BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Qi J, Chen C, Ding D, Tang BZ. Aggregation-Induced Emission Luminogens: Union Is Strength, Gathering Illuminates Healthcare. Adv Healthcare Mater 2018;7:1800477. [DOI: 10.1002/adhm.201800477] [Cited by in Crossref: 87] [Cited by in F6Publishing: 80] [Article Influence: 21.8] [Reference Citation Analysis]
Number Citing Articles
1 Roy E, Nagar A, Chaudhary S, Pal S. AIEgen‐Based Fluorescent Nanomaterials for Bacterial Detection and its Inhibition. ChemistrySelect 2020;5:722-35. [DOI: 10.1002/slct.201904092] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
2 Xu Y, Yang W, Yao D, Bian K, Zeng W, Liu K, Wang D, Zhang B. An aggregation-induced emission dye-powered afterglow luminogen for tumor imaging. Chem Sci 2020;11:419-28. [PMID: 32190262 DOI: 10.1039/c9sc04901k] [Cited by in Crossref: 16] [Cited by in F6Publishing: 1] [Article Influence: 5.3] [Reference Citation Analysis]
3 Jing L, Yang C, Zhang P, Zeng J, Li Z, Gao M. Nanoparticles weaponized with built‐in functions for imaging‐guided cancer therapy. View 2020;1. [DOI: 10.1002/viw2.19] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
4 Khorloo M, Cheng Y, Zhang H, Chen M, Sung HHY, Williams ID, Lam JWY, Tang BZ. Polymorph selectivity of an AIE luminogen under nano-confinement to visualize polymer microstructures. Chem Sci 2019;11:997-1005. [PMID: 34084354 DOI: 10.1039/c9sc04239c] [Cited by in Crossref: 21] [Article Influence: 7.0] [Reference Citation Analysis]
5 Niu G, Zhang R, Gu Y, Wang J, Ma C, Kwok RTK, Lam JWY, Sung HH, Williams ID, Wong KS, Yu X, Tang BZ. Highly photostable two-photon NIR AIEgens with tunable organelle specificity and deep tissue penetration. Biomaterials 2019;208:72-82. [PMID: 30999153 DOI: 10.1016/j.biomaterials.2019.04.002] [Cited by in Crossref: 43] [Cited by in F6Publishing: 35] [Article Influence: 14.3] [Reference Citation Analysis]
6 Wang J, Zhang L, Li Z. Aggregation-Induced Emission Luminogens with Photoresponsive Behaviors for Biomedical Applications. Adv Healthc Mater 2021;10:e2101169. [PMID: 34783194 DOI: 10.1002/adhm.202101169] [Reference Citation Analysis]
7 Che S, Zhang L, Wang T, Su D, Wang C. Graphitic Carbon Nitride‐Based Photocatalysts for Biological Applications. Advanced Sustainable Systems 2022;6:2100294. [DOI: 10.1002/adsu.202100294] [Reference Citation Analysis]
8 Chen C, Ou H, Liu R, Ding D. Regulating the Photophysical Property of Organic/Polymer Optical Agents for Promoted Cancer Phototheranostics. Adv Mater 2020;32:e1806331. [PMID: 30924971 DOI: 10.1002/adma.201806331] [Cited by in Crossref: 140] [Cited by in F6Publishing: 116] [Article Influence: 46.7] [Reference Citation Analysis]
9 Chen C, Ni X, Tian H, Liu Q, Guo D, Ding D. Calixarene‐Based Supramolecular AIE Dots with Highly Inhibited Nonradiative Decay and Intersystem Crossing for Ultrasensitive Fluorescence Image‐Guided Cancer Surgery. Angew Chem 2020;132:10094-8. [DOI: 10.1002/ange.201916430] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
10 Xiong W, Wang L, Chen X, Tang H, Cao D, Zhang G, Chen W. Pyridinium-substituted tetraphenylethylene salt-based photosensitizers by varying counter anions: a highly efficient photodynamic therapy for cancer cell ablation and bacterial inactivation. J Mater Chem B 2020;8:5234-44. [DOI: 10.1039/d0tb00888e] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
11 Chen X, Gao H, Deng Y, Jin Q, Ji J, Ding D. Supramolecular Aggregation-Induced Emission Nanodots with Programmed Tumor Microenvironment Responsiveness for Image-Guided Orthotopic Pancreatic Cancer Therapy. ACS Nano 2020;14:5121-34. [DOI: 10.1021/acsnano.0c02197] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 13.5] [Reference Citation Analysis]
12 Qi J, Ou H, Liu Q, Ding D. Gathering brings strength: How organic aggregates boost disease phototheranostics. Aggregate 2021;2:95-113. [DOI: 10.1002/agt2.25] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 13.0] [Reference Citation Analysis]
13 Zhang H, Xie W, Chen M, Zhu L, Feng Z, Wang Y, Xi W, Tang BZ, Qian J. Aggregation-induced emission nanoparticles for in vivo three-photon fluorescence microscopic rat brain angiography. J Innov Opt Health Sci 2019;12:1950012. [DOI: 10.1142/s1793545819500123] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
14 Ni J, Min T, Li Y, Zha M, Zhang P, Ho CL, Li K. Planar AIEgens with Enhanced Solid‐State Luminescence and ROS Generation for Multidrug‐Resistant Bacteria Treatment. Angew Chem Int Ed 2020;59:10179-85. [DOI: 10.1002/anie.202001103] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 12.5] [Reference Citation Analysis]
15 He B, Situ B, Zhao Z, Zheng L. Promising Applications of AIEgens in Animal Models. Small Methods 2020;4:1900583. [DOI: 10.1002/smtd.201900583] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
16 Ou H, Dai S, Liu R, Ding D. Manipulating the intramolecular motion of AIEgens for boosted biomedical applications. Sci China Chem 2019;62:929-32. [DOI: 10.1007/s11426-019-9497-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 4.7] [Reference Citation Analysis]
17 Li Z, Ji X, Xie H, Tang BZ. Aggregation-Induced Emission-Active Gels: Fabrications, Functions, and Applications. Adv Mater 2021;33:e2100021. [PMID: 34216407 DOI: 10.1002/adma.202100021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Wu T, Huang J, Yan Y. Self-Assembly of Aggregation-Induced-Emission Molecules. Chem Asian J 2019;14:730-50. [PMID: 30839162 DOI: 10.1002/asia.201801884] [Cited by in Crossref: 41] [Cited by in F6Publishing: 19] [Article Influence: 13.7] [Reference Citation Analysis]
19 Wan H, Zhou S, Gu P, Zhou F, Lyu D, Xu Q, Wang A, Shi H, Xu Q, Lu J. AIE-active polysulfates via a sulfur( vi ) fluoride exchange (SuFEx) click reaction and investigation of their two-photon fluorescence and cyanide detection in water and in living cells. Polym Chem 2020;11:1033-42. [DOI: 10.1039/c9py01448a] [Cited by in Crossref: 10] [Article Influence: 5.0] [Reference Citation Analysis]
20 Che W, Zhang L, Li Y, Zhu D, Xie Z, Li G, Zhang P, Su Z, Dou C, Tang BZ. Ultrafast and Noninvasive Long-Term Bioimaging with Highly Stable Red Aggregation-Induced Emission Nanoparticles. Anal Chem 2019;91:3467-74. [DOI: 10.1021/acs.analchem.8b05024] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 10.0] [Reference Citation Analysis]
21 Niu G, Zhang R, Shi X, Park H, Xie S, Kwok RT, Lam JW, Tang BZ. AIE luminogens as fluorescent bioprobes. TrAC Trends in Analytical Chemistry 2020;123:115769. [DOI: 10.1016/j.trac.2019.115769] [Cited by in Crossref: 34] [Cited by in F6Publishing: 21] [Article Influence: 17.0] [Reference Citation Analysis]
22 Wu Y, Jin P, Gu K, Shi C, Guo Z, Yu Z, Zhu W. Broadening AIEgen application: rapid and portable sensing of foodstuff hazards in deep-frying oil. Chem Commun 2019;55:4087-90. [DOI: 10.1039/c9cc01172b] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 3.7] [Reference Citation Analysis]
23 Qi J, Duan X, Cai Y, Jia S, Chen C, Zhao Z, Li Y, Peng HQ, Kwok RTK, Lam JWY, Ding D, Tang BZ. Simultaneously boosting the conjugation, brightness and solubility of organic fluorophores by using AIEgens. Chem Sci 2020;11:8438-47. [PMID: 34123103 DOI: 10.1039/d0sc03423a] [Cited by in Crossref: 10] [Article Influence: 5.0] [Reference Citation Analysis]
24 Qi J, Duan X, Liu W, Li Y, Cai Y, Lam JW, Kwok RT, Ding D, Tang BZ. Dragonfly-shaped near-infrared AIEgen with optimal fluorescence brightness for precise image-guided cancer surgery. Biomaterials 2020;248:120036. [DOI: 10.1016/j.biomaterials.2020.120036] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 12.0] [Reference Citation Analysis]
25 Yang Z, Fan X, Liu X, Chu Y, Zhang Z, Hu Y, Lin H, Qian J, Hua J. Aggregation-induced emission fluorophores based on strong electron-acceptor 2,2'-(anthracene-9,10-diylidene) dimalononitrile for biological imaging in the NIR-II window. Chem Commun (Camb) 2021;57:3099-102. [PMID: 33625440 DOI: 10.1039/d1cc00742d] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
26 Gharieh A, Khoee S, Mahdavian AR. Emulsion and miniemulsion techniques in preparation of polymer nanoparticles with versatile characteristics. Adv Colloid Interface Sci 2019;269:152-86. [PMID: 31082544 DOI: 10.1016/j.cis.2019.04.010] [Cited by in Crossref: 30] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
27 Chen C, Ni X, Tian HW, Liu Q, Guo DS, Ding D. Calixarene-Based Supramolecular AIE Dots with Highly Inhibited Nonradiative Decay and Intersystem Crossing for Ultrasensitive Fluorescence Image-Guided Cancer Surgery. Angew Chem Int Ed Engl 2020;59:10008-12. [PMID: 31981392 DOI: 10.1002/anie.201916430] [Cited by in Crossref: 106] [Cited by in F6Publishing: 69] [Article Influence: 53.0] [Reference Citation Analysis]
28 Wang B, Wu H, Hu R, Liu X, Liu Z, Wang Z, Qin A, Tang BZ. Cationic Tricyclic AIEgens for Concomitant Bacterial Discrimination and Inhibition. Adv Healthc Mater 2021;10:e2100136. [PMID: 34019741 DOI: 10.1002/adhm.202100136] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Li Z, Liu P, Ji X, Gong J, Hu Y, Wu W, Wang X, Peng HQ, Kwok RTK, Lam JWY, Lu J, Tang BZ. Bioinspired Simultaneous Changes in Fluorescence Color, Brightness, and Shape of Hydrogels Enabled by AIEgens. Adv Mater 2020;32:e1906493. [PMID: 32022969 DOI: 10.1002/adma.201906493] [Cited by in Crossref: 48] [Cited by in F6Publishing: 24] [Article Influence: 24.0] [Reference Citation Analysis]
30 Wang L, Huang Y, Yu Y, Zhong H, Xiao H, Zhang G, Zhang D. Photosensitizer with High Efficiency Generated in Cells via Light-Induced Self-Oligomerization of 4,6-Dibromothieno[3,4-b]thiophene Compound Entailing a Triphenyl Phosphonium Group. Adv Healthc Mater 2021;:e2100896. [PMID: 34494390 DOI: 10.1002/adhm.202100896] [Reference Citation Analysis]
31 Patil S, Pandey S, Singh A, Radhakrishna M, Basu S. Hydrazide-Hydrazone Small Molecules as AIEgens: Illuminating Mitochondria in Cancer Cells. Chemistry 2019;25:8229-35. [PMID: 30969447 DOI: 10.1002/chem.201901074] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
32 Sengottuvelu D, Kachwal V, Raichure P, Raghav T, Laskar IR. Aggregation-Induced Enhanced Emission (AIEE)-Active Conjugated Mesoporous Oligomers (CMOs) with Improved Quantum Yield and Low-Cost Detection of a Trace Amount of Nitroaromatic Explosives. ACS Appl Mater Interfaces 2020;12:31875-86. [DOI: 10.1021/acsami.0c05273] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
33 Zhao C, Wang K, Wang C, He X, Li X. Cooling-Induced NIR Emission Enhancement and Targeting Fluorescence Imaging of Biperylene Monoimide and Glycodendrimer Conjugates. ACS Macro Lett 2019;8:381-6. [DOI: 10.1021/acsmacrolett.9b00095] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
34 Peng H, Liu B, Wei P, Zhang P, Zhang H, Zhang J, Li K, Li Y, Cheng Y, Lam JWY, Zhang W, Lee C, Tang BZ. Visualizing the Initial Step of Self-Assembly and the Phase Transition by Stereogenic Amphiphiles with Aggregation-Induced Emission. ACS Nano 2019;13:839-46. [DOI: 10.1021/acsnano.8b08358] [Cited by in Crossref: 37] [Cited by in F6Publishing: 25] [Article Influence: 9.3] [Reference Citation Analysis]
35 Li H, Shu H, Liu Y, Wu X, Tian H, Tong H, Wang L. Aggregation‐Induced Emission of Highly Planar Enaminone Derivatives: Unexpected Fluorescence Enhancement by Bromine Substitution. Advanced Optical Materials 2019;7:1801719. [DOI: 10.1002/adom.201801719] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
36 Liao G, He F, Li Q, Zhong L, Zhao R, Che H, Gao H, Fang B. Emerging graphitic carbon nitride-based materials for biomedical applications. Progress in Materials Science 2020;112:100666. [DOI: 10.1016/j.pmatsci.2020.100666] [Cited by in Crossref: 53] [Cited by in F6Publishing: 18] [Article Influence: 26.5] [Reference Citation Analysis]
37 Krishnaveni K, Gurusamy S, Sathish V, Thanasekaran P, Mathavan A. Selective anions mediated fluorescence "turn-on", aggregation induced emission (AIE) and lysozyme targeting properties of pyrene-naphthalene sulphonyl conjugate. Spectrochim Acta A Mol Biomol Spectrosc 2021;252:119537. [PMID: 33611147 DOI: 10.1016/j.saa.2021.119537] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 He W, Zhang T, Bai H, Kwok RTK, Lam JWY, Tang BZ. Recent Advances in Aggregation-Induced Emission Materials and Their Biomedical and Healthcare Applications. Adv Healthc Mater 2021;:e2101055. [PMID: 34418306 DOI: 10.1002/adhm.202101055] [Reference Citation Analysis]
39 Dong Z, Wang Y, Wang C, Meng H, Li Y, Wang C. Cationic Peptidopolysaccharide with an Intrinsic AIE Effect for Combating Bacteria and Multicolor Imaging. Adv Healthcare Mater 2020;9:2000419. [DOI: 10.1002/adhm.202000419] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
40 Xu W, Wang D, Tang BZ. NIR‐II AIEgens: A Win–Win Integration towards Bioapplications. Angew Chem 2021;133:7552-63. [DOI: 10.1002/ange.202005899] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
41 Guo M, Song H, Li K, Ma M, Liu Y, Fu Q, He Z. A new approach to developing diagnostics and therapeutics: Aggregation-induced emission-based fluorescence turn-on. Med Res Rev 2020;40:27-53. [PMID: 31070260 DOI: 10.1002/med.21595] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
42 Qin W, Alifu N, Cai Y, Lam JWY, He X, Su H, Zhang P, Qian J, Tang BZ. Synthesis of an efficient far-red/near-infrared luminogen with AIE characteristics for in vivo bioimaging applications. Chem Commun (Camb) 2019;55:5615-8. [PMID: 31025683 DOI: 10.1039/c9cc02238d] [Cited by in Crossref: 21] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
43 Hu Z, Li Y, Kang M, Islam MM, Chen M, Zhang J, Xiao Y, Feng X, Redshaw C, Zhang M, Chen Q, Xie S, Lam JWY, Tang BZ. Aggregation‐induced emission luminogen: A new perspective in the photo‐degradation of organic pollutants. EcoMat 2020;2. [DOI: 10.1002/eom2.12024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
44 Wang T, Wei Q, Zhang Z, Lin M, Chen J, Zhou Y, Guo N, Zhong X, Xu W, Liu Z, Han M, Gao J. AIE/FRET-based versatile PEG-Pep-TPE/DOX nanoparticles for cancer therapy and real-time drug release monitoring. Biomater Sci 2020;8:118-24. [DOI: 10.1039/c9bm01546a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
45 Sun L, Ouyang J, Ma Y, Zeng Z, Zeng C, Zeng F, Wu S. An Activatable Probe with Aggregation-Induced Emission for Detecting and Imaging Herbal Medicine Induced Liver Injury with Optoacoustic Imaging and NIR-II Fluorescence Imaging. Adv Healthc Mater 2021;:e2100867. [PMID: 34160144 DOI: 10.1002/adhm.202100867] [Reference Citation Analysis]
46 Su G, Li Z, Dai R. Recent Advances in Applied Fluorescent Polymeric Gels. ACS Appl Polym Mater . [DOI: 10.1021/acsapm.1c01504] [Reference Citation Analysis]
47 Situ B, Ye X, Zhao Q, Mai L, Huang Y, Wang S, Chen J, Li B, He B, Zhang Y, Zou J, Tang BZ, Pan X, Zheng L. Identification and Single-Cell Analysis of Viable Circulating Tumor Cells by a Mitochondrion-Specific AIE Bioprobe. Adv Sci (Weinh) 2020;7:1902760. [PMID: 32099764 DOI: 10.1002/advs.201902760] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
48 Iwai R, Suzuki S, Sasaki S, Sairi AS, Igawa K, Suenobu T, Morokuma K, Konishi GI. Bridged Stilbenes: AIEgens Designed via a Simple Strategy to Control the Non-radiative Decay Pathway. Angew Chem Int Ed Engl 2020;59:10566-73. [PMID: 32119188 DOI: 10.1002/anie.202000943] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
49 Wu H, Huang W, Zhou X, Min Y. Immunological Effects of Aggregation-Induced Emission Materials. Front Immunol 2020;11:575816. [PMID: 33123158 DOI: 10.3389/fimmu.2020.575816] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
50 Liu T, Dong G, Xu F, Han B, Fang H, Huang Y, Zhou Y, Du L, Li M. Discovery of Turn-On Fluorescent Probes for Detecting Bcl-2 Protein. Anal Chem 2019;91:5722-8. [DOI: 10.1021/acs.analchem.8b05853] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
51 Liu Z, Zou H, Zhao Z, Zhang P, Shan GG, Kwok RTK, Lam JWY, Zheng L, Tang BZ. Tuning Organelle Specificity and Photodynamic Therapy Efficiency by Molecular Function Design. ACS Nano 2019;13:11283-93. [PMID: 31525947 DOI: 10.1021/acsnano.9b04430] [Cited by in Crossref: 68] [Cited by in F6Publishing: 55] [Article Influence: 22.7] [Reference Citation Analysis]
52 Li J, Ni X, Zhang J, Liang Y, Gao Z, Zhang X, Zheng D, Ding D. A fluorescence and photoactivity dual-activatable prodrug with self-synergistic magnification of the anticancer effect. Mater Chem Front 2019;3:1349-56. [DOI: 10.1039/c9qm00081j] [Cited by in Crossref: 13] [Article Influence: 4.3] [Reference Citation Analysis]
53 Mao L, Liu Y, Yang S, Li Y, Zhang X, Wei Y. Recent advances and progress of fluorescent bio-/chemosensors based on aggregation-induced emission molecules. Dyes and Pigments 2019;162:611-23. [DOI: 10.1016/j.dyepig.2018.10.045] [Cited by in Crossref: 113] [Cited by in F6Publishing: 57] [Article Influence: 37.7] [Reference Citation Analysis]
54 Jiang S, Hu X, Qiu J, Guo H, Yang F. A fluorescent sensor for folic acid based on crown ether-bridged bis-tetraphenylethylene. Analyst 2019;144:2662-9. [PMID: 30843902 DOI: 10.1039/c9an00161a] [Cited by in Crossref: 20] [Cited by in F6Publishing: 1] [Article Influence: 6.7] [Reference Citation Analysis]
55 Xu W, Wang D, Tang BZ. NIR‐II AIEgens: A Win–Win Integration towards Bioapplications. Angew Chem Int Ed 2021;60:7476-87. [DOI: 10.1002/anie.202005899] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 17.5] [Reference Citation Analysis]
56 Jiang N, Shen T, Sun JZ, Tang BZ. Aggregation-induced emission: right there shining. Sci China Mater 2019;62:1227-35. [DOI: 10.1007/s40843-019-9443-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 5.7] [Reference Citation Analysis]
57 Zhang J, Wang Q, Liu J, Guo Z, Yang J, Li Q, Zhang S, Yan C, Zhu W. Saponin-Based Near-Infrared Nanoparticles with Aggregation-Induced Emission Behavior: Enhancing Cell Compatibility and Permeability. ACS Appl Bio Mater 2019;2:943-51. [DOI: 10.1021/acsabm.8b00812] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
58 Zhang J, Wang Q, Guo Z, Zhang S, Yan C, Tian H, Zhu W. High‐Fidelity Trapping of Spatial–Temporal Mitochondria with Rational Design of Aggregation‐Induced Emission Probes. Adv Funct Mater 2019;29:1808153. [DOI: 10.1002/adfm.201808153] [Cited by in Crossref: 46] [Cited by in F6Publishing: 37] [Article Influence: 15.3] [Reference Citation Analysis]
59 Qi J, Hu X, Dong X, Lu Y, Lu H, Zhao W, Wu W. Towards more accurate bioimaging of drug nanocarriers: turning aggregation-caused quenching into a useful tool. Adv Drug Deliv Rev 2019;143:206-25. [PMID: 31158405 DOI: 10.1016/j.addr.2019.05.009] [Cited by in Crossref: 69] [Cited by in F6Publishing: 45] [Article Influence: 23.0] [Reference Citation Analysis]
60 Fan M, Xu Z, Liu M, Jiang Y, Zheng X, Yang C, Law W, Ying M, Wang X, Shao Y, Swihart MT, Xu G, Yong K, Tang BZ. Recent advances of luminogens with aggregation-induced emission in multi-photon theranostics. Applied Physics Reviews 2021;8:041328. [DOI: 10.1063/5.0071142] [Reference Citation Analysis]
61 Dai J, Dong X, Wang Q, Lou X, Xia F, Wang S. PEG-Polymer Encapsulated Aggregation-Induced Emission Nanoparticles for Tumor Theranostics. Adv Healthc Mater 2021;10:e2101036. [PMID: 34414687 DOI: 10.1002/adhm.202101036] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
62 Zhu C, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission: A Trailblazing Journey to the Field of Biomedicine. ACS Appl Bio Mater 2018;1:1768-86. [DOI: 10.1021/acsabm.8b00600] [Cited by in Crossref: 102] [Cited by in F6Publishing: 67] [Article Influence: 25.5] [Reference Citation Analysis]
63 Wang X, Liu L, Wang LJ, Guo L, Li Y, Bai B, Fu F, Lu H, Zhao X. Optimizing Comprehensive Performance of Aggregation-Induced Emission Nanoparticles through Molecular Packing Modulation for Multimodal Image-Guided Synergistic Phototherapy. Adv Healthc Mater 2021;:e2100360. [PMID: 33960129 DOI: 10.1002/adhm.202100360] [Reference Citation Analysis]
64 Zhang H, Zhao Z, Mcgonigal PR, Ye R, Liu S, Lam JW, Kwok RT, Yuan WZ, Xie J, Rogach AL, Tang BZ. Clusterization-triggered emission: Uncommon luminescence from common materials. Materials Today 2020;32:275-92. [DOI: 10.1016/j.mattod.2019.08.010] [Cited by in Crossref: 138] [Cited by in F6Publishing: 67] [Article Influence: 69.0] [Reference Citation Analysis]
65 Mo S, Zhang X, Hameed S, Zhou Y, Dai Z. Glutathione-responsive disassembly of disulfide dicyanine for tumor imaging with reduction in background signal intensity. Theranostics 2020;10:2130-40. [PMID: 32104501 DOI: 10.7150/thno.39673] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
66 Han W, Zhang S, Deng R, Du Y, Qian J, Zheng X, Xu B, Xie Z, Yan F, Tian W. Self-assembled nanostructured photosensitizer with aggregation-induced emission for enhanced photodynamic anticancer therapy. Sci China Mater 2020;63:136-46. [DOI: 10.1007/s40843-019-9477-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
67 Yang S, Zhu M. Insight of the photoluminescence of atomically precise bimetallic nanoclusters with free electrons. J Chin Chem Soc 2020;67:2171-81. [DOI: 10.1002/jccs.202000090] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
68 Ni J, Min T, Li Y, Zha M, Zhang P, Ho CL, Li K. Planar AIEgens with Enhanced Solid‐State Luminescence and ROS Generation for Multidrug‐Resistant Bacteria Treatment. Angew Chem 2020;132:10265-71. [DOI: 10.1002/ange.202001103] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
69 Gao H, Bao P, Dai S, Liu R, Ji S, Zeng S, Shen J, Liu Q, Ding D. Far-Red/Near-Infrared Emissive (1,3-Dimethyl)barbituric Acid-Based AIEgens for High-Contrast Detection of Metastatic Tumors in the Lung. Chem Asian J 2019;14:871-6. [PMID: 30548916 DOI: 10.1002/asia.201801660] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
70 Li J, Gao H, Liu R, Chen C, Zeng S, Liu Q, Ding D. Endoplasmic reticulum targeted AIE bioprobe as a highly efficient inducer of immunogenic cell death. Sci China Chem 2020;63:1428-34. [DOI: 10.1007/s11426-020-9846-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
71 Qi J, Alifu N, Zebibula A, Wei P, Lam JW, Peng H, Kwok RT, Qian J, Tang BZ. Highly stable and bright AIE dots for NIR-II deciphering of living rats. Nano Today 2020;34:100893. [DOI: 10.1016/j.nantod.2020.100893] [Cited by in Crossref: 23] [Cited by in F6Publishing: 8] [Article Influence: 11.5] [Reference Citation Analysis]
72 Ge X, Gao M, Situ B, Feng W, He B, He X, Li S, Ou Z, Zhong Y, Lin Y, Ye X, Hu X, Tang BZ, Zheng L. One-step, rapid fluorescence sensing of fungal viability based on a bioprobe with aggregation-induced emission characteristics. Mater Chem Front 2020;4:957-64. [DOI: 10.1039/c9qm00732f] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
73 Nie K, Dong B, Shi H, Chao L, Long M, Xu H, Liu Z, Liang B. Facile construction of AIE-based FRET nanoprobe for ratiometric imaging of hypochlorite in live cells. Journal of Luminescence 2020;220:117018. [DOI: 10.1016/j.jlumin.2019.117018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
74 He X, Xiong LH, Zhao Z, Wang Z, Luo L, Lam JWY, Kwok RTK, Tang BZ. AIE-based theranostic systems for detection and killing of pathogens. Theranostics 2019;9:3223-48. [PMID: 31244951 DOI: 10.7150/thno.31844] [Cited by in Crossref: 56] [Cited by in F6Publishing: 52] [Article Influence: 18.7] [Reference Citation Analysis]
75 Pucci A. Mechanochromic Fluorescent Polymers with Aggregation-Induced Emission Features. Sensors (Basel) 2019;19:E4969. [PMID: 31739634 DOI: 10.3390/s19224969] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 6.3] [Reference Citation Analysis]
76 Espinar-Barranco L, Meazza M, Linares-Perez A, Rios R, Paredes JM, Crovetto L. Synthesis, Photophysics, and Solvatochromic Studies of an Aggregated-Induced-Emission Luminogen Useful in Bioimaging. Sensors (Basel) 2019;19:E4932. [PMID: 31726748 DOI: 10.3390/s19224932] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
77 Li Y, Liu S, Han T, Zhang H, Chuah C, Kwok RTK, Lam JWY, Tang BZ. Sparks fly when AIE meets with polymers. Mater Chem Front 2019;3:2207-20. [DOI: 10.1039/c9qm00404a] [Cited by in Crossref: 41] [Cited by in F6Publishing: 1] [Article Influence: 13.7] [Reference Citation Analysis]
78 Li Y, Liu Z, Ma Y, Chen Y, Ma K, Wang X, Zhang D, Wang Z. Semiconducting Nanocomposite with AIEgen‐Triggered Enhanced Photoluminescence and Photodegradation for Dual‐Modality Tumor Imaging and Therapy. Adv Funct Mater 2019;29:1903733. [DOI: 10.1002/adfm.201903733] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 4.7] [Reference Citation Analysis]
79 Fang H, Wang N, Xie L, Huang P, Deng K, Wu F. An excited-state intramolecular proton transfer (ESIPT)-based aggregation-induced emission active probe and its Cu(II) complex for fluorescence detection of cysteine. Sensors and Actuators B: Chemical 2019;294:69-77. [DOI: 10.1016/j.snb.2019.05.022] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
80 Ni JS, Li Y, Yue W, Liu B, Li K. Nanoparticle-based Cell Trackers for Biomedical Applications. Theranostics 2020;10:1923-47. [PMID: 32042345 DOI: 10.7150/thno.39915] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 14.0] [Reference Citation Analysis]
81 Xu M, Wang X, Wang Q, Hu Q, Huang K, Lou X, Xia F. Analyte-responsive fluorescent probes with AIE characteristic based on the change of covalent bond. Sci China Mater 2019;62:1236-50. [DOI: 10.1007/s40843-019-9407-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
82 Chen C, Ni X, Jia S, Liang Y, Wu X, Kong D, Ding D. Massively Evoking Immunogenic Cell Death by Focused Mitochondrial Oxidative Stress using an AIE Luminogen with a Twisted Molecular Structure. Adv Mater 2019;31:e1904914. [PMID: 31696981 DOI: 10.1002/adma.201904914] [Cited by in Crossref: 141] [Cited by in F6Publishing: 114] [Article Influence: 47.0] [Reference Citation Analysis]
83 Xia F, Wu J, Wu X, Hu Q, Dai J, Lou X. Modular Design of Peptide- or DNA-Modified AIEgen Probes for Biosensing Applications. Acc Chem Res 2019;52:3064-74. [PMID: 31657899 DOI: 10.1021/acs.accounts.9b00348] [Cited by in Crossref: 62] [Cited by in F6Publishing: 48] [Article Influence: 20.7] [Reference Citation Analysis]
84 Zhang J, Liang W, Wen L, Lu Z, Xiao Y, Lang M. Antibacterial AIE polycarbonates endowed with selective imaging capabilities by adjusting the electrostaticity of the mixed-charge backbone. Biomater Sci 2021;9:5293-301. [PMID: 34180921 DOI: 10.1039/d1bm00894c] [Reference Citation Analysis]
85 Chen Y, Lam JWY, Kwok RTK, Liu B, Tang BZ. Aggregation-induced emission: fundamental understanding and future developments. Mater Horiz 2019;6:428-33. [DOI: 10.1039/c8mh01331d] [Cited by in Crossref: 280] [Cited by in F6Publishing: 2] [Article Influence: 93.3] [Reference Citation Analysis]
86 Wang B, Liu S, Liu X, Hu R, Qin A, Tang BZ. Aggregation-Induced Emission Materials that Aid in Pharmaceutical Research. Adv Healthc Mater 2021;:e2101067. [PMID: 34418328 DOI: 10.1002/adhm.202101067] [Reference Citation Analysis]