BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yu CYY, Xu H, Ji S, Kwok RTK, Lam JWY, Li X, Krishnan S, Ding D, Tang BZ. Mitochondrion-Anchoring Photosensitizer with Aggregation-Induced Emission Characteristics Synergistically Boosts the Radiosensitivity of Cancer Cells to Ionizing Radiation. Adv Mater 2017;29:1606167. [DOI: 10.1002/adma.201606167] [Cited by in Crossref: 142] [Cited by in F6Publishing: 135] [Article Influence: 28.4] [Reference Citation Analysis]
Number Citing Articles
1 Hu F, Xu S, Liu B. Photosensitizers with Aggregation-Induced Emission: Materials and Biomedical Applications. Adv Mater 2018;30:1801350. [DOI: 10.1002/adma.201801350] [Cited by in Crossref: 290] [Cited by in F6Publishing: 232] [Article Influence: 72.5] [Reference Citation Analysis]
2 Guo Z, Yan C, Zhu W. High‐Performance Quinoline‐Malononitrile Core as a Building Block for the Diversity‐Oriented Synthesis of AIEgens. Angew Chem 2020;132:9896-909. [DOI: 10.1002/ange.201913249] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
3 Niu G, Zhang R, Gu Y, Wang J, Ma C, Kwok RTK, Lam JWY, Sung HH, Williams ID, Wong KS, Yu X, Tang BZ. Highly photostable two-photon NIR AIEgens with tunable organelle specificity and deep tissue penetration. Biomaterials 2019;208:72-82. [PMID: 30999153 DOI: 10.1016/j.biomaterials.2019.04.002] [Cited by in Crossref: 43] [Cited by in F6Publishing: 35] [Article Influence: 14.3] [Reference Citation Analysis]
4 He Z, Gao Y, Zhang H, Xue Y, Meng F, Luo L. Mitochondrion-Anchored Photosensitizer with Near Infrared-I Aggregation-Induced Emission for Near Infrared-II Two-Photon Photodynamic Therapy. Adv Healthc Mater 2021;:e2101056. [PMID: 34569175 DOI: 10.1002/adhm.202101056] [Reference Citation Analysis]
5 Dhinakaran MK, Gong W, Yin Y, Wajahat A, Kuang X, Wang L, Ning G. Configuration-independent AIE-active supramolecular polymers of cyanostilbene through the photo-stable host–guest interaction of pillar[5]arene. Polym Chem 2017;8:5295-302. [DOI: 10.1039/c7py00845g] [Cited by in Crossref: 23] [Article Influence: 4.6] [Reference Citation Analysis]
6 Zhang F, Han X, Hu Y, Wang S, Liu S, Pan X, Wang H, Ma J, Wang W, Li S, Wu Q, Shen H, Yu X, Yuan Q, Liu H. Interventional Photothermal Therapy Enhanced Brachytherapy: A New Strategy to Fight Deep Pancreatic Cancer. Adv Sci (Weinh) 2019;6:1801507. [PMID: 30886794 DOI: 10.1002/advs.201801507] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 8.3] [Reference Citation Analysis]
7 Dai J, Xu M, Wang Q, Yang J, Zhang J, Cui P, Wang W, Lou X, Xia F, Wang S. Cooperation therapy between anti-growth by photodynamic-AIEgens and anti-metastasis by small molecule inhibitors in ovarian cancer. Theranostics 2020;10:2385-98. [PMID: 32104509 DOI: 10.7150/thno.41708] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
8 Zhang W, Bi S, Li P, Liu J, Zhou C, Wang X, Zhang W, Wang H, Tang B. In Situ Observation of mtDNA Damage during Hepatic Ischemia-Reperfusion. Anal Chem 2021;93:5782-8. [PMID: 33783186 DOI: 10.1021/acs.analchem.0c05220] [Reference Citation Analysis]
9 Zhao L, Zhang X, Wang X, Guan X, Zhang W, Ma J. Recent advances in selective photothermal therapy of tumor. J Nanobiotechnology 2021;19:335. [PMID: 34689765 DOI: 10.1186/s12951-021-01080-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Qi J, Ou H, Liu Q, Ding D. Gathering brings strength: How organic aggregates boost disease phototheranostics. Aggregate 2021;2:95-113. [DOI: 10.1002/agt2.25] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 13.0] [Reference Citation Analysis]
11 Chen Y, Ai W, Guo X, Li Y, Ma Y, Chen L, Zhang H, Wang T, Zhang X, Wang Z. Mitochondria‐Targeted Polydopamine Nanocomposite with AIE Photosensitizer for Image‐Guided Photodynamic and Photothermal Tumor Ablation. Small 2019;15:1902352. [DOI: 10.1002/smll.201902352] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 14.0] [Reference Citation Analysis]
12 Chen J, Xu Y, Gao Y, Yang D, Wang F, Zhang L, Bao B, Wang L. Nanoscale Organic–Inorganic Hybrid Photosensitizers for Highly Effective Photodynamic Cancer Therapy. ACS Appl Mater Interfaces 2018;10:248-55. [DOI: 10.1021/acsami.7b15581] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
13 Gu X, Kwok RT, Lam JW, Tang BZ. AIEgens for biological process monitoring and disease theranostics. Biomaterials 2017;146:115-35. [DOI: 10.1016/j.biomaterials.2017.09.004] [Cited by in Crossref: 146] [Cited by in F6Publishing: 122] [Article Influence: 29.2] [Reference Citation Analysis]
14 Su H, Liao Y, Wu F, Sun X, Liu H, Wang K, Zhu X. Cetuximab-conjugated iodine doped carbon dots as a dual fluorescent/CT probe for targeted imaging of lung cancer cells. Colloids and Surfaces B: Biointerfaces 2018;170:194-200. [DOI: 10.1016/j.colsurfb.2018.06.014] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 8.8] [Reference Citation Analysis]
15 Guo Z, Yan C, Zhu WH. High-Performance Quinoline-Malononitrile Core as a Building Block for the Diversity-Oriented Synthesis of AIEgens. Angew Chem Int Ed Engl 2020;59:9812-25. [PMID: 31725932 DOI: 10.1002/anie.201913249] [Cited by in Crossref: 49] [Cited by in F6Publishing: 34] [Article Influence: 24.5] [Reference Citation Analysis]
16 Gao Y, Gao J, Mu G, Zhang Y, Huang F, Zhang W, Ren C, Yang C, Liu J. Selectively enhancing radiosensitivity of cancer cells via in situ enzyme-instructed peptide self-assembly. Acta Pharm Sin B 2020;10:2374-83. [PMID: 33354508 DOI: 10.1016/j.apsb.2020.07.022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Jia X, Shao C, Bai X, Zhou Q, Wu B, Wang L, Yue B, Zhu H, Zhu L. Photoexcitation-controlled self-recoverable molecular aggregation for flicker phosphorescence. Proc Natl Acad Sci U S A 2019;116:4816-21. [PMID: 30796185 DOI: 10.1073/pnas.1821991116] [Cited by in Crossref: 38] [Cited by in F6Publishing: 29] [Article Influence: 12.7] [Reference Citation Analysis]
18 Chen Y, Zhong H, Wang J, Wan X, Li Y, Pan W, Li N, Tang B. Catalase-like metal-organic framework nanoparticles to enhance radiotherapy in hypoxic cancer and prevent cancer recurrence. Chem Sci 2019;10:5773-8. [PMID: 31293764 DOI: 10.1039/c9sc00747d] [Cited by in Crossref: 52] [Cited by in F6Publishing: 9] [Article Influence: 17.3] [Reference Citation Analysis]
19 Kang Q, Xiao Y, Hu W, Wang Y. Smartly designed AIE triazoliums as unique targeting fluorescence tags for sulfonic biomacromolecule recognition via ‘electrostatic locking’. J Mater Chem C 2018;6:12529-36. [DOI: 10.1039/c8tc04425b] [Cited by in Crossref: 7] [Article Influence: 1.8] [Reference Citation Analysis]
20 Zhang X, Wu M, Li J, Lan S, Zeng Y, Liu X, Liu J. Light-Enhanced Hypoxia-Response of Conjugated Polymer Nanocarrier for Successive Synergistic Photodynamic and Chemo-Therapy. ACS Appl Mater Interfaces 2018;10:21909-19. [PMID: 29882654 DOI: 10.1021/acsami.8b06491] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 8.5] [Reference Citation Analysis]
21 Zhang H, Xie W, Chen M, Zhu L, Feng Z, Wang Y, Xi W, Tang BZ, Qian J. Aggregation-induced emission nanoparticles for in vivo three-photon fluorescence microscopic rat brain angiography. J Innov Opt Health Sci 2019;12:1950012. [DOI: 10.1142/s1793545819500123] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
22 Gao P, Pan W, Li N, Tang B. Boosting Cancer Therapy with Organelle-Targeted Nanomaterials. ACS Appl Mater Interfaces 2019;11:26529-58. [DOI: 10.1021/acsami.9b01370] [Cited by in Crossref: 72] [Cited by in F6Publishing: 61] [Article Influence: 24.0] [Reference Citation Analysis]
23 Chen C, Ni X, Tian H, Liu Q, Guo D, Ding D. Calixarene‐Based Supramolecular AIE Dots with Highly Inhibited Nonradiative Decay and Intersystem Crossing for Ultrasensitive Fluorescence Image‐Guided Cancer Surgery. Angew Chem 2020;132:10094-8. [DOI: 10.1002/ange.201916430] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
24 Fateminia SMA, Kacenauskaite L, Zhang C, Ma S, Kenry, Manghnani PN, Chen J, Xu S, Hu F, Xu B, Laursen BW, Liu B. Simultaneous Increase in Brightness and Singlet Oxygen Generation of an Organic Photosensitizer by Nanocrystallization. Small 2018;14:1803325. [DOI: 10.1002/smll.201803325] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
25 Song Y, Wang J, Liu L, Sun Q, You Q, Cheng Y, Wang Y, Wang S, Tan F, Li N. One-Pot Synthesis of a Bismuth Selenide Hexagon Nanodish Complex for Multimodal Imaging-Guided Combined Antitumor Phototherapy. Mol Pharmaceutics 2018;15:1941-53. [DOI: 10.1021/acs.molpharmaceut.8b00106] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
26 Chen Y, Gao P, Wu T, Pan W, Li N, Tang B. Organelle-localized radiosensitizers. Chem Commun 2020;56:10621-30. [DOI: 10.1039/d0cc03245j] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
27 Pan G, Jia H, Zhu Y, Wang R, Wu F, Chen Z. Dual Channel Activatable Cyanine Dye for Mitochondrial Imaging and Mitochondria-Targeted Cancer Theranostics. ACS Biomater Sci Eng 2017;3:3596-606. [DOI: 10.1021/acsbiomaterials.7b00480] [Cited by in Crossref: 44] [Cited by in F6Publishing: 30] [Article Influence: 8.8] [Reference Citation Analysis]
28 Mayakrishnan S, Tamizmani M, Balachandran C, Aoki S, Maheswari NU. Rh(iii)-Catalysed synthesis of cinnolinium and fluoranthenium salts using C-H activation/annulation reactions: organelle specific mitochondrial staining applications. Org Biomol Chem 2021;19:5413-25. [PMID: 34047328 DOI: 10.1039/d1ob00376c] [Reference Citation Analysis]
29 Wang X, Tong J, He Z, Yang X, Meng F, Liang H, Zhang X, Luo L. Paclitaxel-Potentiated Photodynamic Theranostics for Synergistic Tumor Ablation and Precise Anticancer Efficacy Monitoring. ACS Appl Mater Interfaces 2020;12:5476-87. [PMID: 31910619 DOI: 10.1021/acsami.9b19073] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
30 Li H, Wang M, Huang B, Zhu SW, Zhou JJ, Chen DR, Cui R, Zhang M, Sun ZJ. Theranostic near-infrared-IIb emitting nanoprobes for promoting immunogenic radiotherapy and abscopal effects against cancer metastasis. Nat Commun 2021;12:7149. [PMID: 34887404 DOI: 10.1038/s41467-021-27485-0] [Reference Citation Analysis]
31 Li J, Zhu Z, Rong S, Li H, Guo Y, Xue Q, Ding D. A specific environment-sensitive near-infrared fluorescent turn-on probe for synergistic enhancement of anticancer activity of a chemo-drug. Biomater Sci 2017;5:1622-8. [DOI: 10.1039/c7bm00270j] [Cited by in Crossref: 5] [Article Influence: 1.0] [Reference Citation Analysis]
32 Jiang M, Kwok RTK, Li X, Gui C, Lam JWY, Qu J, Tang BZ. A simple mitochondrial targeting AIEgen for image-guided two-photon excited photodynamic therapy. J Mater Chem B 2018;6:2557-65. [PMID: 32254474 DOI: 10.1039/c7tb02609a] [Cited by in Crossref: 46] [Cited by in F6Publishing: 2] [Article Influence: 9.2] [Reference Citation Analysis]
33 Zhang Y, Mao H, Xu W, Shi J, Cai Z, Tong B, Dong Y. Aggregation-Induced Emission of Multiphenyl-Substituted 1,3-Butadiene Derivatives: Synthesis, Properties and Application. Chem Eur J 2018;24:15965-77. [DOI: 10.1002/chem.201802114] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 4.8] [Reference Citation Analysis]
34 Wang M, Li H, Huang B, Chen S, Cui R, Sun ZJ, Zhang M, Sun T. An Ultra-Stable, Oxygen-Supply Nanoprobe Emitting in Near-Infrared-II Window to Guide and Enhance Radiotherapy by Promoting Anti-Tumor Immunity. Adv Healthc Mater 2021;10:e2100090. [PMID: 33885213 DOI: 10.1002/adhm.202100090] [Reference Citation Analysis]
35 Chen S, Pai M, Liou G. Effects of alkyl chain length and anion on the optical and electrochemical properties of AIE-active α-cyanostilbene-containing triphenylamine derivatives. J Mater Chem C 2020;8:7454-62. [DOI: 10.1039/d0tc00683a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
36 Gao H, Zhang X, Chen C, Li K, Ding D. Unity Makes Strength: How Aggregation-Induced Emission Luminogens Advance the Biomedical Field. Adv Biosys 2018;2:1800074. [DOI: 10.1002/adbi.201800074] [Cited by in Crossref: 90] [Cited by in F6Publishing: 71] [Article Influence: 22.5] [Reference Citation Analysis]
37 Zhu D, Duo Y, Suo M, Zhao Y, Xia L, Zheng Z, Li Y, Tang BZ. Tumor‐Exocytosed Exosome/Aggregation‐Induced Emission Luminogen Hybrid Nanovesicles Facilitate Efficient Tumor Penetration and Photodynamic Therapy. Angew Chem 2020;132:13940-7. [DOI: 10.1002/ange.202003672] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
38 Zang Q, Yu J, Yu W, Qian J, Hu R, Tang BZ. Red-emissive azabenzanthrone derivatives for photodynamic therapy irradiated with ultralow light power density and two-photon imaging. Chem Sci 2018;9:5165-71. [PMID: 29997869 DOI: 10.1039/c8sc00633d] [Cited by in Crossref: 40] [Cited by in F6Publishing: 2] [Article Influence: 10.0] [Reference Citation Analysis]
39 Bai Y, Liu D, Han Z, Chen Y, Chen Z, Jiao Y, He W, Guo Z. BODIPY-derived ratiometric fluorescent sensors: pH-regulated aggregation-induced emission and imaging application in cellular acidification triggered by crystalline silica exposure. Sci China Chem 2018;61:1413-22. [DOI: 10.1007/s11426-018-9284-4] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
40 Chen X, Han H, Tang Z, Jin Q, Ji J. Aggregation-Induced Emission-Based Platforms for the Treatment of Bacteria, Fungi, and Viruses. Adv Healthc Mater 2021;:e2100736. [PMID: 34190431 DOI: 10.1002/adhm.202100736] [Reference Citation Analysis]
41 Zhou C, Zhang S, Gao Y, Liu H, Shan T, Liang X, Yang B, Ma Y. Ternary Emission of Fluorescence and Dual Phosphorescence at Room Temperature: A Single-Molecule White Light Emitter Based on Pure Organic Aza-Aromatic Material. Adv Funct Mater 2018;28:1802407. [DOI: 10.1002/adfm.201802407] [Cited by in Crossref: 80] [Cited by in F6Publishing: 50] [Article Influence: 20.0] [Reference Citation Analysis]
42 He M, He G, Wang P, Jiang S, Jiao Z, Xi D, Miao P, Leng X, Wei Z, Li Y, Yang Y, Wang R, Du J, Fan J, Sun W, Peng X. A Sequential Dual-Model Strategy Based on Photoactivatable Metallopolymer for On-Demand Release of Photosensitizers and Anticancer Drugs. Adv Sci (Weinh) 2021;:e2103334. [PMID: 34664422 DOI: 10.1002/advs.202103334] [Reference Citation Analysis]
43 Dai J, Li Y, Long Z, Jiang R, Zhuang Z, Wang Z, Zhao Z, Lou X, Xia F, Tang BZ. Efficient Near-Infrared Photosensitizer with Aggregation-Induced Emission for Imaging-Guided Photodynamic Therapy in Multiple Xenograft Tumor Models. ACS Nano 2020;14:854-66. [PMID: 31820925 DOI: 10.1021/acsnano.9b07972] [Cited by in Crossref: 51] [Cited by in F6Publishing: 40] [Article Influence: 17.0] [Reference Citation Analysis]
44 Huang J, He B, Zhang Z, Li Y, Kang M, Wang Y, Li K, Wang D, Tang BZ. Aggregation-Induced Emission Luminogens Married to 2D Black Phosphorus Nanosheets for Highly Efficient Multimodal Theranostics. Adv Mater 2020;32:e2003382. [PMID: 32761671 DOI: 10.1002/adma.202003382] [Cited by in Crossref: 34] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
45 Niu G, Zheng X, Zhao Z, Zhang H, Wang J, He X, Chen Y, Shi X, Ma C, Kwok RTK, Lam JWY, Sung HHY, Williams ID, Wong KS, Wang P, Tang BZ. Functionalized Acrylonitriles with Aggregation-Induced Emission: Structure Tuning by Simple Reaction-Condition Variation, Efficient Red Emission, and Two-Photon Bioimaging. J Am Chem Soc 2019;141:15111-20. [PMID: 31436971 DOI: 10.1021/jacs.9b06196] [Cited by in Crossref: 72] [Cited by in F6Publishing: 54] [Article Influence: 24.0] [Reference Citation Analysis]
46 Gao Y, Zheng QC, Xu S, Yuan Y, Cheng X, Jiang S, Kenry, Yu Q, Song Z, Liu B, Li M. Theranostic Nanodots with Aggregation-Induced Emission Characteristic for Targeted and Image-Guided Photodynamic Therapy of Hepatocellular Carcinoma. Theranostics 2019;9:1264-79. [PMID: 30867829 DOI: 10.7150/thno.29101] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 9.3] [Reference Citation Analysis]
47 Kong Q, Ma B, Yu T, Hu C, Li G, Jiang Q, Wang Y. A two-photon AIE fluorophore as a photosensitizer for highly efficient mitochondria-targeted photodynamic therapy. New J Chem 2020;44:9355-64. [DOI: 10.1039/d0nj00822b] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
48 Chen C, Ni X, Tian HW, Liu Q, Guo DS, Ding D. Calixarene-Based Supramolecular AIE Dots with Highly Inhibited Nonradiative Decay and Intersystem Crossing for Ultrasensitive Fluorescence Image-Guided Cancer Surgery. Angew Chem Int Ed Engl 2020;59:10008-12. [PMID: 31981392 DOI: 10.1002/anie.201916430] [Cited by in Crossref: 106] [Cited by in F6Publishing: 69] [Article Influence: 53.0] [Reference Citation Analysis]
49 Mei J, Huang Y, Tian H. Progress and Trends in AIE-Based Bioprobes: A Brief Overview. ACS Appl Mater Interfaces 2018;10:12217-61. [DOI: 10.1021/acsami.7b14343] [Cited by in Crossref: 197] [Cited by in F6Publishing: 141] [Article Influence: 39.4] [Reference Citation Analysis]
50 Cao H, Yue Z, Gao H, Chen C, Cui K, Zhang K, Cheng Y, Shao G, Kong D, Li Z, Ding D, Wang Y. In Vivo Real-Time Imaging of Extracellular Vesicles in Liver Regeneration via Aggregation-Induced Emission Luminogens. ACS Nano 2019;13:3522-33. [DOI: 10.1021/acsnano.8b09776] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 10.0] [Reference Citation Analysis]
51 Yang Y, Xie Q, Zhao Z, He L, Chan L, Liu Y, Chen Y, Bai M, Pan T, Qu Y, Ling L, Chen T. Functionalized Selenium Nanosystem as Radiation Sensitizer of 125I Seeds for Precise Cancer Therapy. ACS Appl Mater Interfaces 2017;9:25857-69. [PMID: 28718286 DOI: 10.1021/acsami.7b07167] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
52 Chen S, Yu S, Du Z, Huang X, He M, Long S, Liu J, Lan Y, Yang D, Wang H, Li S, Chen A, Hao Y, Su Y, Wang C, Luo S. Synthesis of Mitochondria-Anchored Nitroimidazoles with a Versatile NIR Fluorophore for Hypoxic Tumor-Targeting Imaging and Chemoradiotherapy. J Med Chem 2021;64:3381-91. [PMID: 33688738 DOI: 10.1021/acs.jmedchem.0c02250] [Reference Citation Analysis]
53 Li K, Ren TB, Huan S, Yuan L, Zhang XB. Progress and Perspective of Solid-State Organic Fluorophores for Biomedical Applications. J Am Chem Soc 2021;143:21143-60. [PMID: 34878771 DOI: 10.1021/jacs.1c10925] [Reference Citation Analysis]
54 Zhang J, Zou H, Lei J, He B, He X, Sung HHY, Kwok RTK, Lam JWY, Zheng L, Tang BZ. Multifunctional Au I ‐based AIEgens: Manipulating Molecular Structures and Boosting Specific Cancer Cell Imaging and Theranostics. Angew Chem Int Ed 2020;59:7097-105. [DOI: 10.1002/anie.202000048] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
55 Liu J, Yang J, Wang J, Chang Z, Li B, Song W, Zhao Z, Lou X, Dai J, Xia F. Tetrathienylethene based red aggregation-enhanced emission probes: super red-shifted mechanochromic behavior and highly photostable cell membrane imaging. Mater Chem Front 2018;2:1126-36. [DOI: 10.1039/c8qm00008e] [Cited by in Crossref: 29] [Cited by in F6Publishing: 1] [Article Influence: 7.3] [Reference Citation Analysis]
56 Li M, Long S, Kang Y, Guo L, Wang J, Fan J, Du J, Peng X. De Novo Design of Phototheranostic Sensitizers Based on Structure-Inherent Targeting for Enhanced Cancer Ablation. J Am Chem Soc 2018;140:15820-6. [PMID: 30380856 DOI: 10.1021/jacs.8b09117] [Cited by in Crossref: 91] [Cited by in F6Publishing: 79] [Article Influence: 22.8] [Reference Citation Analysis]
57 Ma X, Li J, Lin C, Chai G, Xie Y, Huang W, Wu D, Wong W. Reversible two-channel mechanochromic luminescence for a pyridinium-based white-light emitter with room-temperature fluorescence–phosphorescence dual emission. Phys Chem Chem Phys 2019;21:14728-33. [DOI: 10.1039/c9cp02451d] [Cited by in Crossref: 12] [Article Influence: 4.0] [Reference Citation Analysis]
58 Huang X, Zhang R, Chen C, Kwok RTK, Tang BZ. Wash-free detection and bioimaging by AIEgens. Mater Chem Front 2021;5:723-43. [DOI: 10.1039/d0qm00586j] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
59 Zhu D, Zhang J, Luo G, Duo Y, Tang BZ. Bright Bacterium for Hypoxia-Tolerant Photodynamic Therapy Against Orthotopic Colon Tumors by an Interventional Method. Adv Sci (Weinh) 2021;8:e2004769. [PMID: 34145986 DOI: 10.1002/advs.202004769] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
60 Mao D, Liu B. Biology-Oriented Design Strategies of AIE Theranostic Probes. Matter 2021;4:350-76. [DOI: 10.1016/j.matt.2020.12.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
61 Huang Y, Zhang G, Zhao R, Zhang D. Aggregation-Induced Emission Luminogens for Mitochondria-Targeted Cancer Therapy. ChemMedChem 2020;15:2220-7. [PMID: 33094568 DOI: 10.1002/cmdc.202000632] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
62 Liao Y, Li B, Zhao Z, Fu Y, Tan Q, Li X, Wang W, Yin J, Shan H, Tang BZ, Huang X. Targeted Theranostics for Tuberculosis: A Rifampicin-Loaded Aggregation-Induced Emission Carrier for Granulomas Tracking and Anti-Infection. ACS Nano 2020;14:8046-58. [DOI: 10.1021/acsnano.0c00586] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
63 Qi J, Chen C, Ding D, Tang BZ. Aggregation-Induced Emission Luminogens: Union Is Strength, Gathering Illuminates Healthcare. Adv Healthcare Mater 2018;7:1800477. [DOI: 10.1002/adhm.201800477] [Cited by in Crossref: 87] [Cited by in F6Publishing: 80] [Article Influence: 21.8] [Reference Citation Analysis]
64 Klein K, He K, Younes AI, Barsoumian HB, Chen D, Ozgen T, Mosaffa S, Patel RR, Gu M, Novaes J, Narayanan A, Cortez MA, Welsh JW. Role of Mitochondria in Cancer Immune Evasion and Potential Therapeutic Approaches. Front Immunol 2020;11:573326. [PMID: 33178201 DOI: 10.3389/fimmu.2020.573326] [Reference Citation Analysis]
65 Wang J, Cui X, Li H, Xiao J, Yang J, Mu X, Liu H, Sun Y, Xue X, Liu C, Zhang X, Deng D, Bao X. Highly efficient catalytic scavenging of oxygen free radicals with graphene-encapsulated metal nanoshields. Nano Res 2018;11:2821-35. [DOI: 10.1007/s12274-017-1912-9] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
66 Liu X, Li M, Han T, Cao B, Qiu Z, Li Y, Li Q, Hu Y, Liu Z, Lam JWY, Hu X, Tang BZ. In Situ Generation of Azonia-Containing Polyelectrolytes for Luminescent Photopatterning and Superbug Killing. J Am Chem Soc 2019;141:11259-68. [DOI: 10.1021/jacs.9b04757] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 14.7] [Reference Citation Analysis]
67 Huang Y, Xiao Z, Guan Z, Shen Y, Jiang Y, Xu X, Huang Z, Zhao C. A light-triggered self-reinforced nanoagent for targeted chemo-photodynamic therapy of breast cancer bone metastases via ER stress and mitochondria mediated apoptotic pathways. J Control Release 2020;319:119-34. [PMID: 31883459 DOI: 10.1016/j.jconrel.2019.12.043] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
68 Guan Q, Zhou L, Li Y, Li W, Wang S, Song C, Dong Y. Nanoscale Covalent Organic Framework for Combinatorial Antitumor Photodynamic and Photothermal Therapy. ACS Nano 2019;13:13304-16. [DOI: 10.1021/acsnano.9b06467] [Cited by in Crossref: 93] [Cited by in F6Publishing: 69] [Article Influence: 31.0] [Reference Citation Analysis]
69 Li S, Cheng H, Xie B, Qiu W, Zeng J, Li C, Wan S, Zhang L, Liu W, Zhang X. Cancer Cell Membrane Camouflaged Cascade Bioreactor for Cancer Targeted Starvation and Photodynamic Therapy. ACS Nano 2017;11:7006-18. [DOI: 10.1021/acsnano.7b02533] [Cited by in Crossref: 389] [Cited by in F6Publishing: 369] [Article Influence: 77.8] [Reference Citation Analysis]
70 Zhou H, Yang B, Wen G, Hu X, Liu B. Assembly and disassembly activity of two AIEE model compounds and its potential application. Talanta 2018;184:394-403. [DOI: 10.1016/j.talanta.2018.03.007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
71 Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021;121:13454-619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
72 Kang Y, Yu X, Fan X, Aodenggerile, Zhao S, Tu C, Yan Z, Wang R, Li W, Qiu H. Tetramodal Imaging and Synergistic Cancer Radio-Chemotherapy Enabled by Multiple Component-Encapsulated Zeolitic Imidazolate Frameworks. ACS Nano 2020;14:4336-51. [PMID: 32275394 DOI: 10.1021/acsnano.9b09858] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
73 Wang D, Lee MMS, Xu W, Kwok RTK, Lam JWY, Tang BZ. Theranostics based on AIEgens. Theranostics 2018;8:4925-56. [PMID: 30429878 DOI: 10.7150/thno.27787] [Cited by in Crossref: 77] [Cited by in F6Publishing: 68] [Article Influence: 19.3] [Reference Citation Analysis]
74 Sargiacomo C, Stonehouse S, Moftakhar Z, Sotgia F, Lisanti MP. MitoTracker Deep Red (MTDR) Is a Metabolic Inhibitor for Targeting Mitochondria and Eradicating Cancer Stem Cells (CSCs), With Anti-Tumor and Anti-Metastatic Activity In Vivo. Front Oncol 2021;11:678343. [PMID: 34395247 DOI: 10.3389/fonc.2021.678343] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
75 Wang Y, Zhang Y, Wang J, Liang XJ. Aggregation-induced emission (AIE) fluorophores as imaging tools to trace the biological fate of nano-based drug delivery systems. Adv Drug Deliv Rev 2019;143:161-76. [PMID: 30529308 DOI: 10.1016/j.addr.2018.12.004] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 9.8] [Reference Citation Analysis]
76 Li S, Ling X, Lin Y, Qin A, Gao M, Tang BZ. In situ generation of photoactivatable aggregation-induced emission probes for organelle-specific imaging. Chem Sci 2018;9:5730-5. [PMID: 30079182 DOI: 10.1039/c8sc01887a] [Cited by in Crossref: 31] [Cited by in F6Publishing: 3] [Article Influence: 7.8] [Reference Citation Analysis]
77 Lv Z, Man Z, Cui H, Xu Z, Cao H, Li S, Liao Q, He Q, Zheng L, Fu H. Red AIE Luminogens with Tunable Organelle Specific Anchoring for Live Cell Dynamic Super Resolution Imaging. Adv Funct Mater 2021;31:2009329. [DOI: 10.1002/adfm.202009329] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
78 Zhang J, Zou H, Lei J, He B, He X, Sung HHY, Kwok RTK, Lam JWY, Zheng L, Tang BZ. Multifunctional Au I ‐based AIEgens: Manipulating Molecular Structures and Boosting Specific Cancer Cell Imaging and Theranostics. Angew Chem 2020;132:7163-71. [DOI: 10.1002/ange.202000048] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
79 Dai J, Cheng Y, Wu J, Wang Q, Wang W, Yang J, Zhao Z, Lou X, Xia F, Wang S, Tang BZ. Modular Peptide Probe for Pre/Intra/Postoperative Therapeutic to Reduce Recurrence in Ovarian Cancer. ACS Nano 2020;14:14698-714. [PMID: 33174739 DOI: 10.1021/acsnano.9b09818] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 7.5] [Reference Citation Analysis]
80 Zhai W, Zhang Y, Liu M, Zhang H, Zhang J, Li C. Universal Scaffold for an Activatable Photosensitizer with Completely Inhibited Photosensitivity. Angew Chem 2019;131:16754-62. [DOI: 10.1002/ange.201907510] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
81 Jiang YW, Gao G, Jia HR, Zhang X, Cheng X, Wang HY, Liu P, Wu FG. Palladium Nanosheets as Safe Radiosensitizers for Radiotherapy. Langmuir 2020;36:11637-44. [PMID: 32902987 DOI: 10.1021/acs.langmuir.0c02316] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
82 Liu Z, Zou H, Zhao Z, Zhang P, Shan GG, Kwok RTK, Lam JWY, Zheng L, Tang BZ. Tuning Organelle Specificity and Photodynamic Therapy Efficiency by Molecular Function Design. ACS Nano 2019;13:11283-93. [PMID: 31525947 DOI: 10.1021/acsnano.9b04430] [Cited by in Crossref: 68] [Cited by in F6Publishing: 55] [Article Influence: 22.7] [Reference Citation Analysis]
83 Gao K, Tu W, Yu X, Ahmad F, Zhang X, Wu W, An X, Chen X, Li W. W-doped TiO2 nanoparticles with strong absorption in the NIR-II window for photoacoustic/CT dual-modal imaging and synergistic thermoradiotherapy of tumors. Theranostics 2019;9:5214-26. [PMID: 31410211 DOI: 10.7150/thno.33574] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
84 Jia H, Ding D, Hu J, Dai J, Yang J, Li G, Lou X, Xia F. AIEgen-Based Lifetime-Probes for Precise Furin Quantification and Identification of Cell Subtypes. Adv Mater 2021;33:e2104615. [PMID: 34553420 DOI: 10.1002/adma.202104615] [Reference Citation Analysis]
85 Wang X, Jiang Q, Man Y, Feng S, Lee Y, Liu H. A novel amphiphilic pH-responsive AIEgen for highly sensitive detection of protamine and heparin. Sensors and Actuators B: Chemical 2018;261:233-40. [DOI: 10.1016/j.snb.2018.01.130] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
86 Wang L, Chen X, Xia Q, Liu R, Qu J. Deep-Red AIE-Active Fluorophore for Hypochlorite Detection and Bioimaging in Live Cells. Ind Eng Chem Res 2018;57:7735-41. [DOI: 10.1021/acs.iecr.8b01071] [Cited by in Crossref: 25] [Cited by in F6Publishing: 12] [Article Influence: 6.3] [Reference Citation Analysis]
87 Park MH, Jo G, Kim EJ, Jung JS, Hyun H. Tumor-targeted near-infrared fluorophore for fluorescence-guided phototherapy. Chem Commun (Camb) 2020;56:4180-3. [PMID: 32167112 DOI: 10.1039/d0cc01366h] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
88 Yu K, Pan J, Husamelden E, Zhang H, He Q, Wei Y, Tian M. Aggregation-induced Emission Based Fluorogens for Mitochondria-targeted Tumor Imaging and Theranostics. Chem Asian J 2020;15:3942-60. [PMID: 33025759 DOI: 10.1002/asia.202001100] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
89 Zhen S, Wang S, Li S, Luo W, Gao M, Ng LG, Goh CC, Qin A, Zhao Z, Liu B, Tang BZ. Efficient Red/Near-Infrared Fluorophores Based on Benzo[1,2- b :4,5- b ′]dithiophene 1,1,5,5-Tetraoxide for Targeted Photodynamic Therapy and In Vivo Two-Photon Fluorescence Bioimaging. Adv Funct Mater 2018;28:1706945. [DOI: 10.1002/adfm.201706945] [Cited by in Crossref: 67] [Cited by in F6Publishing: 47] [Article Influence: 16.8] [Reference Citation Analysis]
90 Chen Y, Li N, Wang J, Zhang X, Pan W, Yu L, Tang B. Enhancement of mitochondrial ROS accumulation and radiotherapeutic efficacy using a Gd-doped titania nanosensitizer. Theranostics 2019;9:167-78. [PMID: 30662560 DOI: 10.7150/thno.28033] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 8.0] [Reference Citation Analysis]
91 Bai D, Tian Y, Chen K, Zhang X, Wang F, Cheng Y, Zheng X, Xiao K, Dong X. Novel 6F-Iridium(III) complexes as potent theranostic agents: Hypoxia probing, radiosensitization and antiviral functionalities. Dyes and Pigments 2020;182:108635. [DOI: 10.1016/j.dyepig.2020.108635] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
92 Mishra S, Awasthi P, Singh J, Gupta RK, Singh V, Kant R, Jeet R, Goswami D, Goel A. White Light Induced E/Z-Photoisomerization of Diphenylamine-Tethered Fluorescent Stilbene Derivatives: Synthesis, Photophysical, and Electrochemical Investigation. J Org Chem 2018;83:3669-78. [DOI: 10.1021/acs.joc.8b00033] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
93 Li B, Wang D, Lee MMS, Wang W, Tan Q, Zhao Z, Tang BZ, Huang X. Fabrics Attached with Highly Efficient Aggregation-Induced Emission Photosensitizer: Toward Self-Antiviral Personal Protective Equipment. ACS Nano 2021. [PMID: 34313425 DOI: 10.1021/acsnano.1c06071] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
94 Cao H, Cheng Y, Gao H, Zhuang J, Zhang W, Bian Q, Wang F, Du Y, Li Z, Kong D, Ding D, Wang Y. In Vivo Tracking of Mesenchymal Stem Cell-Derived Extracellular Vesicles Improving Mitochondria! Function in Renal Ischemia- Reperfusion Injury. ACS Nano. 2020;14:4014-4026. [PMID: 32212674 DOI: 10.1021/acsnano.9b08207] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 12.5] [Reference Citation Analysis]
95 Taba F, Onoda A, Hasegawa U, Enoki T, Ooyama Y, Ohshita J, Hayashi T. Mitochondria-Targeting Polyamine-Protoporphyrin Conjugates for Photodynamic Therapy. ChemMedChem. 2018;13:15-19. [PMID: 28961376 DOI: 10.1002/cmdc.201700467] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
96 Xu W, He L, Xia Q, Jia C, Geng L, Yang M, Xu Z, Chen P, Cheng Y, Zhao J, Wang H, Chen H, Zhang Y, Gong S, Liu R. A far-red-emissive AIE active fluorescent probe with large stokes shift for detection of inflammatory bowel disease in vivo. J Mater Chem B 2018;6:809-15. [DOI: 10.1039/c7tb03168h] [Cited by in Crossref: 9] [Article Influence: 2.3] [Reference Citation Analysis]
97 Gao H, Bao P, Dai S, Liu R, Ji S, Zeng S, Shen J, Liu Q, Ding D. Far-Red/Near-Infrared Emissive (1,3-Dimethyl)barbituric Acid-Based AIEgens for High-Contrast Detection of Metastatic Tumors in the Lung. Chem Asian J 2019;14:871-6. [PMID: 30548916 DOI: 10.1002/asia.201801660] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
98 Wang J, Zhu X, Zhang J, Wang H, Liu G, Bu Y, Yu J, Tian Y, Zhou H. AIE-Based Theranostic Agent: In Situ Tracking Mitophagy Prior to Late Apoptosis To Guide the Photodynamic Therapy. ACS Appl Mater Interfaces 2020;12:1988-96. [DOI: 10.1021/acsami.9b15577] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
99 Gao M, Tang BZ. AIE-based cancer theranostics. Coordination Chemistry Reviews 2020;402:213076. [DOI: 10.1016/j.ccr.2019.213076] [Cited by in Crossref: 59] [Cited by in F6Publishing: 26] [Article Influence: 29.5] [Reference Citation Analysis]
100 Yu X, Li A, Zhao C, Yang K, Chen X, Li W. Ultrasmall Semimetal Nanoparticles of Bismuth for Dual-Modal Computed Tomography/Photoacoustic Imaging and Synergistic Thermoradiotherapy. ACS Nano 2017;11:3990-4001. [PMID: 28395135 DOI: 10.1021/acsnano.7b00476] [Cited by in Crossref: 187] [Cited by in F6Publishing: 161] [Article Influence: 37.4] [Reference Citation Analysis]
101 Qi J, Chen C, Zhang X, Hu X, Ji S, Kwok RTK, Lam JWY, Ding D, Tang BZ. Light-driven transformable optical agent with adaptive functions for boosting cancer surgery outcomes. Nat Commun 2018;9:1848. [PMID: 29748611 DOI: 10.1038/s41467-018-04222-8] [Cited by in Crossref: 172] [Cited by in F6Publishing: 160] [Article Influence: 43.0] [Reference Citation Analysis]
102 Zhang Y, Huang F, Ren C, Liu J, Yang L, Chen S, Chang J, Yang C, Wang W, Zhang C, Liu Q, Liang XJ, Liu J. Enhanced Radiosensitization by Gold Nanoparticles with Acid-Triggered Aggregation in Cancer Radiotherapy. Adv Sci (Weinh) 2019;6:1801806. [PMID: 31016110 DOI: 10.1002/advs.201801806] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 12.3] [Reference Citation Analysis]
103 Fu W, Yan C, Guo Z, Zhang J, Zhang H, Tian H, Zhu WH. Rational Design of Near-Infrared Aggregation-Induced-Emission-Active Probes: In Situ Mapping of Amyloid-β Plaques with Ultrasensitivity and High-Fidelity. J Am Chem Soc 2019;141:3171-7. [PMID: 30632737 DOI: 10.1021/jacs.8b12820] [Cited by in Crossref: 158] [Cited by in F6Publishing: 135] [Article Influence: 52.7] [Reference Citation Analysis]
104 Ge X, Gao M, Situ B, Feng W, He B, He X, Li S, Ou Z, Zhong Y, Lin Y, Ye X, Hu X, Tang BZ, Zheng L. One-step, rapid fluorescence sensing of fungal viability based on a bioprobe with aggregation-induced emission characteristics. Mater Chem Front 2020;4:957-64. [DOI: 10.1039/c9qm00732f] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
105 Ji S, Gao H, Mu W, Ni X, Yi X, Shen J, Liu Q, Bao P, Ding D. Enzyme-instructed self-assembly leads to the activation of optical properties for selective fluorescence detection and photodynamic ablation of cancer cells. J Mater Chem B 2018;6:2566-73. [DOI: 10.1039/c7tb02685d] [Cited by in Crossref: 20] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
106 Zhang J, Wang Q, Guo Z, Zhang S, Yan C, Tian H, Zhu W. High‐Fidelity Trapping of Spatial–Temporal Mitochondria with Rational Design of Aggregation‐Induced Emission Probes. Adv Funct Mater 2019;29:1808153. [DOI: 10.1002/adfm.201808153] [Cited by in Crossref: 46] [Cited by in F6Publishing: 37] [Article Influence: 15.3] [Reference Citation Analysis]
107 Ding Z, Ma Y, Shang H, Zhang H, Jiang S. Fluorescence Regulation and Photoresponsivity in AIEE Supramolecular Gels Based on a Cyanostilbene Modified Benzene‐1,3,5‐Tricarboxamide Derivative. Chem Eur J 2018;25:315-22. [DOI: 10.1002/chem.201804135] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 3.8] [Reference Citation Analysis]
108 Uddin A, Roy B, Jose GP, Hossain SS, Hazra P. Sensing and modulation of amyloid fibrils by photo-switchable organic dots. Nanoscale 2020;12:16805-18. [PMID: 32761038 DOI: 10.1039/d0nr04312e] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
109 Zhen S, Yi X, Zhao Z, Lou X, Xia F, Tang BZ. Drug delivery micelles with efficient near-infrared photosensitizer for combined image-guided photodynamic therapy and chemotherapy of drug-resistant cancer. Biomaterials 2019;218:119330. [DOI: 10.1016/j.biomaterials.2019.119330] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 14.7] [Reference Citation Analysis]
110 Hu R, Zhou F, Zhou T, Shen J, Wang Z, Zhao Z, Qin A, Tang BZ. Specific discrimination of gram-positive bacteria and direct visualization of its infection towards mammalian cells by a DPAN-based AIEgen. Biomaterials 2018;187:47-54. [DOI: 10.1016/j.biomaterials.2018.09.019] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 10.5] [Reference Citation Analysis]
111 He Z, Tian S, Gao Y, Meng F, Luo L. Luminescent AIE Dots for Anticancer Photodynamic Therapy. Front Chem 2021;9:672917. [PMID: 34113602 DOI: 10.3389/fchem.2021.672917] [Reference Citation Analysis]
112 Liu H, Lu C, Han L, Zhang X, Song G. Optical – Magnetic probe for evaluating cancer therapy. Coordination Chemistry Reviews 2021;441:213978. [DOI: 10.1016/j.ccr.2021.213978] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
113 Zhang T, Wen L, Liu G, Yan J, Liu X, Zheng K, Zhang N. A stable AIEgen cis -diarylethene-based ‘ESIPT’ benchmark. Chem Commun 2019;55:13713-6. [DOI: 10.1039/c9cc07434a] [Cited by in Crossref: 11] [Article Influence: 3.7] [Reference Citation Analysis]
114 Zhang L, Li Y, Che W, Zhu D, Li G, Xie Z, Song N, Liu S, Tang BZ, Liu X, Su Z, Bryce MR. AIE Multinuclear Ir(III) Complexes for Biocompatible Organic Nanoparticles with Highly Enhanced Photodynamic Performance. Adv Sci (Weinh) 2019;6:1802050. [PMID: 30886811 DOI: 10.1002/advs.201802050] [Cited by in Crossref: 38] [Cited by in F6Publishing: 26] [Article Influence: 12.7] [Reference Citation Analysis]
115 Li J, Ni X, Zhang J, Liang Y, Gao Z, Zhang X, Zheng D, Ding D. A fluorescence and photoactivity dual-activatable prodrug with self-synergistic magnification of the anticancer effect. Mater Chem Front 2019;3:1349-56. [DOI: 10.1039/c9qm00081j] [Cited by in Crossref: 13] [Article Influence: 4.3] [Reference Citation Analysis]
116 Gao Y, Wang X, He X, He Z, Yang X, Tian S, Meng F, Ding D, Luo L, Tang BZ. A Dual‐Functional Photosensitizer for Ultraefficient Photodynamic Therapy and Synchronous Anticancer Efficacy Monitoring. Adv Funct Mater 2019;29:1902673. [DOI: 10.1002/adfm.201902673] [Cited by in Crossref: 44] [Cited by in F6Publishing: 30] [Article Influence: 14.7] [Reference Citation Analysis]
117 Yu K, Zhou R, Xu Y, Zhong Y, Qian S, Zhang H, Shi H, He Q, Mao Z, Zhang H, Wei Y, Zhang H, Tian M. A Mitochondria-targeted AIEgen Labelled with 18 F for Breast Cancer Cell Imaging and Therapy. Chem Asian J 2021;16:3963-9. [PMID: 34605216 DOI: 10.1002/asia.202101029] [Reference Citation Analysis]
118 Alam P, He W, Leung NLC, Ma C, Kwok RTK, Lam JWY, Sung HHY, Williams ID, Wong KS, Tang BZ. Red AIE‐Active Fluorescent Probes with Tunable Organelle‐Specific Targeting. Adv Funct Mater 2020;30:1909268. [DOI: 10.1002/adfm.201909268] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 14.5] [Reference Citation Analysis]
119 Zhou L, Wu Y, Luo Y, Li H, Meng X, Liu C, Xiang J, Zhang P, Gong P, Cai L. Mitochondria-Localized Self-Reporting Small-Molecule-Decorated Theranostic Agents for Cancer-Organelle Transporting and Imaging. ACS Appl Bio Mater 2019;2:5164-73. [DOI: 10.1021/acsabm.9b00811] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
120 Zheng P, Ding B, Shi R, Jiang Z, Xu W, Li G, Ding J, Chen X. A Multichannel Ca2+ Nanomodulator for Multilevel Mitochondrial Destruction-Mediated Cancer Therapy. Adv Mater 2021;33:e2007426. [PMID: 33675268 DOI: 10.1002/adma.202007426] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
121 Zhu C, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission: A Trailblazing Journey to the Field of Biomedicine. ACS Appl Bio Mater 2018;1:1768-86. [DOI: 10.1021/acsabm.8b00600] [Cited by in Crossref: 102] [Cited by in F6Publishing: 67] [Article Influence: 25.5] [Reference Citation Analysis]
122 Xu H, Wang T, Yang C, Li X, Liu G, Yang Z, Singh PK, Krishnan S, Ding D. Supramolecular Nanofibers of Curcumin for Highly Amplified Radiosensitization of Colorectal Cancers to Ionizing Radiation. Adv Funct Mater 2018;28:1707140. [DOI: 10.1002/adfm.201707140] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 8.5] [Reference Citation Analysis]
123 Gu J, Yue B, Baryshnikov GV, Li Z, Zhang M, Shen S, Ågren H, Zhu L. Visualizing Material Processing via Photoexcitation-Controlled Organic-Phase Aggregation-Induced Emission. Research (Wash D C) 2021;2021:9862093. [PMID: 34212154 DOI: 10.34133/2021/9862093] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
124 Zhu D, Duo Y, Suo M, Zhao Y, Xia L, Zheng Z, Li Y, Tang BZ. Tumor‐Exocytosed Exosome/Aggregation‐Induced Emission Luminogen Hybrid Nanovesicles Facilitate Efficient Tumor Penetration and Photodynamic Therapy. Angew Chem Int Ed 2020;59:13836-43. [DOI: 10.1002/anie.202003672] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 14.0] [Reference Citation Analysis]
125 Lin F, Bao YW, Wu FG. Improving the Phototherapeutic Efficiencies of Molecular and Nanoscale Materials by Targeting Mitochondria. Molecules 2018;23:E3016. [PMID: 30453692 DOI: 10.3390/molecules23113016] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]
126 Zhao Z, Gao P, Ma L, Chen T. A highly X-ray sensitive iridium prodrug for visualized tumor radiochemotherapy. Chem Sci 2020;11:3780-9. [PMID: 34122847 DOI: 10.1039/d0sc00862a] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
127 Chen H, Wan Y, Cui X, Li S, Lee CS. Recent Advances in Hypoxia-Overcoming Strategy of Aggregation-Induced Emission Photosensitizers for Efficient Photodynamic Therapy. Adv Healthc Mater 2021;:e2101607. [PMID: 34674386 DOI: 10.1002/adhm.202101607] [Reference Citation Analysis]
128 Shi L, Li K, Liu Y, Liu X, Zhou Q, Xu Q, Chen S, Yu X. Bio-inspired assembly in a phospholipid bilayer: effective regulation of electrostatic and hydrophobic interactions for plasma membrane specific probes. Chem Commun 2020;56:3661-4. [DOI: 10.1039/d0cc00679c] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
129 Martínez-abadía M, Giménez R, Ros MB. Self-Assembled α-Cyanostilbenes for Advanced Functional Materials. Adv Mater 2018;30:1704161. [DOI: 10.1002/adma.201704161] [Cited by in Crossref: 87] [Cited by in F6Publishing: 52] [Article Influence: 17.4] [Reference Citation Analysis]
130 Li K, Wang L, Chen Z, Yang X, Yu Y, Zhang W, Wang Y, Shi Y, Loh KP, Xu Q. Photocatalytic Hydrogen Evolution under Ambient Conditions on Polymeric Carbon Nitride/Donor‐π‐Acceptor Organic Molecule Heterostructures. Adv Funct Mater 2020;30:2005106. [DOI: 10.1002/adfm.202005106] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
131 Zhuang W, Yang L, Ma B, Kong Q, Li G, Wang Y, Tang BZ. Multifunctional Two-Photon AIE Luminogens for Highly Mitochondria-Specific Bioimaging and Efficient Photodynamic Therapy. ACS Appl Mater Interfaces 2019;11:20715-24. [DOI: 10.1021/acsami.9b04813] [Cited by in Crossref: 36] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
132 Wang X, Zhang J, Wang Y, Liu Y, Li Z, Xie Z, Chen Z. Fluorescent Protein Nanovessels: A New Platform to Generate Bio-Abiotic Hybrid Materials for Bioimaging. Adv Funct Mater 2017;27:1702051. [DOI: 10.1002/adfm.201702051] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
133 Zhai W, Zhang Y, Liu M, Zhang H, Zhang J, Li C. Universal Scaffold for an Activatable Photosensitizer with Completely Inhibited Photosensitivity. Angew Chem Int Ed 2019;58:16601-9. [DOI: 10.1002/anie.201907510] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
134 Wang L, Zhang T, Huo M, Guo J, Chen Y, Xu H. Construction of Nucleus-Targeting Iridium Nanocrystals for Photonic Hyperthermia-Synergized Cancer Radiotherapy. Small 2019;15:e1903254. [PMID: 31549785 DOI: 10.1002/smll.201903254] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
135 Ma N, Liu P, He N, Gu N, Wu FG, Chen Z. Action of Gold Nanospikes-Based Nanoradiosensitizers: Cellular Internalization, Radiotherapy, and Autophagy. ACS Appl Mater Interfaces 2017;9:31526-42. [PMID: 28816044 DOI: 10.1021/acsami.7b09599] [Cited by in Crossref: 50] [Cited by in F6Publishing: 48] [Article Influence: 10.0] [Reference Citation Analysis]
136 Zhu S, Gu Z, Zhao Y. Harnessing Tumor Microenvironment for Nanoparticle-Mediated Radiotherapy. Adv Therap 2018;1:1800050. [DOI: 10.1002/adtp.201800050] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
137 Gao M, Tang BZ. Fluorescent Sensors Based on Aggregation-Induced Emission: Recent Advances and Perspectives. ACS Sens 2017;2:1382-99. [PMID: 28945357 DOI: 10.1021/acssensors.7b00551] [Cited by in Crossref: 325] [Cited by in F6Publishing: 229] [Article Influence: 65.0] [Reference Citation Analysis]
138 Ni J, Wang Y, Zhang H, Sun JZ, Tang BZ. Aggregation-Induced Generation of Reactive Oxygen Species: Mechanism and Photosensitizer Construction. Molecules 2021;26:E268. [PMID: 33430513 DOI: 10.3390/molecules26020268] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
139 Li W, Zhong D, Hua S, Du Z, Zhou M. Biomineralized Biohybrid Algae for Tumor Hypoxia Modulation and Cascade Radio-Photodynamic Therapy. ACS Appl Mater Interfaces 2020;12:44541-53. [PMID: 32935973 DOI: 10.1021/acsami.0c14400] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
140 Chen C, Ni X, Jia S, Liang Y, Wu X, Kong D, Ding D. Massively Evoking Immunogenic Cell Death by Focused Mitochondrial Oxidative Stress using an AIE Luminogen with a Twisted Molecular Structure. Adv Mater 2019;31:e1904914. [PMID: 31696981 DOI: 10.1002/adma.201904914] [Cited by in Crossref: 141] [Cited by in F6Publishing: 114] [Article Influence: 47.0] [Reference Citation Analysis]
141 Meng Z, Hou W, Zhou H, Zhou L, Chen H, Wu C. Therapeutic Considerations and Conjugated Polymer-Based Photosensitizers for Photodynamic Therapy. Macromol Rapid Commun 2018;39. [PMID: 29251383 DOI: 10.1002/marc.201700614] [Cited by in Crossref: 36] [Cited by in F6Publishing: 27] [Article Influence: 7.2] [Reference Citation Analysis]
142 Han W, Zhang S, Deng R, Du Y, Qian J, Zheng X, Xu B, Xie Z, Yan F, Tian W. Self-assembled nanostructured photosensitizer with aggregation-induced emission for enhanced photodynamic anticancer therapy. Sci China Mater 2020;63:136-46. [DOI: 10.1007/s40843-019-9477-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
143 Li X, Zhao Y, Zhang T, Xing D. Mitochondria-Specific Agents for Photodynamic Cancer Therapy: A Key Determinant to Boost the Efficacy. Adv Healthc Mater 2021;10:e2001240. [PMID: 33236531 DOI: 10.1002/adhm.202001240] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
144 Shang H, Ding Z, Shen Y, Yang B, Liu M, Jiang S. Multi-color tunable circularly polarized luminescence in one single AIE system. Chem Sci 2020;11:2169-74. [PMID: 34123307 DOI: 10.1039/c9sc05643b] [Cited by in Crossref: 26] [Cited by in F6Publishing: 2] [Article Influence: 13.0] [Reference Citation Analysis]
145 Zhang Y, Wang Y, Wang J, Liang X. Improved pharmaceutical research and development with AIE-based nanostructures. Mater Horiz 2018;5:799-812. [DOI: 10.1039/c8mh00648b] [Cited by in Crossref: 17] [Article Influence: 4.3] [Reference Citation Analysis]