-29. [PMID: 32419542 DOI: 10.1080/08923973.2020.1765375] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Mensurado S, Rei M, Lança T, Ioannou M, Gonçalves-Sousa N, Kubo H, Malissen M, Papayannopoulos V, Serre K, Silva-Santos B. Tumor-associated neutrophils suppress pro-tumoral IL-17+ γδ T cells through induction of oxidative stress. PLoS Biol 2018;16:e2004990. [PMID: 29750788 DOI: 10.1371/journal.pbio.2004990] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 11.0] [Reference Citation Analysis]
10 Deng J, Yin H. Gamma delta (γδ) T cells in cancer immunotherapy; where it comes from, where it will go? European Journal of Pharmacology 2022. [DOI: 10.1016/j.ejphar.2022.174803] [Reference Citation Analysis]
11 Rojas-Sepúlveda D, Tittarelli A, Gleisner MA, Ávalos I, Pereda C, Gallegos I, González FE, López MN, Butte JM, Roa JC, Fluxá P, Salazar-Onfray F. Tumor lysate-based vaccines: on the road to immunotherapy for gallbladder cancer. Cancer Immunol Immunother 2018;67:1897-910. [PMID: 29600445 DOI: 10.1007/s00262-018-2157-5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
12 Hachim MY, Elemam NM, Ramakrishnan RK, Salameh L, Olivenstein R, Hachim IY, Venkatachalam T, Mahboub B, Al Heialy S, Hamid Q, Hamoudi R. Derangement of cell cycle markers in peripheral blood mononuclear cells of asthmatic patients as a reliable biomarker for asthma control. Sci Rep 2021;11:11873. [PMID: 34088958 DOI: 10.1038/s41598-021-91087-5] [Reference Citation Analysis]
13 Lopes N, Silva-Santos B. Functional and metabolic dichotomy of murine γδ T cell subsets in cancer immunity. Eur J Immunol 2021;51:17-26. [PMID: 33188652 DOI: 10.1002/eji.201948402] [Reference Citation Analysis]
14 Schönefeldt S, Wais T, Herling M, Mustjoki S, Bekiaris V, Moriggl R, Neubauer HA. The Diverse Roles of γδ T Cells in Cancer: From Rapid Immunity to Aggressive Lymphoma. Cancers (Basel) 2021;13:6212. [PMID: 34944832 DOI: 10.3390/cancers13246212] [Reference Citation Analysis]
15 Van Acker HH, Campillo-Davo D, Roex G, Versteven M, Smits EL, Van Tendeloo VF. The role of the common gamma-chain family cytokines in γδ T cell-based anti-cancer immunotherapy. Cytokine Growth Factor Rev 2018;41:54-64. [PMID: 29773448 DOI: 10.1016/j.cytogfr.2018.05.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
16 Aotsuka A, Matsumoto Y, Arimoto T, Kawata A, Ogishima J, Taguchi A, Tanikawa M, Sone K, Mori-Uchino M, Tsuruga T, Oda K, Kawana K, Osuga Y, Fujii T. Interleukin-17 is associated with expression of programmed cell death 1 ligand 1 in ovarian carcinoma. Cancer Sci 2019;110:3068-78. [PMID: 31432577 DOI: 10.1111/cas.14174] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
17 Tokunaga R, Zhang W, Naseem M, Puccini A, Berger MD, Soni S, McSkane M, Baba H, Lenz HJ. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - A target for novel cancer therapy. Cancer Treat Rev 2018;63:40-7. [PMID: 29207310 DOI: 10.1016/j.ctrv.2017.11.007] [Cited by in Crossref: 300] [Cited by in F6Publishing: 293] [Article Influence: 60.0] [Reference Citation Analysis]
18 Park JH, Lee HK. Function of γδ T cells in tumor immunology and their application to cancer therapy. Exp Mol Med 2021;53:318-27. [PMID: 33707742 DOI: 10.1038/s12276-021-00576-0] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Liu Y, Han Y, Zeng S, Shen H. In respond to commensal bacteria: γδT cells play a pleiotropic role in tumor immunity. Cell Biosci 2021;11:48. [PMID: 33653419 DOI: 10.1186/s13578-021-00565-w] [Reference Citation Analysis]
20 Chen K, Tang H, Zhu P, Ye J, Liu D, Pu Y, Zhang L, Zhai W. Interleukin 17A promotes gallbladder cancer invasiveness via ERK/NF-κB signal pathway mediated epithelial-to-mesenchymal transition. J Cancer 2020;11:4406-12. [PMID: 32489459 DOI: 10.7150/jca.40656] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Neo SY, Lundqvist A. The Multifaceted Roles of CXCL9 Within the Tumor Microenvironment. Adv Exp Med Biol 2020;1231:45-51. [PMID: 32060845 DOI: 10.1007/978-3-030-36667-4_5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
22 St Paul M, Ohashi PS. The Roles of CD8+ T Cell Subsets in Antitumor Immunity. Trends Cell Biol 2020;30:695-704. [PMID: 32624246 DOI: 10.1016/j.tcb.2020.06.003] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 12.0] [Reference Citation Analysis]
23 Silva-santos B, Mensurado S, Coffelt SB. γδ T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nat Rev Cancer 2019;19:392-404. [DOI: 10.1038/s41568-019-0153-5] [Cited by in Crossref: 91] [Cited by in F6Publishing: 81] [Article Influence: 30.3] [Reference Citation Analysis]
24 Van Hede D, Polese B, Humblet C, Wilharm A, Renoux V, Dortu E, de Leval L, Delvenne P, Desmet CJ, Bureau F, Vermijlen D, Jacobs N. Human papillomavirus oncoproteins induce a reorganization of epithelial-associated γδ T cells promoting tumor formation. Proc Natl Acad Sci U S A 2017;114:E9056-65. [PMID: 29073102 DOI: 10.1073/pnas.1712883114] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
25 Pantziarka P, Hutchinson L, André N, Benzekry S, Bertolini F, Bhattacharjee A, Chiplunkar S, Duda DG, Gota V, Gupta S, Joshi A, Kannan S, Kerbel R, Kieran M, Palazzo A, Parikh A, Pasquier E, Patil V, Prabhash K, Shaked Y, Sholler GS, Sterba J, Waxman DJ, Banavali S. Next generation metronomic chemotherapy-report from the Fifth Biennial International Metronomic and Anti-angiogenic Therapy Meeting, 6-8 May 2016, Mumbai. Ecancermedicalscience 2016;10:689. [PMID: 27994645 DOI: 10.3332/ecancer.2016.689] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
26 Peters C, Kabelitz D, Wesch D. Regulatory functions of γδ T cells. Cell Mol Life Sci 2018;75:2125-35. [PMID: 29520421 DOI: 10.1007/s00018-018-2788-x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 6.5] [Reference Citation Analysis]
27 Foord E, Arruda LCM, Gaballa A, Klynning C, Uhlin M. Characterization of ascites- and tumor-infiltrating γδ T cells reveals distinct repertoires and a beneficial role in ovarian cancer. Sci Transl Med 2021;13:eabb0192. [PMID: 33472952 DOI: 10.1126/scitranslmed.abb0192] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
28 Zhang Y, You WH, Li X, Wang P, Sha B, Liang Y, Qiu J, Zhou J, Hu H, Lu L. Single-cell RNA-seq reveals transcriptional landscape and intratumor heterogenicity in gallbladder cancer liver metastasis microenvironment. Ann Transl Med 2021;9:889. [PMID: 34164523 DOI: 10.21037/atm-21-2227] [Reference Citation Analysis]
29 Miyashita M, Shimizu T, Ashihara E, Ukimura O. Strategies to Improve the Antitumor Effect of γδ T Cell Immunotherapy for Clinical Application. Int J Mol Sci 2021;22:8910. [PMID: 34445615 DOI: 10.3390/ijms22168910] [Reference Citation Analysis]
30 Jiang W, Zhao B, Li Y, Qi D, Wang D. Modification of the 8th American Joint Committee on Cancer staging system for gallbladder carcinoma to improve prognostic precision. BMC Cancer 2020;20:1129. [PMID: 33225924 DOI: 10.1186/s12885-020-07578-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Agerholm R, Bekiaris V. Evolved to protect, designed to destroy: IL-17-producing γδ T cells in infection, inflammation, and cancer. Eur J Immunol 2021;51:2164-77. [PMID: 34224140 DOI: 10.1002/eji.202049119] [Reference Citation Analysis]
32 Milette S, Fiset PO, Walsh LA, Spicer JD, Quail DF. The innate immune architecture of lung tumors and its implication in disease progression. J Pathol 2019;247:589-605. [DOI: 10.1002/path.5241] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
33 Albini A, Bruno A, Noonan DM, Mortara L. Contribution to Tumor Angiogenesis From Innate Immune Cells Within the Tumor Microenvironment: Implications for Immunotherapy. Front Immunol. 2018;9:527. [PMID: 29675018 DOI: 10.3389/fimmu.2018.00527] [Cited by in Crossref: 146] [Cited by in F6Publishing: 142] [Article Influence: 36.5] [Reference Citation Analysis]
34 Garley M, Jabłońska E, Dziemiańczyk-Pakieła D, Miltyk W, Ratajczak-Wrona W, Borys J, Moniuszko M, Grubczak K. LDGs versus NDGs in patients with oral squamous cell carcinoma (OSCC). Cytokine 2021;137:155311. [PMID: 33002741 DOI: 10.1016/j.cyto.2020.155311] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
35 Farc O, Cristea V. An overview of the tumor microenvironment, from cells to complex networks (Review). Exp Ther Med 2021;21:96. [PMID: 33363607 DOI: 10.3892/etm.2020.9528] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
36 Schnell A, Schmidl C, Herr W, Siska PJ. The Peripheral and Intratumoral Immune Cell Landscape in Cancer Patients: A Proxy for Tumor Biology and a Tool for Outcome Prediction. Biomedicines 2018;6:E25. [PMID: 29495308 DOI: 10.3390/biomedicines6010025] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
37 Mortara L, Benest AV, Bates DO, Noonan DM. Can the co-dependence of the immune system and angiogenesis facilitate pharmacological targeting of tumours? Curr Opin Pharmacol 2017;35:66-74. [PMID: 28623714 DOI: 10.1016/j.coph.2017.05.009] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
38 Raverdeau M, Cunningham SP, Harmon C, Lynch L. γδ T cells in cancer: a small population of lymphocytes with big implications. Clin Transl Immunology 2019;8:e01080. [PMID: 31624593 DOI: 10.1002/cti2.1080] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
39 Zhao Y, Niu C, Cui J. Gamma-delta (γδ) T cells: friend or foe in cancer development? J Transl Med 2018;16:3. [PMID: 29316940 DOI: 10.1186/s12967-017-1378-2] [Cited by in Crossref: 83] [Cited by in F6Publishing: 98] [Article Influence: 20.8] [Reference Citation Analysis]
40 Sun Y, Li L, Yao W, Liu X, Yang Y, Ma B, Xue D. USH2A Mutation is Associated With Tumor Mutation Burden and Antitumor Immunity in Patients With Colon Adenocarcinoma. Front Genet 2021;12:762160. [PMID: 34795697 DOI: 10.3389/fgene.2021.762160] [Reference Citation Analysis]
41 McKenzie DR, Comerford I, Silva-Santos B, McColl SR. The Emerging Complexity of γδT17 Cells. Front Immunol 2018;9:796. [PMID: 29731754 DOI: 10.3389/fimmu.2018.00796] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
42 Ma R, Yuan D, Guo Y, Yan R, Li K. Immune Effects of γδ T Cells in Colorectal Cancer: A Review. Front Immunol 2020;11:1600. [PMID: 33013819 DOI: 10.3389/fimmu.2020.01600] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
43 Marques HS, de Brito BB, da Silva FAF, Santos MLC, de Souza JCB, Correia TML, Lopes LW, Neres NSM, Dórea RSDM, Dantas ACS, Morbeck LLB, Lima IS, de Almeida AA, Dias MRJ, de Melo FF. Relationship between Th17 immune response and cancer. World J Clin Oncol 2021; 12(10): 845-867 [PMID: 34733609 DOI: 10.5306/wjco.v12.i10.845] [Reference Citation Analysis]
44 Wu L, Saxena S, Awaji M, Singh RK. Tumor-Associated Neutrophils in Cancer: Going Pro. Cancers (Basel) 2019;11:E564. [PMID: 31010242 DOI: 10.3390/cancers11040564] [Cited by in Crossref: 96] [Cited by in F6Publishing: 90] [Article Influence: 32.0] [Reference Citation Analysis]
45 Chen T, Zhang J, Zeng H, Zhang Y, Zhang Y, Zhou X, Zhao D, Feng Y, Zhou H. The impact of inflammation and cytokine expression of PM2.5 in AML. Oncol Lett 2018;16:2732-40. [PMID: 30013668 DOI: 10.3892/ol.2018.8965] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
46 Chabab G, Barjon C, Bonnefoy N, Lafont V. Pro-tumor γδ T Cells in Human Cancer: Polarization, Mechanisms of Action, and Implications for Therapy. Front Immunol 2020;11:2186. [PMID: 33042132 DOI: 10.3389/fimmu.2020.02186] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
47 Peña-romero AC, Orenes-piñero E. Dual Effect of Immune Cells within Tumour Microenvironment: Pro- and Anti-Tumour Effects and Their Triggers. Cancers 2022;14:1681. [DOI: 10.3390/cancers14071681] [Reference Citation Analysis]
48 Imbert C, Olive D. γδ T Cells in Tumor Microenvironment. Adv Exp Med Biol 2020;1273:91-104. [PMID: 33119877 DOI: 10.1007/978-3-030-49270-0_5] [Reference Citation Analysis]
49 Lo Presti E, Corsale AM, Dieli F, Meraviglia S. γδ cell-based immunotherapy for cancer. Expert Opin Biol Ther 2019;19:887-95. [PMID: 31220420 DOI: 10.1080/14712598.2019.1634050] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
50 Wang D, Yuan W, Wang Y, Wu Q, Yang L, Li F, Chen X, Zhang Z, Yu W, Maimela NR, Cao L, Wang D, Wang J, Sun Z, Liu J, Zhang Y. Serum CCL20 combined with IL-17A as early diagnostic and prognostic biomarkers for human colorectal cancer. J Transl Med 2019;17:253. [PMID: 31387598 DOI: 10.1186/s12967-019-2008-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
51 Lo Presti E, Di Mitri R, Pizzolato G, Mocciaro F, Dieli F, Meraviglia S. γδ cells and tumor microenvironment: A helpful or a dangerous liason? J Leukoc Biol 2018;103:485-92. [PMID: 29345336 DOI: 10.1002/JLB.5MR0717-275RR] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
52 Sebestyen Z, Prinz I, Déchanet-Merville J, Silva-Santos B, Kuball J. Translating gammadelta (γδ) T cells and their receptors into cancer cell therapies. Nat Rev Drug Discov 2020;19:169-84. [PMID: 31492944 DOI: 10.1038/s41573-019-0038-z] [Cited by in Crossref: 88] [Cited by in F6Publishing: 90] [Article Influence: 29.3] [Reference Citation Analysis]
53 Chulpanova DS, Kitaeva KV, Green AR, Rizvanov AA, Solovyeva VV. Molecular Aspects and Future Perspectives of Cytokine-Based Anti-cancer Immunotherapy. Front Cell Dev Biol 2020;8:402. [PMID: 32582698 DOI: 10.3389/fcell.2020.00402] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
54 Chen X, Shang W, Xu R, Wu M, Zhang X, Huang P, Wang F, Pan S. Distribution and functions of γδ T cells infiltrated in the ovarian cancer microenvironment. J Transl Med 2019;17:144. [PMID: 31064389 DOI: 10.1186/s12967-019-1897-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
55 Liu Z, Kemp TJ, Gao YT, Corbel A, McGee EE, Roa JC, Wang B, Araya JC, Shen MC, Rashid A, Hsing AW, Hildesheim A, Ferreccio C, Pfeiffer RM, Pinto LA, Koshiol J. Circulating Levels of Inflammatory Proteins and Survival in Patients with Gallbladder Cancer. Sci Rep 2018;8:5671. [PMID: 29618736 DOI: 10.1038/s41598-018-23848-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
56 Li C, Donninger H, Eaton J, Yaddanapudi K. Regulatory Role of Immune Cell-Derived Extracellular Vesicles in Cancer: The Message Is in the Envelope. Front Immunol 2020;11:1525. [PMID: 32765528 DOI: 10.3389/fimmu.2020.01525] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
57 Li Y, Li G, Zhang J, Wu X, Chen X. The Dual Roles of Human γδ T Cells: Anti-Tumor or Tumor-Promoting. Front Immunol 2020;11:619954. [PMID: 33664732 DOI: 10.3389/fimmu.2020.619954] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
58 Koshiol J, Gao YT, Corbel A, Kemp TJ, Shen MC, Hildesheim A, Hsing AW, Rashid A, Wang B, Pfeiffer RM, Pinto LA. Circulating inflammatory proteins and gallbladder cancer: Potential for risk stratification to improve prioritization for cholecystectomy in high-risk regions. Cancer Epidemiol 2018;54:25-30. [PMID: 29554539 DOI: 10.1016/j.canep.2018.03.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
59 Vitiello GA, Miller G. Targeting the interleukin-17 immune axis for cancer immunotherapy. J Exp Med 2020;217:e20190456. [PMID: 31727783 DOI: 10.1084/jem.20190456] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
60 Galati D, Zanotta S, Bocchino M, De Filippi R, Pinto A. The subtle interplay between gamma delta T lymphocytes and dendritic cells: is there a role for a therapeutic cancer vaccine in the era of combinatorial strategies? Cancer Immunol Immunother 2021;70:1797-809. [PMID: 33386466 DOI: 10.1007/s00262-020-02805-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
61 Chen X, Zhang X, Xu R, Shang W, Ming W, Wang F, Wang J. Implication of IL-17 producing ɑβT and γδT cells in patients with ovarian cancer. Hum Immunol 2020;81:244-8. [PMID: 32093885 DOI: 10.1016/j.humimm.2020.02.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
62 Wang M, Chen B, Sun XX, Zhao XD, Zhao YY, Sun L, Xu CG, Shen B, Su ZL, Xu WR, Zhu W. Gastric cancer tissue-derived mesenchymal stem cells impact peripheral blood mononuclear cells via disruption of Treg/Th17 balance to promote gastric cancer progression. Exp Cell Res 2017;361:19-29. [PMID: 28964780 DOI: 10.1016/j.yexcr.2017.09.036] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
63 Metzemaekers M, Vanheule V, Janssens R, Struyf S, Proost P. Overview of the Mechanisms that May Contribute to the Non-Redundant Activities of Interferon-Inducible CXC Chemokine Receptor 3 Ligands. Front Immunol 2017;8:1970. [PMID: 29379506 DOI: 10.3389/fimmu.2017.01970] [Cited by in Crossref: 80] [Cited by in F6Publishing: 78] [Article Influence: 20.0] [Reference Citation Analysis]
64 Wu L, Awaji M, Saxena S, Varney ML, Sharma B, Singh RK. IL-17-CXC Chemokine Receptor 2 Axis Facilitates Breast Cancer Progression by Up-Regulating Neutrophil Recruitment. Am J Pathol 2020;190:222-33. [PMID: 31654638 DOI: 10.1016/j.ajpath.2019.09.016] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]