BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jiang N, Ahmed R, Damayantharan M, Ünal B, Butt H, Yetisen AK. Lateral and Vertical Flow Assays for Point-of-Care Diagnostics. Adv Healthc Mater 2019;8:e1900244. [PMID: 31081270 DOI: 10.1002/adhm.201900244] [Cited by in Crossref: 59] [Cited by in F6Publishing: 58] [Article Influence: 19.7] [Reference Citation Analysis]
Number Citing Articles
1 Li W, Gao T, Lou C, Wang H, Liu Y, Cao A. Biotinylated Au Nanoparticle-Based Artificial Antibody for Detection of Lysozyme by the Lateral Flow Immunoassay and Enzyme-Linked Immunosorbent Assay. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c02268] [Reference Citation Analysis]
2 Li J, Yuan W, Luo SL, Bezdek MJ, Peraire-Bueno A, Swager TM. Wireless Lateral Flow Device for Biosensing. J Am Chem Soc 2022. [PMID: 35976081 DOI: 10.1021/jacs.2c06579] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Pawley DC, Dikici E, Deo SK, Raccamarich P, Fischl MA, Alcaide M, Daunert S. Rapid Point-of-Care Test Kit for Bacterial Vaginosis: Detection of Vaginolysin and Clue Cells Using Paper Strips and a Smartphone. Anal Chem 2022. [PMID: 35943181 DOI: 10.1021/acs.analchem.2c02094] [Reference Citation Analysis]
4 Mohammad N, Katkam SS, Wei Q. Recent Advances in Clustered Regularly Interspaced Short Palindromic Repeats-Based Biosensors for Point-of-Care Pathogen Detection. CRISPR J 2022. [PMID: 35856644 DOI: 10.1089/crispr.2021.0146] [Reference Citation Analysis]
5 Thongkhao K, Tungphatthong C, Sukrong S. A PCR-lateral flow immunochromatographic assay (PCR-LFA) for detecting Aristolochia species, the plants responsible for aristolochic acid nephropathy. Sci Rep 2022;12:12188. [PMID: 35842504 DOI: 10.1038/s41598-022-16528-1] [Reference Citation Analysis]
6 Ansermino JM; The Digital Diagnostics for Africa Network. The potential of digital molecular diagnostics for infectious diseases in sub-Saharan Africa. PLOS Digit Health 2022;1:e0000064. [DOI: 10.1371/journal.pdig.0000064] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 González del Campo MM, Vaquer A, de la Rica R. Polymer Components for Paper‐Based Analytical Devices. Adv Materials Technologies. [DOI: 10.1002/admt.202200140] [Reference Citation Analysis]
8 Tahmasebi M, Bamdad T, Svendsen WE, Forouzandeh-Moghadam M. An enzymatic nucleic acid vertical flow assay. Anal Bioanal Chem 2022. [PMID: 35352165 DOI: 10.1007/s00216-022-03988-7] [Reference Citation Analysis]
9 Woolf MS, Dignan LM, Karas SM, Lewis HM, Hadley KC, Nauman AQ, Geise GM, Landers JP. Characterization of a Centrifugal Microfluidic Orthogonal Flow Platform. Micromachines 2022;13:487. [DOI: 10.3390/mi13030487] [Reference Citation Analysis]
10 Wu P, Xue F, Zuo W, Yang J, Liu X, Jiang H, Dai J, Ju Y. A Universal Bacterial Catcher Au-PMBA-Nanocrab-Based Lateral Flow Immunoassay for Rapid Pathogens Detection. Anal Chem 2022. [PMID: 35244383 DOI: 10.1021/acs.analchem.1c04909] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
11 Wang J, Zhu L, Li T, Li X, Huang K, Xu W. Multiple functionalities of functional nucleic acids for developing high-performance lateral flow assays. TrAC Trends in Analytical Chemistry 2022;148:116529. [DOI: 10.1016/j.trac.2022.116529] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Grundy BS, Houpt ER. Opportunities and challenges to accurate diagnosis and management of acute febrile illness in adults and adolescents: A review. Acta Trop 2022;227:106286. [PMID: 34953775 DOI: 10.1016/j.actatropica.2021.106286] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Li D, Huang M, Shi Z, Huang L, Jin J, Jiang C, Yu W, Guo Z, Wang J. Ultrasensitive Competitive Lateral Flow Immunoassay with Visual Semiquantitative Inspection and Flexible Quantification Capabilities. Anal Chem 2022. [PMID: 35107983 DOI: 10.1021/acs.analchem.1c05364] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
14 Chen L, Zhou S, Zhu W, Liu S, Zhang J, Zhuang H, Zhang J, Li Y, Gao F. Highly Sensitive Lanthanide-Doped Nanoparticles-Based Point-of-Care Diagnosis of Human Cardiac Troponin I. IJN 2022;Volume 17:635-46. [DOI: 10.2147/ijn.s346415] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Wang Z, Zhao J, Xu X, Guo L, Xu L, Sun M, Hu S, Kuang H, Xu C, Li A. An Overview for the Nanoparticles-Based Quantitative Lateral Flow Assay. Small Methods 2022;6:e2101143. [PMID: 35041285 DOI: 10.1002/smtd.202101143] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
16 Ouyang H, Xian J, Luo S, Zhang L, Wang W, Fu Z. Emitter-Quencher Pair of Single Atomic Co Sites and Monolayer Titanium Carbide MXenes for Luminol Chemiluminescent Reactions. ACS Appl Mater Interfaces 2021;13:60945-54. [PMID: 34914377 DOI: 10.1021/acsami.1c20489] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
17 Pan J, He Q, Lao Z, Zou Y, Su J, Li Q, Chen Z, Cui X, Cai Y, Zhao S. A bifunctional immunosensor based on osmium nano-hydrangeas as a catalytic chromogenic and tinctorial signal output for folic acid detection. Analyst 2021;147:55-65. [PMID: 34821249 DOI: 10.1039/d1an01432c] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Chen B, Johnson ZT, Sanborn D, Hjort RG, Garland NT, Soares RRA, Van Belle B, Jared N, Li J, Jing D, Smith EA, Gomes CL, Claussen JC. Tuning the Structure, Conductivity, and Wettability of Laser-Induced Graphene for Multiplexed Open Microfluidic Environmental Biosensing and Energy Storage Devices. ACS Nano 2021. [PMID: 34812606 DOI: 10.1021/acsnano.1c04197] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
19 Rink S, Kaiser B, Steiner MS, Duerkop A, Baeumner AJ. Highly sensitive interleukin 6 detection by employing commercially ready liposomes in an LFA format. Anal Bioanal Chem 2021. [PMID: 34773470 DOI: 10.1007/s00216-021-03750-5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB. The Potential Use of Isothermal Amplification Assays for In-Field Diagnostics of Plant Pathogens. Plants (Basel) 2021;10:2424. [PMID: 34834787 DOI: 10.3390/plants10112424] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
21 Babaei-afrapoli Z, Faridi-majidi R, Negahdari B, Dabir K, Tavoosidana G. Evaluating gold nanoparticles parameters in competitive Immunochromatographich Assay via Dot Blot and Bradford Assay as new approaches. Microchemical Journal 2021;170:106525. [DOI: 10.1016/j.microc.2021.106525] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
22 Saidykhan J, Selevic L, Cinti S, May JE, Killard AJ. Paper-Based Lateral Flow Device for the Sustainable Measurement of Human Plasma Fibrinogen in Low-Resource Settings. Anal Chem 2021;93:14007-13. [PMID: 34615344 DOI: 10.1021/acs.analchem.1c03665] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Xiao W, Liang J, Zhang Y, Zhang Y, Teng P, Cao D, Zou S, Xu T, Zhao J, Tang Y. CD8 cell counting in whole blood by a paper-based time-resolved fluorescence lateral flow immunoassay. Anal Chim Acta 2021;1179:338820. [PMID: 34535251 DOI: 10.1016/j.aca.2021.338820] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
24 Napione L. Integrated Nanomaterials and Nanotechnologies in Lateral Flow Tests for Personalized Medicine Applications. Nanomaterials (Basel) 2021;11:2362. [PMID: 34578678 DOI: 10.3390/nano11092362] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
25 Jiang N, Tansukawat ND, Gonzalez-Macia L, Ates HC, Dincer C, Güder F, Tasoglu S, Yetisen AK. Low-Cost Optical Assays for Point-of-Care Diagnosis in Resource-Limited Settings. ACS Sens 2021;6:2108-24. [PMID: 34076428 DOI: 10.1021/acssensors.1c00669] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 16.0] [Reference Citation Analysis]
26 Kabir MA, Zilouchian H, Younas MA, Asghar W. Dengue Detection: Advances in Diagnostic Tools from Conventional Technology to Point of Care. Biosensors (Basel) 2021;11:206. [PMID: 34201849 DOI: 10.3390/bios11070206] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
27 Tang S, Liu H, Tian Y, Chen D, Gu C, Wei G, Jiang T, Zhou J. Surface-enhanced Raman scattering-based lateral flow immunoassay mediated by hydrophilic-hydrophobic Ag-modified PMMA substrate. Spectrochim Acta A Mol Biomol Spectrosc 2021;262:120092. [PMID: 34175758 DOI: 10.1016/j.saa.2021.120092] [Cited by in Crossref: 1] [Cited by in F6Publishing: 18] [Article Influence: 1.0] [Reference Citation Analysis]
28 He K, Jiang Y, Wang T, Liu Z, Wang M, Pan L, Chen X. Assemblies and composites of gold nanostructures for functional devices. Aggregate. [DOI: 10.1002/agt2.57] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Guimarães CF, Ahmed R, Marques AP, Reis RL, Demirci U. Engineering Hydrogel-Based Biomedical Photonics: Design, Fabrication, and Applications. Adv Mater 2021;33:e2006582. [PMID: 33929771 DOI: 10.1002/adma.202006582] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 12.0] [Reference Citation Analysis]
30 Devadhasan JP, Gu J, Chen P, Smith S, Thomas B, Gates-Hollingsworth M, Hau D, Pandit S, AuCoin D, Zenhausern F. Critical Comparison between Large and Mini Vertical Flow Immunoassay Platforms for Yersinia Pestis Detection. Anal Chem 2021;93:9337-44. [PMID: 33989499 DOI: 10.1021/acs.analchem.0c05278] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
31 Lopes-Luz L, Mendonça M, Bernardes Fogaça M, Kipnis A, Bhunia AK, Bührer-Sékula S. Listeria monocytogenes: review of pathogenesis and virulence determinants-targeted immunological assays. Crit Rev Microbiol 2021;47:647-66. [PMID: 33896354 DOI: 10.1080/1040841X.2021.1911930] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
32 Ünal B, Camci-Unal G, Mahmud K. Paper-Based Microfluidic Devices: Low-Cost Platforms for Rapid Biochemical Detection. Mil Med 2021;186:716-21. [PMID: 33499548 DOI: 10.1093/milmed/usaa473] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
33 Suea-Ngam A, Choopara I, Li S, Schmelcher M, Somboonna N, Howes PD, deMello AJ. In Situ Nucleic Acid Amplification and Ultrasensitive Colorimetric Readout in a Paper-Based Analytical Device Using Silver Nanoplates. Adv Healthc Mater 2021;10:e2001755. [PMID: 33251714 DOI: 10.1002/adhm.202001755] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
34 Liu Y, Zhan L, Qin Z, Sackrison J, Bischof JC. Ultrasensitive and Highly Specific Lateral Flow Assays for Point-of-Care Diagnosis. ACS Nano 2021;15:3593-611. [PMID: 33607867 DOI: 10.1021/acsnano.0c10035] [Cited by in Crossref: 63] [Cited by in F6Publishing: 72] [Article Influence: 63.0] [Reference Citation Analysis]
35 Zheng C, Wang K, Zheng W, Cheng Y, Li T, Cao B, Jin Q, Cui D. Rapid developments in lateral flow immunoassay for nucleic acid detection. Analyst 2021;146:1514-28. [PMID: 33595550 DOI: 10.1039/d0an02150d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
36 Kabir MA, Ahmed R, Iqbal SMA, Chowdhury R, Paulmurugan R, Demirci U, Asghar W. Diagnosis for COVID-19: current status and future prospects. Expert Rev Mol Diagn 2021;21:269-88. [PMID: 33621145 DOI: 10.1080/14737159.2021.1894930] [Cited by in Crossref: 5] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
37 Costa-Rama E, Fernández-Abedul MT. Paper-Based Screen-Printed Electrodes: A New Generation of Low-Cost Electroanalytical Platforms. Biosensors (Basel) 2021;11:51. [PMID: 33669316 DOI: 10.3390/bios11020051] [Cited by in Crossref: 3] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
38 Dabbagh SR, Becher E, Ghaderinezhad F, Havlucu H, Ozcan O, Ozkan M, Yetisen AK, Tasoglu S. Increasing the packing density of assays in paper-based microfluidic devices. Biomicrofluidics 2021;15:011502. [PMID: 33569089 DOI: 10.1063/5.0042816] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
39 Huang Y, Xu T, Luo Y, Liu C, Gao X, Cheng Z, Wen Y, Zhang X. Ultra-Trace Protein Detection by Integrating Lateral Flow Biosensor with Ultrasound Enrichment. Anal Chem 2021;93:2996-3001. [DOI: 10.1021/acs.analchem.0c05032] [Cited by in Crossref: 4] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
40 Guo X, Yuan Y, Liu J, Fu S, Zhang J, Mei Q, Zhang Y. Single-Line Flow Assay Platform Based on Orthogonal Emissive Upconversion Nanoparticles. Anal Chem 2021;93:3010-7. [DOI: 10.1021/acs.analchem.0c05061] [Cited by in Crossref: 2] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
41 Chen C, Yu X, Han D, Ai J, Ke Y, Wang Z, Meng G. Non-CTAB synthesized gold nanorods-based immunochromatographic assay for dual color and on-site detection of aflatoxins and zearalenones in maize. Food Control 2020;118:107418. [DOI: 10.1016/j.foodcont.2020.107418] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
42 Nguyen NNT, McCarthy C, Lantigua D, Camci-Unal G. Development of Diagnostic Tests for Detection of SARS-CoV-2. Diagnostics (Basel) 2020;10:E905. [PMID: 33167445 DOI: 10.3390/diagnostics10110905] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
43 Ma Y, Liu H, Chen Y, Gu C, Wei G, Jiang T. Improved lateral flow strip based on hydrophilic−hydrophobic SERS substrate for ultra−sensitive and quantitative immunoassay. Applied Surface Science 2020;529:147121. [DOI: 10.1016/j.apsusc.2020.147121] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
44 Parolo C, Sena-Torralba A, Bergua JF, Calucho E, Fuentes-Chust C, Hu L, Rivas L, Álvarez-Diduk R, Nguyen EP, Cinti S, Quesada-González D, Merkoçi A. Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nat Protoc 2020;15:3788-816. [PMID: 33097926 DOI: 10.1038/s41596-020-0357-x] [Cited by in Crossref: 28] [Cited by in F6Publishing: 76] [Article Influence: 14.0] [Reference Citation Analysis]
45 Rafat N, Satoh P, Calabrese Barton S, Worden RM. Integrated Experimental and Theoretical Studies on an Electrochemical Immunosensor. Biosensors (Basel) 2020;10:E144. [PMID: 33080847 DOI: 10.3390/bios10100144] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
46 Eamsobhana P, Tungtrongchitr A, Yong HS, Prasartvit A, Wanachiwanawin D, Gan XX. Sandwich dot-immunogold filtration assay (DIGFA) for specific immunodiagnosis of active neuroangiostrongyliasis. Parasitology 2021;148:234-9. [PMID: 33004092 DOI: 10.1017/S0031182020001894] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 Flynn C, Ignaszak A. Lyme Disease Biosensors: A Potential Solution to a Diagnostic Dilemma. Biosensors (Basel) 2020;10:E137. [PMID: 32998254 DOI: 10.3390/bios10100137] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
48 Shi F, Zhao Y, Sun Y, Chen C. Development and application of a colloidal carbon test strip for the detection of antibodies against Mycoplasma bovis. World J Microbiol Biotechnol 2020;36:157. [PMID: 32964289 DOI: 10.1007/s11274-020-02930-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
49 Ouyang M, Tu D, Tong L, Sarwar M, Bhimaraj A, Li C, Coté GL, Di Carlo D. A review of biosensor technologies for blood biomarkers toward monitoring cardiovascular diseases at the point-of-care. Biosens Bioelectron 2021;171:112621. [PMID: 33120234 DOI: 10.1016/j.bios.2020.112621] [Cited by in Crossref: 8] [Cited by in F6Publishing: 26] [Article Influence: 4.0] [Reference Citation Analysis]
50 Toubanaki DK, Karagouni E. Paper Lateral Flow Biosensor for Nodavirus Reverse Transcribed RNA Detection. Bio Protoc 2020;10:e3711. [PMID: 33659375 DOI: 10.21769/BioProtoc.3711] [Reference Citation Analysis]
51 Hansen GT. Point-of-Care Testing in Microbiology: A Mechanism for Improving Patient Outcomes. Clin Chem 2020;66:124-37. [PMID: 31811002 DOI: 10.1373/clinchem.2019.304782] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
52 Byzova NA, Zherdev AV, Khlebtsov BN, Burov AM, Khlebtsov NG, Dzantiev BB. Advantages of Highly Spherical Gold Nanoparticles as Labels for Lateral Flow Immunoassay. Sensors (Basel) 2020;20:E3608. [PMID: 32604874 DOI: 10.3390/s20123608] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
53 Rossetti R, Smith T, Luo W, Masciotra S. Performance evaluation of the MedMira reveal G4 LAB S/P and POC HIV antibody rapid screening tests using plasma and whole blood specimens. J Clin Virol 2020;127:104344. [PMID: 32305880 DOI: 10.1016/j.jcv.2020.104344] [Reference Citation Analysis]
54 Li Z, You M, Bai Y, Gong Y, Xu F. Equipment‐Free Quantitative Readout in Paper‐Based Point‐of‐Care Testing. Small Methods 2020;4:1900459. [DOI: 10.1002/smtd.201900459] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 11.5] [Reference Citation Analysis]
55 Xu H, Xia A, Luo J, Gao M, Liao R, Li F, Zhong Q, Zhang W, Wang Y, Cui J, Fu W, Chang K, Gan M, Jiang W, Chen M. A sample-to-answer quantitative platform for point-of-care testing of biochemical markers in whole blood. Sensors and Actuators B: Chemical 2020;308:127750. [DOI: 10.1016/j.snb.2020.127750] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
56 Prajapati A, Verma N, Pandya A. Highly sensitive vertical flow based point-of-care immunokit for rapid and early detection of human CRP as a cardiovascular risk factor. Biomed Microdevices 2020;22. [DOI: 10.1007/s10544-020-00480-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
57 Qu Z, Wang K, Alfranca G, de la Fuente JM, Cui D. A plasmonic thermal sensing based portable device for lateral flow assay detection and quantification. Nanoscale Res Lett 2020;15:10. [PMID: 31933217 DOI: 10.1186/s11671-019-3240-3] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
58 Roh YH, Lee HJ, Kim JY, Kim HU, Kim SM, Bong KW. Precipitation-based colorimetric multiplex immunoassay in hydrogel particles. Lab Chip 2020;20:2841-50. [DOI: 10.1039/d0lc00325e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]