1
|
Park SH, Park J, Yoo E, Jung J, Park MR, Kim S, Kim JL, Lee JW, Kim OK, Lee M. Withania somnifera and Chrysanthemum zawadskii Herbich var. latilobum (Maxim.) Kitamura Complex Attenuates Obesity in High-Fat-Diet-Induced Obese Mice. Int J Mol Sci 2025; 26:5230. [PMID: 40508039 PMCID: PMC12155309 DOI: 10.3390/ijms26115230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 05/26/2025] [Accepted: 05/26/2025] [Indexed: 06/16/2025] Open
Abstract
This study aims to evaluate the anti-obesity effects of Ashwagandha (Withania somnifera, AS), Chrysanthemum zawadskii Herbich var. latilobum (Maxim.) Kitamura (C), and their combination (AS:C = 3:1, ASC) in high-fat-diet (HFD)-induced obese animal models. Key metabolic parameters, including body weight, lipid metabolism, adipogenesis, energy expenditure, and glucose homeostasis, were assessed. HFD-fed mice were supplemented with AS25, C25, or ASC at different concentrations (ASC25, ASC50, and ASC100). Body weight, food efficiency ratio (FER), organ and adipose tissue weights were measured. Serum biochemical markers, including lipid profiles, glucose, insulin, and liver enzymes, were analyzed. Western blot analysis was conducted to assess the expression of key proteins involved in adipogenesis, lipogenesis, lipolysis, and energy metabolism. ASC complex supplementation, particularly at higher doses (ASC100), significantly reduced body weight gain, liver weight, and total white adipose tissue (WAT) accumulation. ASC complex groups exhibited improved lipid profiles, with reductions in triglycerides, total cholesterol, and low-density lipoprotein (LDL). Serum glucose, insulin, and HbA1c levels were significantly reduced, suggesting improved insulin sensitivity. Western blot analysis revealed that ASC complex supplementation downregulated key adipogenic markers, including PPARγ, C/EBPα, and SREBP1c, while enhancing adiponectin levels. ASC complex also promoted energy metabolism by increasing the phosphorylation of AMPK and UCP1 expression, indicative of enhanced thermogenesis and lipid oxidation. ASC complex supplementation demonstrates a potent anti-obesity effect by modulating adipogenesis, lipid metabolism, and energy expenditure. The findings suggest that ASC complex could serve as a promising natural therapeutic strategy for obesity and metabolic disorders. Further research, including clinical trials, is warranted to validate its efficacy and safety in human populations.
Collapse
Affiliation(s)
- Seong-Hoo Park
- Clinical Nutrition Institute, Kyung Hee University, Seoul 02447, Republic of Korea; (S.-H.P.); (E.Y.); (J.J.)
| | - Jeongjin Park
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Eunhee Yoo
- Clinical Nutrition Institute, Kyung Hee University, Seoul 02447, Republic of Korea; (S.-H.P.); (E.Y.); (J.J.)
| | - Jaeeun Jung
- Clinical Nutrition Institute, Kyung Hee University, Seoul 02447, Republic of Korea; (S.-H.P.); (E.Y.); (J.J.)
| | - Mi-Ryeong Park
- HLscience Co., Ltd., Uiwang-si 16004, Republic of Korea; (M.-R.P.); (S.K.); (J.-L.K.); (J.W.L.)
| | - Soyoung Kim
- HLscience Co., Ltd., Uiwang-si 16004, Republic of Korea; (M.-R.P.); (S.K.); (J.-L.K.); (J.W.L.)
| | - Jong-Lae Kim
- HLscience Co., Ltd., Uiwang-si 16004, Republic of Korea; (M.-R.P.); (S.K.); (J.-L.K.); (J.W.L.)
| | - Jong Wook Lee
- HLscience Co., Ltd., Uiwang-si 16004, Republic of Korea; (M.-R.P.); (S.K.); (J.-L.K.); (J.W.L.)
| | - Ok-kyung Kim
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Minhee Lee
- Department of Food Innovation and Health, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
2
|
Pinto D, Santos I, Teixeira F, Sut S, Vieira M, Salazar M, Delerue-Matos C, Dall'Acqua S, Rodrigues F. Unraveling the nutraceutical potential of Salicornia ramosissima by-product - impact of gastrointestinal digestion and intestinal permeability on in vitro bioactivity. Food Chem 2025; 486:144665. [PMID: 40345033 DOI: 10.1016/j.foodchem.2025.144665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/06/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Salicornia ramosissima by-product (SP) is an underexploited antioxidant-rich by-product. This study explored the phytochemical profile, bioaccessibility, and biological activity of SP before and after extraction (SBE and SAE, respectively) upon gastrointestinal simulated digestion and intestinal permeability. The phenolic and flavonoid concentrations increased during digestion, reaching bioaccessibility rates above 95 % for both SBE and SAE. Promising antioxidant/antiradical properties and neuroprotective effects were attested upon digestion. Regarding the phytochemical profile, 17 compounds were identified, including (di)caffeoylquinic acids, gallocatechin, and triterpenoid saponins. The intestinal absorption of bioactive compounds from SAE and SBE intestinal digests was proven through a Caco-2/HT29-MTX cells co-culture model, with 4-caffeoylquinic acid (34.84 %) and 4,5-dicaffeoylquinic acid (26.73 %) reaching the highest permeation rates after 4 h, respectively, for SAE and SBE. These findings support the harnessing of SP as a promising functional and nutraceutical ingredient rich in pro-healthy compounds with proven bioactivity upon in vitro digestion and intestinal permeation.
Collapse
Affiliation(s)
- Diana Pinto
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Inês Santos
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Filipa Teixeira
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35121 Padova, Italy
| | - Mónica Vieira
- RISE-Health, Center for Translational Health and Medical Biotechnology Research (TBIO), CQB, ESS, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Miguel Salazar
- Agro-On/RiaFresh - Verduras da Ria Formosa, Sítio do Besouro, 8005-421 Faro, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35121 Padova, Italy.
| | - Francisca Rodrigues
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal.
| |
Collapse
|
3
|
Xian J, Huang Y, Bai J, Liao Q, Chen Q, Cheng W, Su Z, Li S, Wu Y, Li J, Zhang J. Recent Advances in the Anti-Obesity Benefits of Phytoconstituents: From Phytochemistry to Targeting Novel-Systems. Phytother Res 2025; 39:630-660. [PMID: 39629748 DOI: 10.1002/ptr.8400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 02/19/2025]
Abstract
Obesity is a metabolic disorder that has become a global health concern. The existing pharmaceutical drugs for treating obesity have some side effects. Compounds from natural sources are prospective substitutes for treating chronic diseases such as obesity, with the added advantages of being safe and cost-effective. However, due to factors such as poor solubility, low bioavailability, and instability in the physiological environment, the therapeutic efficacy of phytoconstituents is limited. Nowadays, developing nanoscaled systems has emerged as a vital strategy for enhancing the delivery and therapeutic effect of phytoconstituents. The present study discusses and categorizes phytoconstituents with anti-obesity effects and concludes the main mechanisms underlying their effects. Importantly, strategies used to develop phytoconstituent-based nano-drug delivery systems (NDDS) for obesity treatment that show improved efficacy relative to traditional administration routes are reviewed. Finally, the progress of research on phytoconstituent-based NDDS for obesity treatment is summarized to provide a reference for the development of safe and effective treatment strategies for obesity.
Collapse
Affiliation(s)
- Jing Xian
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinrong Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing, China
| | - Qiyan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Weijian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziye Su
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Linares-Castañeda A, Jiménez-Martínez C, Sánchez-Chino XM, Pérez-Pérez V, Cid-Gallegos MS, Corzo-Ríos LJ. Modifying of non-nutritional compounds in legumes: Processing strategies and new technologies. Food Chem 2025; 463:141603. [PMID: 39405829 DOI: 10.1016/j.foodchem.2024.141603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 11/14/2024]
Abstract
Legumes are consumed worldwide, are notable for their nutritional quality, however, contain certain non-nutritional compounds (NNCs) that can affect the absorption of nutrients, though these may exhibit bioactive properties. Various processing methods can modify the concentration of NNCs, including soaking and germination. These methods can be combined with other thermal, non-thermal, and bioprocessing treatments to enhance their efficiency. The efficacy of these methods is contingent upon the specific types of NNCs and legume in question. This work examines the effectiveness of these processing methods in terms of modifying the concentration of NNCs present in legumes as well as the potential use of emerging technologies, to enhance the level of NNCs modification in legumes. These technologies could increase the functional use of legume flours, potentially leading to new opportunities for incorporating legume-based ingredients in a range of culinary applications, thereby enhancing the diets of many individuals worldwide.
Collapse
Affiliation(s)
- Alejandra Linares-Castañeda
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, 07738 Mexico City, Mexico
| | - Cristian Jiménez-Martínez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, 07738 Mexico City, Mexico
| | - Xariss M Sánchez-Chino
- Departamento de Salud, El Colegio de la Frontera Sur-Villahermosa, Carr. Villahermsa-Reforma Km 15.5 S/N. Rancheria Guineo 2ª sección CP. 86280 Villahermosa,Tabasco, Mexico
| | - Viridiana Pérez-Pérez
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional. Av. Acueducto S/N, Barrio La Laguna, Col. Ticomán, 07340 México City, Mexico
| | - María Stephanie Cid-Gallegos
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional. Av. Acueducto S/N, Barrio La Laguna, Col. Ticomán, 07340 México City, Mexico
| | - Luis Jorge Corzo-Ríos
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional. Av. Acueducto S/N, Barrio La Laguna, Col. Ticomán, 07340 México City, Mexico.
| |
Collapse
|
5
|
Andersa KN, Tamiru M, Teka TA, Ali IM, Chane KT, Regasa TK, Ahmed EH. Proximate composition, some phytochemical constituents, potential uses, and safety of neem leaf flour: A review. Food Sci Nutr 2024; 12:6929-6937. [PMID: 39479641 PMCID: PMC11521714 DOI: 10.1002/fsn3.4336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 11/02/2024] Open
Abstract
Globally, there is a growing concern about avoiding using artificial compounds in food ingredients, food preservation, and packaging. Among the parts of the neem tree, leaf flour is one of the most commonly used parts in some countries for food and medicinal purposes and is known for containing several nutrients and phytochemicals. In this review, the proximate composition, phytochemical constituents, potential uses, and safety issues of neem leaf flour are discussed. Neem leaf flour contains high levels of crude protein, total carbohydrate, crude fat, and fiber and moderate amounts of crude fat and ash. In addition, it contains numerous health-promoting phytochemical constituents. Some phytochemicals, such as ascorbic acid, saponin, total alkaloids, carotenoids, total phenols, total flavonoids, and the total antioxidant capacity of neem leaf flour, have been critically discussed. Neem leaf flour has various potential applications in food science, such as preserving foods and preparing food packaging materials. However, researchers' perspectives on its safety are not yet in agreement. In general, the proximate compositions, phytochemical constituents, potential uses, and safety issues of neem leaf flour were compiled and critically reviewed. In addition, research is needed to identify all the toxic substances found in neem leaves and develop methods to eliminate them that hinder their use for various purposes in food. Further research is needed to develop food products from neem leaf flour and evaluate its nutritional value and phytochemical constituents.
Collapse
Affiliation(s)
- Kumsa Negasa Andersa
- Department of Post‐Harvest Management, College of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| | - Metekia Tamiru
- Department of Animal Science, College of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| | - Tilahun A. Teka
- Department of Post‐Harvest Management, College of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| | - Ibrahim Mohammed Ali
- Department of Plant Science, College of Dryland AgricultureSamara UniversitySamaraEthiopia
| | - Kasech Tibebu Chane
- Department of Post‐Harvest Management, College of Agriculture and Veterinary MedicineJimma UniversityJimmaEthiopia
| | - Tolina Kebede Regasa
- Department of Agro Food ProcessingHoleta Polytechnic College, Holeta CollegeHoletaEthiopia
| | - Endris Hussen Ahmed
- Department of Plant Science, College of Dryland AgricultureSamara UniversitySamaraEthiopia
| |
Collapse
|
6
|
Singha S, Das Gupta B, Sarkar A, Jana S, Bharadwaj PK, Sharma N, Haldar PK, Mukherjee PK, Kar A. Chemo-profiling and exploring therapeutic potential of Momordica dioica Roxb. ex Willd. for managing metabolic related disorders: In-vitro studies, and docking based approach. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118351. [PMID: 38759763 DOI: 10.1016/j.jep.2024.118351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/22/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Momordica dioica Roxb. ex Willd. (M. dioica Roxb.) a nutritious and therapeutic property rich crop of Cucurbitaceae plant family. In various folklore medicine including Ayurveda fruits are used to treat several metabolic related disorders i.e., hyperglycemia, hyperlipidemia, diabetes, obesity etc. Furthermore, traditionally it is used to treat fever, inflammation, ulcer, skin diseases, haemorrhoids, hypertension and also employed as cardioprotective, hepatoprotective, analgesic, diuretic. AIM OF THE STUDY This study focuses to explore the therapeutic potential of Momordica dioica Roxb. ex Willd. through in-vitro and in-silico approach for managing hyperlipidemia, hyperglycemia and related metabolic disorders along with its phytochemical profiling for quality evaluation and validation of traditional claim. MATERIALS AND METHODS The present study was carried out on hydroalcohol extract of dried leaf and fruit of Momordica dioica. In-vitro antioxidant potential using DPPH and Nitric oxide scavenging assay along with in-vitro enzyme inhibitory potential against α-amylase, α-glucosidase, and pancreatic lipase enzymes was studied. The bioactive metabolites were identified from the most potent bioactive extract by analysis with LC-QTOF-MS and also studied their role to lessen the metabolic related disorder through in-silico approaches. RESULTS The results confirmed that the fruit extract is more active to possess antioxidant and prominent enzyme inhibition potential compared to the leaf. Sixteen identified metabolites in M. dioica Roxb. fruits may be responsible for the therapeutic potential related to metabolic related disorder. The in-silico study of the identified phytomolecules against α-amylase, α-glucosidase and pancreatic lipase showed significant docking scores ranging from -9.8 to -5.5, -8.3 to -4.8 and -8.3 to -6 respectively. CONCLUSION The current study illustrated that M. dioica Roxb., a traditionally important plant is potential against metabolic related disorders. Phytocomponents present in the fruit extract may be responsible for antioxidant as well as the enzymes' inhibitory potential. Thus, fruits of M. dioica Roxb. will be useful as alternative therapeutics for treatment of hyperlipidemia, hyperglycemia and related metabolic disorders.
Collapse
Affiliation(s)
- Seha Singha
- School of Natural Product Studies, Jadavpur University, Kolkata, 700 032, India.
| | - Barun Das Gupta
- School of Natural Product Studies, Jadavpur University, Kolkata, 700 032, India.
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.
| | - Sandipan Jana
- School of Natural Product Studies, Jadavpur University, Kolkata, 700 032, India.
| | - Pardeep K Bharadwaj
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Govt. of India, Imphal, Manipur, 795001, India.
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Govt. of India, Imphal, Manipur, 795001, India.
| | - Pallab K Haldar
- School of Natural Product Studies, Jadavpur University, Kolkata, 700 032, India.
| | - Pulok Kumar Mukherjee
- School of Natural Product Studies, Jadavpur University, Kolkata, 700 032, India; Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Govt. of India, Imphal, Manipur, 795001, India.
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Dept. of Biotechnology, Govt. of India, Imphal, Manipur, 795001, India.
| |
Collapse
|
7
|
Badu M, Attuquaye GAK, Emmanuel A. Investigating the effect of solvent on anti-antioxidant properties of Sesamum indicum seeds. Heliyon 2024; 10:e35068. [PMID: 39157376 PMCID: PMC11327599 DOI: 10.1016/j.heliyon.2024.e35068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Dietary phytochemicals are important bioactive compounds that can scavenge reactive oxygen species. These essential compounds may have antioxidant properties which are known to play a significant role in the treatment and prevention of many chronic diseases. Sesame, an oil-bearing seed, is a well-known promising source of food with both nutritional and therapeutic benefits. As a result, the study aimed to evaluate the antioxidant properties of different solvent extracts of Sesame seeds and to analyse the bioactive compounds present. The seeds were obtained from the local farmers and prepared for analysis. The bioactive compounds present in the seeds were extracted using hexane, ethyl acetate, ethanol, and water. The total phenolic content (TPC), the condensed tannin content (CTC), the total antioxidant capacity (TAC), and the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay were also determined using standard methods. Two chemometric methods, hierarchical cluster analysis (HCA) and Pearson correlation, were employed to evaluate the interdependence of the various parameters and the antioxidant activity. Anti-nutrients such as saponins, alkaloids, phytates, and oxalates were also analysed from the powdered seeds. The study results revealed the presence of anti-nutrients such as phytate (7.691 ± 0.8576 mg/g), oxalate (1.501 ± 0.1375 mg/g), saponins (21.33 ± 4.619 mg/g) and alkaloids (317.33 ± 30.29 mg/g). The study also revealed that the aqueous extract exhibited the highest TPC (17.12 ± 0.041 mg GAE/g of dried extract, p < 0.05) and CTC (64.27 ± 4.711 mg CE/g of dried extract, p < 0.05). Ethanol and hexane had a similar total phenolic content (14.83 ± 0.123 and 14.66 ± 1.474 mg GAE/g of dried extract, respectively, p < 0.05Ethyl acetate had the lowest TPC content. Ethanol extracts had the highest antioxidant activity with a TAC value of 232.6 ± 6.267 mg/g AAE and a DPPH scavenging activity of IC50 of 52.81 ± 2.30 μg/mL. A good correlation (p < 0.05) was established between the extracts' TPC, CTC, TAC, and DPPH radical scavenging activity. Chemometric analysis from the study showed no significant connection between the radical scavenging activity of TPC and DPPH. From the results obtained, it can be concluded that the bioactive compounds present in the sesame seed and their subsequent antioxidant properties are dependent on the nature of the solvent used for extraction.
Collapse
Affiliation(s)
- Mercy Badu
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti Region, UPO PMB, Ghana
| | | | - Azanlerigo Emmanuel
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ashanti Region, UPO PMB, Ghana
| |
Collapse
|
8
|
Busari IO, Elizondo-Luévano JH, Aiyelaagbe OO, Soetan KO, Babayemi OJ, Gorgojo-Galindo O, Muro A, Vicente B, López-Abán J. Anthelmintic activity of three selected ethnobotanical plant extracts against Strongyloides venezuelensis. Exp Parasitol 2024; 263-264:108801. [PMID: 39009180 DOI: 10.1016/j.exppara.2024.108801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 05/12/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The agropastoral farmers have employed Turraea vogelii(TVL),Senna podocarpa(SPL), and Jaundea pinnata (JPL) leaves for treating various diseases, including intestinal parasites in livestock and the human population in Nigeria. Gastrointestinal nematodes are highly significant to livestock production and people's health, and natural products are interesting as sources of new drugs. In this study, we evaluated the effectiveness of extracts derived from these plants in treating parasitic infections using third-stage infective larvae (L3) of Strongyloides venezuelensis. We obtained crude extracts using n-gexane (Hex), ethyl acetate (Ea), and methanol (Met). The extracts were analyzed for their phytochemical composition, and their ability to prevent hemolysis were tested. The mean concentrations of total phenols in SPL Hex, SPL Ea, and SPL Met were 92.3 ± 0.3, 103.0 ± 0.4, and 128.2 ± 0.5 mg/100 g, respectively. Total tannin concentrations for JPL Ea, SPL Ea, SPL Hex, and TVL Hex were 60.3 ± 0.1, 89.2 ± 0.2, 80.0 ± 0.1, and 66.6 ± 0.3 mg/100 g, respectively. The mean lethal concentration (LC50) at 72 h for JPL Ea 39 (26-61) μg/mL. SPL Ea was 39 (34-45) μg/mL, and TVL Hex 31 (26-36) μg/mL. The antiparasitic activities of the extracts against L3 were dose- and time-dependent. All the extracts were slightly hemolytic to the erythrocytes. In this study, the plant extract tested demonstrated significant anti-S. venezuelensis activity. These phytobotanical extracts could be used to create formulations for the potential treatment of helminthiasis in animals and humans.
Collapse
Affiliation(s)
- Ibukun O Busari
- Department of Animal Science, Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria; Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Biomedical Research Institute of Salamanca, Centre for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Ldo, Mendez Nieto s/n, C.P. 37007, Salamanca, Spain.
| | - Joel H Elizondo-Luévano
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Biomedical Research Institute of Salamanca, Centre for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Ldo, Mendez Nieto s/n, C.P. 37007, Salamanca, Spain; Department of Chemistry, Faculty of Biological Sciences, Universidad Autónoma de Nuevo León (UANL), Av. Pedro de Alba s/n, San Nicolás de los Garza, C.P. 66455, Nuevo León, Mexico
| | - Olapeju O Aiyelaagbe
- Department of Chemistry, Faculty of Science, University of Ibadan, Ibadan, Nigeria
| | - Kehinde O Soetan
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olaniyi J Babayemi
- Department of Animal Science, Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria
| | - Oscar Gorgojo-Galindo
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Biomedical Research Institute of Salamanca, Centre for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Ldo, Mendez Nieto s/n, C.P. 37007, Salamanca, Spain
| | - Antonio Muro
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Biomedical Research Institute of Salamanca, Centre for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Ldo, Mendez Nieto s/n, C.P. 37007, Salamanca, Spain
| | - Belén Vicente
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Biomedical Research Institute of Salamanca, Centre for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Ldo, Mendez Nieto s/n, C.P. 37007, Salamanca, Spain
| | - Julio López-Abán
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Biomedical Research Institute of Salamanca, Centre for Tropical Diseases at the University of Salamanca), Faculty of Pharmacy, University of Salamanca, Ldo, Mendez Nieto s/n, C.P. 37007, Salamanca, Spain.
| |
Collapse
|
9
|
Chileh-Chelh T, López-Ruiz R, García-Cervantes AM, Rodríguez-García I, Rincón-Cervera MA, Ezzaitouni M, Guil-Guerrero JL. Cytotoxicity and Chemotaxonomic Significance of Saponins from Wild and Cultured Asparagus Shoots. Molecules 2024; 29:3367. [PMID: 39064945 PMCID: PMC11279782 DOI: 10.3390/molecules29143367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The shoots of Asparagus L. are consumed worldwide, although most species belonging to this genus have a restricted range, and several taxa remain unstudied. In this work, a total of four taxa from different locations were scrutinized and compared with cultivated A. officinalis. All shoots were screened for saponins via LC-MS, and in vitro antiproliferative activities against the HT-29 colorectal cancer cell line were assessed via the MTT assay. The total saponins (TS) contained in the crude extracts ranged from 710.0 (A. officinalis) to 1258.6 mg/100 g dw (A. acutifolius). The richness of the compounds detected in this work stands out; a total of 47 saponins have been detected and quantified in the edible parts (shoots) of five taxa of Asparagus. The structure of all the saponins found present skeletons of the furostane and spirostane type. In turn, the structures with a furostane skeleton are divided into unsaturated and dioxygenated types, both in the 20-22 position. The sum of dioscin and derivatives varied largely among the studied taxa, reaching the following percentages of TS: 27.11 (A. officinalis), 18.96 (A. aphyllus), 5.37 (A. acutifolius), and 0.59 (A. albus); while in A. horridus, this compound remains undetected. Aspachiosde A, D, and M varied largely among samples, while a total of seven aspaspirostanosides were characterized in the analyzed species. The hierarchical cluster analysis of the saponin profiles clearly separated the various taxa and demonstrated that the taxonomic position is more important than the place from which the samples were acquired. Thus, saponin profiles have chemotaxonomic significance in Asparagus taxa. The MTT assay showed dose- and time-dependent inhibitory effects of all saponins extracts on HT-29 cancer cells, and the strongest cell growth inhibition was exercised by A. albus and A. acutifolius (GI50 of 125 and 175 µg/mL). This work constitutes a whole approach to evaluating the saponins from the shoots of different Asparagus taxa and provides arguments for using them as functional foods.
Collapse
Affiliation(s)
- Tarik Chileh-Chelh
- Food Technology Division, University of Almería, 04120 Almería, Spain; (T.C.-C.); (M.A.R.-C.); (M.E.)
| | - Rosalía López-Ruiz
- Department Chemistry-Physics, Analytical Chemistry of Contaminants, University of Almería, 04120 Almería, Spain;
| | - Ana M. García-Cervantes
- Department Chemistry-Physics CIAIMBITAL, University of Almería, 04120 Almería, Spain; (A.M.G.-C.)
| | - Ignacio Rodríguez-García
- Department Chemistry-Physics CIAIMBITAL, University of Almería, 04120 Almería, Spain; (A.M.G.-C.)
| | - Miguel A. Rincón-Cervera
- Food Technology Division, University of Almería, 04120 Almería, Spain; (T.C.-C.); (M.A.R.-C.); (M.E.)
- Institute of Nutrition and Food Technology, University of Chile, Santiago 7830490, Chile
| | - Mohamed Ezzaitouni
- Food Technology Division, University of Almería, 04120 Almería, Spain; (T.C.-C.); (M.A.R.-C.); (M.E.)
| | - José L. Guil-Guerrero
- Food Technology Division, University of Almería, 04120 Almería, Spain; (T.C.-C.); (M.A.R.-C.); (M.E.)
| |
Collapse
|
10
|
Zhang L, He S, Liu L, Huang J. Saponin monomers: Potential candidates for the treatment of type 2 diabetes mellitus and its complications. Phytother Res 2024; 38:3564-3582. [PMID: 38715375 DOI: 10.1002/ptr.8229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 07/12/2024]
Abstract
Type 2 diabetes mellitus (T2DM), a metabolic disease with persistent hyperglycemia primarily caused by insulin resistance (IR), has become one of the most serious health challenges of the 21st century, with considerable economic and societal implications worldwide. Considering the inevitable side effects of conventional antidiabetic drugs, natural ingredients exhibit promising therapeutic efficacy and can serve as safer and more cost-effective alternatives for the management of T2DM. Saponins are a structurally diverse class of amphiphilic compounds widely distributed in many popular herbal medicinal plants, some animals, and marine organisms. There are many saponin monomers, such as ginsenoside compound K, ginsenoside Rb1, ginsenoside Rg1, astragaloside IV, glycyrrhizin, and diosgenin, showing great efficacy in the treatment of T2DM and its complications in vivo and in vitro. However, although the mechanisms of action of saponin monomers at the animal and cell levels have been gradually elucidated, there is a lack of clinical data, which hinders the development of saponin-based antidiabetic drugs. Herein, the main factors/pathways associated with T2DM and the comprehensive underlying mechanisms and potential applications of these saponin monomers in the management of T2DM and its complications are reviewed and discussed, aiming to provide fundamental data for future high-quality clinical studies and trials.
Collapse
Affiliation(s)
- Lvzhuo Zhang
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Qianjiang Central Hospital Affiliated to Yangtze University, Qianjiang, Hubei, China
| | - Shifeng He
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, Hubei, China
| | - Lian Liu
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jiangrong Huang
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, Hubei, China
| |
Collapse
|
11
|
Mertens E, Deriemaeker P, Van Beneden K. Analysis of the Nutritional Composition of Ready-to-Use Meat Alternatives in Belgium. Nutrients 2024; 16:1648. [PMID: 38892581 PMCID: PMC11175014 DOI: 10.3390/nu16111648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND The interest in meat alternatives has increased over the years as people embrace more varied food choices because of different reasons. This study aims to analyse the nutritional composition of ready-to-use meat alternatives and compare them with meat (products). METHODS Nutritional composition values were collected in 2022 of all ready-to-use meat alternatives in Belgian supermarkets, as well as their animal-based counterparts. A one-sample t-test was performed to test the nutritional composition of ready-to-use meat alternatives against norm values, while an independent samples t-test was used to make the comparison with meat. RESULTS Minced meat and pieces/strips/cubes scored favourably on all norm values. Cheeseburgers/schnitzels, nut/seed burgers and sausages contained more than 10 g/100 g total fat. The saturated fat and salt content was lower than the norm value in each category. Legume burgers/falafel contained less than 10 g/100 g protein. Vegetarian/vegan minced meat and bacon contained fewer calories, total and saturated fat, and more fibre compared to their animal-based counterparts. CONCLUSIONS Minced meat and pieces/strips/cubes came out as the most favourable categories regarding nutritional composition norm values. Vegetarian/vegan steak came out the least favourable compared to steak, while vegetarian/vegan minced meat and vegetarian/vegan bacon came out the most favourable compared to their animal-based counterparts.
Collapse
Affiliation(s)
- Evelien Mertens
- Department of Health Care, Design and Technology, Nutrition and Dietetics Program, Erasmushogeschool Brussel, 1090 Brussels, Belgium; (P.D.); (K.V.B.)
- Department of Movement and Sport Sciences, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Peter Deriemaeker
- Department of Health Care, Design and Technology, Nutrition and Dietetics Program, Erasmushogeschool Brussel, 1090 Brussels, Belgium; (P.D.); (K.V.B.)
- Department of Movement and Sport Sciences, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Katrien Van Beneden
- Department of Health Care, Design and Technology, Nutrition and Dietetics Program, Erasmushogeschool Brussel, 1090 Brussels, Belgium; (P.D.); (K.V.B.)
| |
Collapse
|
12
|
Atwiine F, Mwesigwa A, Mwesiga D, Mwesigwa P, Katumba L, Ogwang PE. Appetite Suppressing Activity of Rumex Usambarensis Leaf and Stem Aqueous Extract in Wistar Albino Female Rats: an in vivo Experimental Study. J Exp Pharmacol 2024; 16:201-209. [PMID: 38745913 PMCID: PMC11093116 DOI: 10.2147/jep.s458705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
Background The burden of obesity and overweight associated morbidity and mortality is increasing in epidemic proportions worldwide. Suppression of appetite is one of the mechanisms that has been shown to reduce weight. Most of the drugs on the market currently for appetite suppression are not readily available or affordable in resource-limited settings. Additionally, previous studies have shown that most of these drugs are associated with significant adverse effects, which demonstrates a need for alternative or complementary options of drugs for appetite suppression. In Uganda, herdsmen commonly chew the raw stems and leaves of Rumex usambarensis, a wild shrub, and this is believed to reduce hunger. This study aimed at determining the effect of Rumex usambarensis aqueous extract on food intake as a measure of appetite in Wistar albino rats. Methods This study was carried out in two phases: the fattening phase and the treatment phase. Female albino Wistar rats were fed a high-fat diet for 49 days. The fattened animals were then randomly separated into 4 groups, which received 1 mL of distilled water (negative control), 500 mg/kg body weight of aqueous extract of Rumex usambarensis, 1000 mg/kg body weight of the extract and 20 mg/kg body weight topiramate (positive control), respectively. Food intake was measured every day, and weights were taken every two days for every group. Results Rumex usambarensis extract significantly reduced body weight of fattened rats compared to the control group at both doses: for the 500mg/kg dose (Mean difference, MD = 17.2, p < 0.001) and for 1000mg/kg dose (MD = 25.9, p < 0.001). Additionally, both doses of the aqueous extract showed a significant reduction in food intake: for the 500mg/kg dose (MD = 16.1, p < 0.001) and for the 1000mg/kg dose (MD = 37.3, p < 0.001). There was a strong correlation between food intake and weight for both doses for the 500mg/kg dose (r = 0.744, p = 0.009), and the strongest association observed with 1000mg/kg dose (r = 0.906, p < 0.001). Conclusion The aqueous extract of the leaves and stems of Rumex usambarensis has appetite suppressing and weight reduction effects in fattened female Wistar albino rats and could be an efficacious alternative medicine for management of overweight, obesity and other related disorders.
Collapse
Affiliation(s)
- Fredrick Atwiine
- Department of Pharmacy, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Albert Mwesigwa
- Department of Pharmacy, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Derick Mwesiga
- Department of Pharmacy, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Polly Mwesigwa
- Department of Pharmacy, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Lawrence Katumba
- Department of Pharmacy, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Patrick Engeu Ogwang
- Department of Pharmacy, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
13
|
Han B, Luo J, Xu B. Revealing Molecular Mechanisms of the Bioactive Saponins from Edible Root of Platycodon grandiflorum in Combating Obesity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1123. [PMID: 38674532 PMCID: PMC11053671 DOI: 10.3390/plants13081123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Obesity has emerged as a significant health concern, as it is a disease linked to metabolic disorders in the body and is characterized by the excessive accumulation of lipids. As a plant-derived food, Platycodon grandiflorum (PG) was reported by many studies, indicating that the saponins from PG can improve obesity effectively. However, the anti-obesity saponins from PG and its anti-obesity mechanisms have not been fully identified. This study identified the active saponins and their molecular targets for treating obesity. The TCMSP database was used to obtain information on 18 saponins in PG. The anti-obesity target of the PG saponins was 115 targets and 44 core targets. GO and KEGG analyses using 44 core anti-obesity genes and targets of PG-active saponins screened from GeneCards, OMIM, Drugbank, and DisGeNet showed that the PI3K-Akt pathway, the JAK-STAT pathway, and the MAPK pathway were the major pathways involved in the anti-obesity effects of PG saponins. BIOVIA Discovery Studio Visualizer and AutoDock Vina were used to perform molecular docking and process the molecular docking results. The molecular docking results showed that the active saponins of PG could bind to the major therapeutic obesity targets to play an obesity-inhibitory role. The results of this study laid the foundation for further research on the anti-obesity saponins in PG and their anti-obesity mechanism and provided a new direction for the development of functional plant-derived food. This research studied the molecular mechanism of PG saponins combating obesity through various signaling pathways, and prosapogenin D can be used to develop as a new potential anti-obesity drug.
Collapse
Affiliation(s)
| | | | - Baojun Xu
- Guangdong Provincial Key Laboratory IRADS and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (B.H.); (J.L.)
| |
Collapse
|
14
|
Yaribeygi H, Maleki M, Rashid-Farrokhi F, Abdullahi PR, Hemmati MA, Jamialahmadi T, Sahebkar A. Modulating effects of crocin on lipids and lipoproteins: Mechanisms and potential benefits. Heliyon 2024; 10:e28837. [PMID: 38617922 PMCID: PMC11015417 DOI: 10.1016/j.heliyon.2024.e28837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
Dyslipidemia poses a significant risk to cardiovascular health in both diabetic and non-diabetic individuals. Therefore, it is crucial to normalize lipid homeostasis in order to prevent or minimize complications associated with dyslipidemia. However, pharmacological interventions for controlling lipid metabolism often come with adverse effects. As an alternative, utilizing herbal-based agents, which typically have fewer side effects, holds promise. Crocin, a naturally occurring nutraceutical, has been shown to impact various intracellular pathways, reduce oxidative stress, and alleviate inflammatory processes. Recent evidence suggests that crocin may also confer lipid-related benefits and potentially contribute to the normalization of lipid homeostasis. However, the specific advantages and the cellular pathways involved are not yet well understood. In this review, we present the latest findings regarding the lipid benefits of crocin, which could be instrumental in preventing or reducing disorders associated with dyslipidemia. Additionally, we explore the potential cellular mechanisms and pathways that mediate these lipid benefits.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farin Rashid-Farrokhi
- CKD Research Centre, Shahid Beheshti University of Medical Science, IranNephrology Department, Masih Daneshvari Hospital, Telemedicine Research Center, National Research Institute of Tuberculosis and Lung Disease, Tehran, Iran
| | | | - Mohammad Amin Hemmati
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Kalishwaralal K, Azeez Nazeer A, Induja DK, Keerthana CK, Shifana SC, Anto RJ. Enhanced extracellular vesicles mediated uttroside B (Utt-B) delivery to Hepatocellular carcinoma cell: Pharmacokinetics based on PBPK modelling. Biochem Biophys Res Commun 2024; 703:149648. [PMID: 38368675 DOI: 10.1016/j.bbrc.2024.149648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Our prior investigation has confirmed that the anti-hepatocellular carcinoma activity of the plant saponin, specifically Uttroside B (Utt-B), derived from the leaves of Solanum nigrum Linn. This study concentrated on formulating a novel biocompatible nanocarrier utilizing Extracellular vesicles (EVs) to enhance the delivery of plant saponin into cells. The physicochemical attributes of Extracellular Vesicles/UttrosideB (EVs/Utt-B) were comprehensively characterized through techniques such as Transmission Electron Microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR). Despite the promising therapeutic potential of this uttroside B, mechanistic know-how about its entry into cells is still in its infancy. Our research sheds light on the extracellular vesicle-mediated mechanism facilitating the entry of the saponin into cells, a phenomenon confirmed through the use of by confocal microscopy. We further analysed drug-releasing kinetics and simulated the Pharmacokinetics by PBPK modelling. The simulated pharmacokinetics revealed the bioavailability of Uttroside-B in oral administration against intravenous administration.
Collapse
Affiliation(s)
- Kalimuthu Kalishwaralal
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 95014, Kerala, India.
| | - Abdul Azeez Nazeer
- Laboratory of Pharmaceutical Sciences, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon state, 24341, Republic of Korea
| | - D K Induja
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, Kerala, India
| | - Chenicheri K Keerthana
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 95014, Kerala, India
| | - Sadiq C Shifana
- Molecular Bioassay Laboratory, Institute of Advanced Virology, Thiruvananthapuram, 695317, Kerala, India
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 95014, Kerala, India; Molecular Bioassay Laboratory, Institute of Advanced Virology, Thiruvananthapuram, 695317, Kerala, India
| |
Collapse
|
16
|
Bae S, Kang SI, Ko HC, Park J, Jun W. Anti-Obesity Effect of Jeju Roasted Citrus Peel Extract in High-Fat Diet-Induced Obese Mice and 3T3-L1 Adipocytes Via Lipid Metabolism Regulation. J Med Food 2024; 27:369-378. [PMID: 38489599 DOI: 10.1089/jmf.2023.k.0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Lipid accumulation in adipocytes occurs through multifactorial effects such as overnutrition due to unbalanced eating habits, reduced physical activity, and genetic factors. In addition, obesity can be intensified by the dis-regulation of various metabolic systems such as differentiation, lipogenesis, lipolysis, and energy metabolism of adipocytes. In this study, the Jeju roasted peel extract from Citrus unshiu S.Markov. (JRC), which is discarded as opposed to the pulp of C. unshiu S.Markov., is commonly consumed to ameliorate obesity. To investigate the anti-obesity effect of JRC, these studies were conducted on differentiated 3T3-L1 cells and in high-fat diet-induced mice, and related methods were used to confirm whether it decreased lipid accumulation in adipocytes. The mechanism of inhibiting obesity by JRC was confirmed through mRNA expression studies. JRC suppressed lipid accumulation in adipocytes and adipose tissue, and significantly improved enzymes such as alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transferase and serum lipid profiles. In addition, it effectively modulated the expression of genes related to lipid and energy metabolism in adipose tissue. As a result, these findings suggest that JRC could be a therapeutic regulator of body fat accumulation by significantly alleviating the dis-regulation of intracellular lipid metabolism in adipocytes and by enhancement of energy metabolism (Approval No. CNU IACUC-YB-2023-98).
Collapse
Affiliation(s)
- Subin Bae
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea
| | - Seong-Il Kang
- Planning Management and Research Development, Jeju Institute of Korean Medicine, Jeju, Korea
| | - Hee Chul Ko
- Planning Management and Research Development, Jeju Institute of Korean Medicine, Jeju, Korea
| | - Jeongjin Park
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea
- Research Institute for Human Ecology, Chonnam National University, Gwangju, Korea
| | - Woojin Jun
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea
- Research Institute for Human Ecology, Chonnam National University, Gwangju, Korea
| |
Collapse
|
17
|
Alu'datt MH, Rababah T, Al-Ali S, Tranchant CC, Gammoh S, Alrosan M, Kubow S, Tan TC, Ghatasheh S. Current perspectives on fenugreek bioactive compounds and their potential impact on human health: A review of recent insights into functional foods and other high value applications. J Food Sci 2024; 89:1835-1864. [PMID: 38407443 DOI: 10.1111/1750-3841.16970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Despite long-standing uses in several food and medicine traditions, the full potential of the leguminous crop fenugreek (Trigonella foenum-graecum L.) remains to be realized in the modern diet. Not only its seeds, which are highly prized for their culinary and medicinal properties, but also its leaves and stems abound in phytochemicals with high nutritional and health promoting attributes. Fenugreek dual food-medicine applications and reported metabolic activities include hypoglycemic, antihyperlipidemic, antioxidative, anti-inflammatory, antiatherogenic, antihypertensive, anticarcinogenic, immunomodulatory, and antinociceptive effects, with potential organ-protective effects at the cardiovascular, digestive, hepatic, endocrine, and central nervous system levels. Effectiveness in alleviating certain inflammatory skin conditions and dysfunctions of the reproductive system was also suggested. As a food ingredient, fenugreek can enhance the sensory, nutritional, and nutraceutical qualities of a wide variety of foods. Its high nutritive density can assist with the design of dietary items that meet the demand for novelty, variety, and healthier foods. Its seeds provide essential protective nutrients and other bioactive compounds, notably galactomannans, flavonoids, coumarins, saponins, alkaloids, and essential oils, whose health benefits, alone or in conjunction with other bioactives, are only beginning to be tapped into in the food industries. This review summarizes the current state of evidence on fenugreek potential for functional food development, focusing on the nutrients and non-nutrient bioactive components of interest from a dietary perspective, and their applications for enhancing the functional and nutraceutical value of foods and beverages. New developments, safety, clinical evidence, presumed mechanisms of action, and future perspectives are discussed. HIGHLIGHTS: Fenugreek seeds and leaves have long-standing uses in the food-medicine continuum. Fenugreek phytochemicals exert broad-spectrum biological and pharmacological activities. They show high preventive and nutraceutical potential against common chronic diseases. Current evidence supports multiple mechanisms of action mediated by distinct bioactives. Opportunities for fenugreek-based functional foods and nutraceuticals are expanding.
Collapse
Affiliation(s)
- Muhammad H Alu'datt
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Safat, Kuwait
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Taha Rababah
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Saleh Al-Ali
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Safat, Kuwait
| | - Carole C Tranchant
- School of Food Science, Nutrition and Family Studies, Faculty of Health Sciences and Community Services, Université de Moncton, Moncton, New Brunswick, Canada
| | - Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Alrosan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, George Town, Penang, Malaysia
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Stan Kubow
- School of Dietetics and Human Nutrition, McGill University, Montreal, Quebec, Canada
| | - Thuan-Chew Tan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, George Town, Penang, Malaysia
| | - Salsabeel Ghatasheh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
18
|
Lv N, Wang L, Zeng M, Wang Y, Yu B, Zeng W, Jiang X, Suo Y. Saponins as therapeutic candidates for atherosclerosis. Phytother Res 2024; 38:1651-1680. [PMID: 38299680 DOI: 10.1002/ptr.8128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 02/02/2024]
Abstract
Drug development for atherosclerosis, the underlying pathological state of ischemic cardiovascular diseases, has posed a longstanding challenge. Saponins, classified as steroid or triterpenoid glycosides, have shown promising therapeutic potential in the treatment of atherosclerosis. Through an exhaustive examination of scientific literature spanning from May 2013 to May 2023, we identified 82 references evaluating 37 types of saponins in terms of their prospective impacts on atherosclerosis. These studies suggest that saponins have the potential to ameliorate atherosclerosis by regulating lipid metabolism, inhibiting inflammation, suppressing apoptosis, reducing oxidative stress, and modulating smooth muscle cell proliferation and migration, as well as regulating gut microbiota, autophagy, endothelial senescence, and angiogenesis. Notably, ginsenosides exhibit significant potential and manifest essential pharmacological attributes, including lipid-lowering, anti-inflammatory, anti-apoptotic, and anti-oxidative stress effects. This review provides a comprehensive examination of the pharmacological attributes of saponins in atherosclerosis, with particular emphasis on their role in the regulation of lipid metabolism regulation and anti-inflammatory effects. Thus, saponins may warrant further investigation as a potential therapy for atherosclerosis. However, due to various reasons such as low oral bioavailability, the clinical application of saponins in the treatment of atherosclerosis still needs further exploration.
Collapse
Affiliation(s)
- Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yijing Wang
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyun Zeng
- Oncology Department, Ganzhou people's hospital, Ganzhou, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanrong Suo
- Traditional Chinese Medicine Department, Ganzhou people's hospital, Ganzhou, China
| |
Collapse
|
19
|
Chamberlin ML, Wilson SM, Gaston ME, Kuo WY, Miles MP. Twelve Weeks of Daily Lentil Consumption Improves Fasting Cholesterol and Postprandial Glucose and Inflammatory Responses-A Randomized Clinical Trial. Nutrients 2024; 16:419. [PMID: 38337705 PMCID: PMC10857178 DOI: 10.3390/nu16030419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Lentils have potential to improve metabolic health but there are limited randomized clinical trials evaluating their comprehensive impact on metabolism. The aim of this study was to assess the impact of lentil-based vs. meat-based meals on fasting and postprandial measures of glucose and lipid metabolism and inflammation. Thirty-eight adults with an increased waist circumference (male ≥ 40 inches and female ≥ 35 inches) participated in a 12-week dietary intervention that included seven prepared midday meals totaling either 980 g (LEN) or 0 g (CON) of cooked green lentils per week. Linear models were used to assess changes in fasting and postprandial markers from pre- to post-intervention by meal group. Gastrointestinal (GI) symptoms were assessed through a survey randomly delivered once per week during the intervention. We found that regular consumption of lentils lowered fasting LDL (F = 5.53, p = 0.02) and total cholesterol levels (F = 8.64, p < 0.01) as well as postprandial glucose (β = -0.99, p = 0.01), IL-17 (β = -0.68, p = 0.04), and IL-1β (β = -0.70, p = 0.03) responses. GI symptoms were not different by meal group and all symptoms were reported as "none" or "mild" for the duration of the intervention. Our results suggest that daily lentil consumption may be helpful in lowering cholesterol and postprandial glycemic and inflammatory responses without causing GI stress. This information further informs the development of pulse-based dietary strategies to lower disease risk and to slow or reverse metabolic disease progression in at-risk populations.
Collapse
Affiliation(s)
- Morgan L. Chamberlin
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT 59717, USA; (M.L.C.); (W.-Y.K.)
| | - Stephanie M.G. Wilson
- United States Department of Agriculture, Agricultural Research Service Western Human Nutrition Research Center, Davis, CA 95616, USA;
- Texas A&M, Institute for Advancing Health Through Agriculture, College Station, TX 77845, USA
| | - Marcy E. Gaston
- Department of Human Ecology, SUNY Oneonta, Oneonta, NY 13820, USA;
| | - Wan-Yuan Kuo
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT 59717, USA; (M.L.C.); (W.-Y.K.)
| | - Mary P. Miles
- Department of Food Systems, Nutrition, and Kinesiology, Montana State University, Bozeman, MT 59717, USA; (M.L.C.); (W.-Y.K.)
| |
Collapse
|
20
|
Kongolo Kalemba MR, Makhuvele R, Njobeh PB. Phytochemical screening, antioxidant activity of selected methanolic plant extracts and their detoxification capabilities against AFB 1 toxicity. Heliyon 2024; 10:e24435. [PMID: 38312698 PMCID: PMC10835242 DOI: 10.1016/j.heliyon.2024.e24435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Aflatoxin B1 (AFB1) is a secondary metabolite produced principally by Aspergillus parasiticus and A. flavus. It is one of the most potent and commonly occurring dietary carcinogen with its carcinogenic potential being linked to the formation of DNA adducts and reactive oxygen species (ROS). Plant extracts contain a plethora of biologically active phytochemicals that act against ROS. This study aimed to assess the phytochemical content and antioxidant activity of methanolic extracts of some medicinal plants and investigate their detoxification potentials against AFB1. Phytochemical screening together with total phenolic content (TPC), total flavonoid content (TFC), and antioxidant (2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS+)) assays) were performed on nine methanolic plant extracts. Extracts were incubated with AFB1 for 24 and 48 h and liquid chromatography mass spectrometry (LC-MS) analysis done to assess their AFB1 detoxification activities. The TPC of the extracts ranged from 88.92 ± 6.54 to 210.19 ± 7.90 mg GAE/g, while TFC ranged between 4.01 ± 0.94 and 32.48 ± 1.02 mg QE/g. Radical scavenging activities of extracts varied from 4.18 ± 1.37 to 251.53 ± 9.30 μg/mL and 8.36 ± 1.65 to 279.22 ± 8.33 μg/mL based on DPPH and ABTS+ assays, respectively. Six of the plant extracts showed a time-dependent detoxification activity against AFB1 after 48 h ranging from 20.17 to 38.13 %. C. dentata bark extract showed the highest percentage of AFB1 reduction, with mean percentages of 43.57 and 70.96 % at 24 and 48 h, respectively. This was followed by C. asiatica leaves and A. melegueta seeds with a maximum of 40.81 and 38.13 %, respectively after 48 h. These extracts also possessed high TPC, TFC, and antioxidant activities compared to all the other extracts. Findings from this study demonstrate the abundance of bioactive compounds with antioxidant activity playing a role in potent AFB1 detoxification activity.
Collapse
Affiliation(s)
- Mavie Rose Kongolo Kalemba
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng, 2028, South Africa
| | - Rhulani Makhuvele
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng, 2028, South Africa
- Toxicology and Ethnoveterinary Medicine, ARC-Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, South Africa
| | - Patrick Berka Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng, 2028, South Africa
| |
Collapse
|
21
|
Su Y, Jin M, Chen F, Xu C, Chen L, Li L, Li Y, Zhao M, Zhu G, Lin Z. Promote lipolysis in white adipocytes by magnetic hyperthermia therapy with Fe 3O 4microsphere-doped hydrogel. NANOTECHNOLOGY 2024; 35:155101. [PMID: 38150725 DOI: 10.1088/1361-6528/ad18e5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
Obesity has become an ongoing global crisis, since it increases the risks of cardiovascular disease, type 2 diabetes, fatty liver, cognitive decline, and some cancers. Adipose tissue is closely associated with the disorder of lipid metabolism. Several efforts have been made toward the modulation of lipid accumulation, but have been hindered by poor efficiency of cellular uptake, low safety, and uncertain effective dosage. Herein, we design an Fe3O4microsphere-doped composite hydrogel (Fe3O4microspheres @chitosan/β-glycerophosphate/collagen), termed as Fe3O4@Gel, as the magnetocaloric agent for magnetic hyperthermia therapy (MHT), aiming to promote lipolysis in white adipocytes. The experimental results show that the obtained Fe3O4@Gel displays a series of advantages, such as fast sol-gel transition, high biocompatibility, and excellent magneto-thermal performance. MHT, which is realized by Fe3O4@Gel subjected to an alternating magnetic field, leads to reduced lipid accumulation, lower triglyceride content, and increased mitochondrial activity in white adipocytes. This work shows that Fe3O4@Gel-mediated MHT can effectively promote lipolysis in white adipocytesin vitro, which provides a potential approach to treat obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Yu Su
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Mengshan Jin
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Feifei Chen
- Pharmacy Department, Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou 318000, People's Republic of China
| | - Chenxiao Xu
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Litian Chen
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Le Li
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Yeying Li
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Mengyuan Zhao
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Guanghui Zhu
- Pharmacy Department, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Zhenkun Lin
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| |
Collapse
|
22
|
Silva RMGD, Kacew S, Granero FO. Saponins: A class of bioactive natural products with wide applications in human health. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2024:185-233. [DOI: 10.1016/b978-0-443-15756-1.00013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Chen S, Dima C, Kharazmi MS, Yin L, Liu B, Jafari SM, Li Y. The colloid and interface strategies to inhibit lipid digestion for designing low-calorie food. Adv Colloid Interface Sci 2023; 321:103011. [PMID: 37826977 DOI: 10.1016/j.cis.2023.103011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Although fat is one of the indispensable components of food flavor, excessive fat consumption could cause obesity, metabolism syndromes and an imbalance in the intestinal flora. In the pursuit of a healthy diet, designing fat reducing foods by inhibiting lipid digestion and calorie intake is a promising strategy. Altering the gastric emptying rates of lipids as well as acting on the lipase by suppressing the enzymatic activity or limiting lipase diffusion via interfacial modulation can effectively decrease lipolysis rates. In this review, we provide a comprehensive overview of colloid-based strategies that can be employed to retard lipid hydrolysis, including pancreatic lipase inhibitors, emulsion-based interfacial modulation and fat substitutes. Plants-/microorganisms-derived lipase inhibitors bind to catalytic active sites and change the enzymatic conformation to inhibit lipase activity. Introducing oil-in-water Pickering emulsions into the food can effectively delay lipolysis via steric hindrance of interfacial particulates. Regulating stability and physical states of emulsions can also affect the rate of hydrolysis by altering the active hydrolysis surface. 3D network structure assembled by fat substitutes with high viscosity can not only slow down the peristole and obstruct the diffusion of lipase to the oil droplets but also impede the transportation of lipolysis products to epithelial cells for adsorption. Their applications in low-calorie bakery, dairy and meat products were also discussed, emphasizing fat intake reduction, structure and flavor retention and potential health benefits. However, further application of these strategies in large-scale food production still requires more optimization on cost and lipid reducing effects. This review provides a comprehensive review on colloidal approaches, design, principles and applications of fat reducing strategies to meet the growing demand for healthier diet and offer practical insights for the low-calorie food industry.
Collapse
Affiliation(s)
- Shanan Chen
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Cristian Dima
- Dunarea de Jos' University of Galati, Faculty of Food Science and Engineering, "Domnească" Str. 111, Building F, Room 107, 800201, Galati, Romania
| | | | - Lijun Yin
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Bin Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
24
|
Zhen S, Abdul Rauf Z, Fenfen X, Zhan K, Ruiyu M, Wang Z. Microbial fermentation technology for degradation of saponins from peony seed meal. Prep Biochem Biotechnol 2023; 53:1263-1275. [PMID: 36927259 DOI: 10.1080/10826068.2023.2188408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Peony seed meal is a very important feed protein raw material with a high potential for development; however, the presence of some anti-nutritional factors, such as saponins, reduces its reusability. This study aimed to establish ideal microbial fermentation conditions for the degradation of saponins in peony seed meal for its subsequent use in poultry feed. First, saponins were extracted via two methods: ethanol extraction and reflux. Then, response surface methodology and orthogonal array testing were used to establish the optimal conditions for the degradation of saponins by (a) liquid fermentation of single bacteria, (b) liquid fermentation of compound bacteria, and (c) solid-state fermentation. The degradation efficiencies were 40.21% (±1.62), 59.82% (±1.54), and 69.31% (±2.95), respectively. The maximum degradation was obtained via solid-state fermentation, and the soluble protein content for this fermentation product was found to be 14% higher than that of unfermented peony seed meal.
Collapse
Affiliation(s)
- Sun Zhen
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Zirwa Abdul Rauf
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Xiao Fenfen
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Kai Zhan
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, The Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Ma Ruiyu
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, The Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Zaigui Wang
- School of Life Science, Anhui Agricultural University, Hefei, China
| |
Collapse
|
25
|
Tandoro Y, Chen BK, Ali A, Wang CK. Review of Phytochemical Potency as a Natural Anti- Helicobacter pylori and Neuroprotective Agent. Molecules 2023; 28:7150. [PMID: 37894629 PMCID: PMC10609179 DOI: 10.3390/molecules28207150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Phytochemicals are plant secondary metabolites that show health benefits for humans due to their bioactivity. There is a huge variety of phytochemicals that have already been identified, and these compounds can act as antimicrobial and neuroprotection agents. Due to their anti-microbial activity and neuroprotection, several phytochemicals might have the potency to be used as natural therapeutic agents, especially for Helicobacter pylori infection and neurodegenerative disease, which have become a global health concern nowadays. According to previous research, there are some connections between H. pylori infection and neurodegenerative diseases, especially Alzheimer's disease. Hence, this comprehensive review examines different kinds of phytochemicals from natural sources as potential therapeutic agents to reduce H. pylori infection and improve neurodegenerative disease. An additional large-scale study is needed to establish the connection between H. pylori infection and neurodegenerative disease and how phytochemicals could improve this condition.
Collapse
Affiliation(s)
- Yohanes Tandoro
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan; (Y.T.); (B.-K.C.); (A.A.)
- Faculty of Agricultural Technology, Widya Mandala Catholic University Surabaya, Surabaya 60265, Indonesia
| | - Bo-Kai Chen
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan; (Y.T.); (B.-K.C.); (A.A.)
| | - Asif Ali
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan; (Y.T.); (B.-K.C.); (A.A.)
| | - Chin-Kun Wang
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan; (Y.T.); (B.-K.C.); (A.A.)
| |
Collapse
|
26
|
Sanneur K, Leksawasdi N, Sumonsiri N, Techapun C, Taesuwan S, Nunta R, Khemacheewakul J. Inhibitory Effects of Saponin-Rich Extracts from Pouteria cambodiana against Digestive Enzymes α-Glucosidase and Pancreatic Lipase. Foods 2023; 12:3738. [PMID: 37893631 PMCID: PMC10606392 DOI: 10.3390/foods12203738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Pouteria cambodiana is a perennial plant that has a wide distribution in tropical regions. It is commonly referred to as 'Nom-nang' in the northern region of Thailand. The bark of this plant has been used for the purpose of promoting lactation among breastfeeding mothers. Moreover, P. cambodiana bark has a high nutraceutical potential due to the presence of saponins, which are secondary metabolites. The purpose of this study was to determine the optimal conditions for ultrasound-assisted extraction (UAE) of saponins from the bark of P. cambodiana and to assess the in vitro inhibitory activities of saponin-rich extracts. The most effective extraction conditions involved a temperature of 50 °C and a 50% concentration level of ethanol as the solvent, which allowed the extraction of saponin at a concentration of 36.04 mg/g. Saponin-rich extracts and their hydrolysates from P. cambodiana bark were evaluated for their ability to inhibit α-glucosidase and pancreatic lipase. The IC50 values for saponin- and sapogenin-rich extracts inhibiting α-glucosidase were 0.10 and 2.98 mg/mL, respectively. Non-hydrolysed extracts also had a stronger inhibitory effect than acarbose. In the case of pancreatic lipase, only the hydrolysed extracts exhibited inhibitory effects on pancreatic lipase (IC50 of 7.60 mg/mL). Thus, P. cambodiana bark may be an applicable natural resource for preparing ingredients for functional products with inhibitory activity against α-glucosidase and pancreatic lipase. The phenolic contents, saponin contents, and antioxidant activities of the dried extract stored at a low temperature of 25 °C for 2 months showed the best stability, with more than 90% retention.
Collapse
Affiliation(s)
- Kawisara Sanneur
- Division of Food Science and Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (K.S.); (S.T.)
| | - Noppol Leksawasdi
- Bioprocess Research Cluster, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (N.L.); (C.T.); (R.N.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Nutsuda Sumonsiri
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK;
| | - Charin Techapun
- Bioprocess Research Cluster, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (N.L.); (C.T.); (R.N.)
| | - Siraphat Taesuwan
- Division of Food Science and Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (K.S.); (S.T.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Rojarej Nunta
- Bioprocess Research Cluster, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (N.L.); (C.T.); (R.N.)
- Division of Food Science and Technology, Faculty of Science and Technology, Lampang Rajabhat University, Lampang 52100, Thailand
| | - Julaluk Khemacheewakul
- Division of Food Science and Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (K.S.); (S.T.)
- Bioprocess Research Cluster, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (N.L.); (C.T.); (R.N.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
27
|
Siddiqui SA, Azmy Harahap I, Suthar P, Wu YS, Ghosh N, Castro-Muñoz R. A Comprehensive Review of Phytonutrients as a Dietary Therapy for Obesity. Foods 2023; 12:3610. [PMID: 37835263 PMCID: PMC10572887 DOI: 10.3390/foods12193610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Obesity is a complex medical condition mainly caused by eating habits, genetics, lifestyle, and medicine. The present study deals with traditional diets like the Mediterranean diet, Nordic diet, African Heritage diet, Asian diet, and DASH, as these are considered to be sustainable diets for curing obesity. However, the bioavailability of phytonutrients consumed in the diet may vary, depending on several factors such as digestion and absorption of phytonutrients, interaction with other substances, cooking processes, and individual differences. Hence, several phytochemicals, like polyphenols, alkaloids, saponins, terpenoids, etc., have been investigated to assess their efficiencies and safety in the prevention and treatment of obesity. These phytochemicals have anti-obesity effects, mediated via modulation of many pathways, such as decreased lipogenesis, lipid absorption, accelerated lipolysis, energy intake, expenditure, and preadipocyte differentiation and proliferation. Owing to these anti-obesity effects, new food formulations incorporating these phytonutrients were introduced that can be beneficial in reducing the prevalence of obesity and promoting public health.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Department of Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, 94315 Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610 Quakenbrück, Germany
| | | | - Priyanka Suthar
- Department of Food Science and Technology, Dr. Y. S. Parmar University of Horticulture and Forestry, Solan 173230, Himachal Pradesh, India;
| | - Yuan Seng Wu
- School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia;
| | - Nibedita Ghosh
- Department of Pharmacology, Girijananda Chowdhury University, Guwahati 781017, Assam, India;
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
28
|
Wu CY, Huang CK, Hong WS, Liu YH, Shih MC, Lin JC. Influence of Symbiotic Fermentation Broth on Regulating Metabolism with Gut Microbiota and Metabolite Profiles Is Estimated Using a Third-Generation Sequencing Platform. Metabolites 2023; 13:999. [PMID: 37755279 PMCID: PMC10535509 DOI: 10.3390/metabo13090999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Overnutrition with a high-fat or high-sugar diet is widely considered to be the risk factor for various metabolic, chronic, or malignant diseases that are accompanied by alterations in gut microbiota, metabolites, and downstream pathways. In this study, we investigated supplementation with soybean fermentation broth containing saponin (SFBS, also called SAPOZYME) in male C57BL/6 mice fed a high-fat-fructose diet or normal chaw. In addition to the lessening of weight gain, the influence of SFBS on reducing hyperlipidemia and hyperglycemia associated with a high-fat-fructose diet was estimated using the results of related biological tests. The results of gut microbial profiling indicated that the high-fat-fructose diet mediated increases in opportunistic pathogens. In contrast, SFBS supplementation reprogrammed the high-fat-fructose diet-related microbial community with a relatively high abundance of potential probiotics, including Akkermansia and Lactobacillus genera. The metagenomic functions of differential microbial composition in a mouse model and enrolled participants were assessed using the PICRUSt2 algorithm coupled with the MetaCyc and the KEGG Orthology databases. SFBS supplementation exerted a similar influence on an increase in the level of 4-aminobutanoate (also called GABA) through the L-glutamate degradation pathway in the mouse model and the enrolled healthy population. These results suggest the beneficial influence of SFBS supplementation on metabolic disorders associated with a high-fat-fructose diet, and SFBS may function as a nutritional supplement for people with diverse requirements.
Collapse
Affiliation(s)
- Chih-Yin Wu
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City 116, Taiwan;
| | - Chun-Kai Huang
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
| | - Wei-Sheng Hong
- Sagittarius Life Science Corporations, Taipei 115, Taiwan; (W.-S.H.); (Y.-H.L.); (M.-C.S.)
| | - Yin-Hsiu Liu
- Sagittarius Life Science Corporations, Taipei 115, Taiwan; (W.-S.H.); (Y.-H.L.); (M.-C.S.)
| | - Ming-Chi Shih
- Sagittarius Life Science Corporations, Taipei 115, Taiwan; (W.-S.H.); (Y.-H.L.); (M.-C.S.)
| | - Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| |
Collapse
|
29
|
Herrera T, Iriondo-DeHond M, Ramos Sanz A, Bautista AI, Miguel E. Effect of Wild Strawberry Tree and Hawthorn Extracts Fortification on Functional, Physicochemical, Microbiological, and Sensory Properties of Yogurt. Foods 2023; 12:3332. [PMID: 37761041 PMCID: PMC10528895 DOI: 10.3390/foods12183332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
The composition analyses and health-promoting properties (antioxidant capacity, antidiabetic, and antihypertensive properties) of wild fruit extracts and the effect of the incorporation of strawberry tree (STE) and hawthorn (HTE) extracts on the physicochemical, instrumental textural, microbiological, and sensory parameters of yogurts were evaluated. The incorporation of wild fruit extracts in yogurt increased antioxidant and antidiabetic properties (inhibition of digestive α-amylase, α-glucosidase, and lipase enzymatic activities) compared to the control, without decreasing their sensory quality or acceptance by consumers. The hawthorn yogurt (YHTE) showed the highest total phenolic content (TPC) and antioxidant capacity (ABTS and ORAC methods). Yogurts containing wild fruit extracts and dietary fiber achieved high overall acceptance scores (6.16-7.04) and showed stable physicochemical, textural, and microbiological properties. Therefore, the use of wild fruit extracts and inulin-type fructans as ingredients in yogurt manufacture stands as a first step towards the development of non-added sugar dairy foods for sustainable health.
Collapse
Affiliation(s)
| | | | | | | | - Eugenio Miguel
- Área de Investigación Agroalimentaria, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), 28805 Alcalá de Henares, Spain
| |
Collapse
|
30
|
Timilsena YP, Phosanam A, Stockmann R. Perspectives on Saponins: Food Functionality and Applications. Int J Mol Sci 2023; 24:13538. [PMID: 37686341 PMCID: PMC10487995 DOI: 10.3390/ijms241713538] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Saponins are a diverse group of naturally occurring plant secondary metabolites present in a wide range of foods ranging from grains, pulses, and green leaves to sea creatures. They consist of a hydrophilic sugar moiety linked to a lipophilic aglycone, resulting in an amphiphilic nature and unique functional properties. Their amphiphilic structures enable saponins to exhibit surface-active properties, resulting in stable foams and complexes with various molecules. In the context of food applications, saponins are utilized as natural emulsifiers, foaming agents, and stabilizers. They contribute to texture and stability in food products and have potential health benefits, including cholesterol-lowering and anticancer effects. Saponins possess additional bioactivities that make them valuable in the pharmaceutical industry as anti-inflammatory, antimicrobial, antiviral, and antiparasitic agents to name a few. Saponins can demonstrate cytotoxic activity against cancer cell lines and can also act as adjuvants, enhancing the immune response to vaccines. Their ability to form stable complexes with drugs further expands their potential in drug delivery systems. However, challenges such as bitterness, cytotoxicity, and instability under certain conditions need to be addressed for effective utilization of saponins in foods and related applications. In this paper, we have reviewed the chemistry, functionality, and application aspects of saponins from various plant sources, and have summarized the regulatory aspects of the food-based application of quillaja saponins. Further research to explore the full potential of saponins in improving food quality and human health has been suggested. It is expected that this article will be a useful resource for researchers in food, feed, pharmaceuticals, and material science.
Collapse
Affiliation(s)
- Yakindra Prasad Timilsena
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Werribee, VIC 3030, Australia;
| | - Arissara Phosanam
- Department of Food Technology and Nutrition, Faculty of Natural Resources and Agro-Industry, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakhon Nakon 47000, Thailand;
| | - Regine Stockmann
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Werribee, VIC 3030, Australia;
| |
Collapse
|
31
|
Akullo JO, Kiage-Mokua BN, Nakimbugwe D, Ng’ang’a J, Kinyuru J. Phytochemical profile and antioxidant activity of various solvent extracts of two varieties of ginger and garlic. Heliyon 2023; 9:e18806. [PMID: 37576272 PMCID: PMC10412845 DOI: 10.1016/j.heliyon.2023.e18806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023] Open
Abstract
There is limited information on the phytochemical profile and antioxidant activity of ginger and garlic consumed in Uganda. This could have an impact on its widespread use and industrial application. Thus, this study was done to determine the phytochemical profile and antioxidant activity of two varieties of ginger and garlic commonly consumed in Uganda. Fresh ginger rhizomes and garlic cloves of "local" and "hybrid" varieties were acquired from a local food market, washed, grated, and extracted using acetone, ethanol, methanol, and water. Standard techniques were used to determine the phytochemical composition. Total phenolic and flavonoid content were measured using Folin-Ciocalteu and aluminium chloride assays, respectively. Antioxidant activity was determined using the 2, 2-Diphenyl-1-picryl hydrazyl (DPPH) assays. Ginger extracts exhibited significantly higher total phenolic and flavonoid content compared to garlic (p˂0.05). The highest total phenolic and flavonoid content was in ethanol and methanol extracts of local ginger: 1968.49 and 2172.65 mg GAE/100 g; 254.24 and 184.62 mg QE/100 g, respectively. Tannins, alkaloids, saponins, and terpenoids were in varying concentrations in the extracts. Levels of Vitamin C were significantly high in aqueous extracts (p˂0.05), 38.34 and 40.80 AAE/100 g in local and hybrid ginger; 33.65 and 35.24 mg AAE/100 g in local and hybrid garlic, respectively. The free radical scavenging activity of extracts varied depending on concentration, with a strong positive correlation between antioxidant activity and total phenolic and flavonoid content. The half maximal inhibitory concentration (IC50) ranged from 0.16 to 8.93 mg/ml in local ginger, 4.43-6.44 mg/ml in hybrid ginger, 3.93-5.64 mg/ml in local garlic, and 4.44-5.27 mg/ml in hybrid garlic. The best antioxidant activity was exhibited by ethanol extracts of the local ginger. According to the findings, the two varieties of ginger and garlic have strong antioxidant activity due to their different phytochemical compositions, which could make them useful as natural antioxidants in food and medicine applications.
Collapse
Affiliation(s)
- Jolly Oder Akullo
- Department of Animal Production and Management, Faculty of Agriculture and Animal Sciences, Busitema University, Uganda
- Department of Human Nutrition Sciences, School of Food and Nutrition Sciences, Jomo Kenyatta University of Agriculture and Technology, Kenya
| | - Beatrice N. Kiage-Mokua
- Department of Human Nutrition Sciences, School of Food and Nutrition Sciences, Jomo Kenyatta University of Agriculture and Technology, Kenya
| | - Dorothy Nakimbugwe
- Department of Food Technology and Nutrition, School of Food Technology, Nutrition and Bio-engineering, Makerere University, Uganda
| | - Jeremiah Ng’ang’a
- Department of Food Science and Technology, School of Food and Nutrition Sciences, Jomo Kenyatta University of Agriculture and Technology, Kenya
| | - John Kinyuru
- Department of Food Science and Technology, School of Food and Nutrition Sciences, Jomo Kenyatta University of Agriculture and Technology, Kenya
- African Institute for Capacity Development, P.O. Box 46179 – 00100, Nairobi, Kenya
| |
Collapse
|
32
|
Sánchez-Velázquez OA, Luna-Vital DA, Morales-Hernandez N, Contreras J, Villaseñor-Tapia EC, Fragoso-Medina JA, Mojica L. Nutritional, bioactive components and health properties of the milpa triad system seeds (corn, common bean and pumpkin). Front Nutr 2023; 10:1169675. [PMID: 37538927 PMCID: PMC10395131 DOI: 10.3389/fnut.2023.1169675] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/13/2023] [Indexed: 08/05/2023] Open
Abstract
The milpa system is a biocultural polyculture technique. Heritage of Mesoamerican civilizations that offers a wide variety of plants for food purposes. Corn, common beans, and pumpkins are the main crops in this agroecosystem, which are important for people's nutritional and food security. Moreover, milpa system seeds have great potential for preventing and ameliorating noncommunicable diseases, such as obesity, dyslipidemia, type 2 diabetes, among others. This work reviews and analyzes the nutritional and health benefits of milpa system seeds assessed by recent preclinical and clinical trials. Milpa seeds protein quality, vitamins and minerals, and phytochemical composition are also reviewed. Evidence suggests that regular consumption of milpa seeds combination could exert complementing effect to control nutritional deficiencies. Moreover, the combination of phytochemicals and nutritional components of the milpa seed could potentialize their individual health benefits. Milpa system seeds could be considered functional foods to fight nutritional deficiencies and prevent and control noncommunicable diseases.
Collapse
Affiliation(s)
- Oscar Abel Sánchez-Velázquez
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| | | | - Norma Morales-Hernandez
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| | - Jonhatan Contreras
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| | - Elda Cristina Villaseñor-Tapia
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| | | | - Luis Mojica
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| |
Collapse
|
33
|
Dini I, Mancusi A. Weight Loss Supplements. Molecules 2023; 28:5357. [PMID: 37513229 PMCID: PMC10384751 DOI: 10.3390/molecules28145357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Being overweight or obese can predispose people to chronic diseases and metabolic disorders such as cardiovascular illnesses, diabetes, Alzheimer's disease, and cancer, which are costly public health problems and leading causes of mortality worldwide. Many people hope to solve this problem by using food supplements, as they can be self-prescribed, contain molecules of natural origin considered to be incapable of causing damage to health, and the only sacrifice they require is economic. The market offers supplements containing food plant-derived molecules (e.g., primary and secondary metabolites, vitamins, and fibers), microbes (probiotics), and microbial-derived fractions (postbiotics). They can control lipid and carbohydrate metabolism, reduce appetite (interacting with the central nervous system) and adipogenesis, influence intestinal microbiota activity, and increase energy expenditure. Unfortunately, the copious choice of products and different legislation on food supplements worldwide can confuse consumers. This review summarizes the activity and toxicity of dietary supplements for weight control to clarify their potentiality and adverse reactions. A lack of research regarding commercially available supplements has been noted. Supplements containing postbiotic moieties are of particular interest. They are easier to store and transport and are safe even for people with a deficient immune system.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
34
|
Todorova V, Savova MS, Ivanova S, Ivanov K, Georgiev MI. Anti-Adipogenic Activity of Rhaponticum carthamoides and Its Secondary Metabolites. Nutrients 2023; 15:3061. [PMID: 37447387 DOI: 10.3390/nu15133061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Besides their common use as an adaptogen, Rhaponticum carthamoides (Willd.) Iljin. rhizome and its root extract (RCE) are also reported to beneficially affect lipid metabolism. The main characteristic secondary metabolites of RCE are phytoecdysteroids. In order to determine an RCE's phytoecdysteroid profile, a novel, sensitive, and robust high-performance thin-layer chromatography (HPTLC) method was developed and validated. Moreover, a comparative analysis was conducted to investigate the effects of RCE and its secondary metabolites on adipogenesis and adipolysis. The evaluation of the anti-adipogenic and lipolytic effects was performed using human Simpson-Golabi-Behmel syndrome cells, where lipid staining and measurement of released glycerol and free fatty acids were employed. The HPTLC method confirmed the presence of 20-hydroxyecdysone (20E), ponasterone A (PA), and turkesterone (TU) in RCE. The observed results revealed that RCE, 20E, and TU significantly reduced lipid accumulation in human adipocytes, demonstrating their anti-adipogenic activity. Moreover, RCE and 20E were found to effectively stimulate basal lipolysis. However, no significant effects were observed with PA and TU applications. Based on our findings, RCE and 20E affect both lipogenesis and lipolysis, while TU only restrains adipogenesis. These results are fundamental for further investigations.
Collapse
Affiliation(s)
- Velislava Todorova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Martina S Savova
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria
| | - Stanislava Ivanova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Kalin Ivanov
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Milen I Georgiev
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria
| |
Collapse
|
35
|
Paliya BS, Sharma VK, Sharma M, Diwan D, Nguyen QD, Aminabhavi TM, Rajauria G, Singh BN, Gupta VK. Protein-polysaccharide nanoconjugates: Potential tools for delivery of plant-derived nutraceuticals. Food Chem 2023; 428:136709. [PMID: 37429239 DOI: 10.1016/j.foodchem.2023.136709] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023]
Abstract
Protein-polysaccharide nanoconjugates are covalently interactive networks that are currently the subject of intense research owing to their emerging applications in the food nanotechnology field. Due to their biocompatibility and biodegradability properties, they have played a significant role as wall materials for the formation of various nanostructures to encapsulate nutraceuticals. The food-grade protein-polysaccharide nanoconjugates would be employed to enhance the delivery and stability of nutraceuticals for their real use in the food industry. The most common edible polysaccharides (cellulose, chitosan, pectin, starch, carrageenan, fucoidan, mannan, glucomannan, and arabic gum) and proteins (silk fibroin, collagen, gelatin, soy protein, corn zein, and wheat gluten) have been used as potential building blocks in nano-encapsulation systems because of their excellent physicochemical properties. This article broadens the discussion of food-grade proteins and polysaccharides as nano-encapsulation biomaterials and their fabrication methods, along with a review of the applications of protein-polysaccharide nanoconjugates in the delivery of plant-derived nutraceuticals.
Collapse
Affiliation(s)
- Balwant S Paliya
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Vivek K Sharma
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | | | - Deepti Diwan
- Washington University School of Medicine, 4590 Children's Place, Ste. 8200, Campus Box 8057, St. Louis MO63110, USA
| | - Quang D Nguyen
- Department of Bioengineering and Alcoholic Drink Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Ḿenesiút 45, Hungary
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, India
| | - Gaurav Rajauria
- Department of Biological & Pharmaceutical Sciences, Munster Technological University, Tralee V92HD4V, Co. Kerry, Ireland
| | - Brahma N Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, India.
| | - Vijai Kumar Gupta
- Biorefining and Advance Material Research Centre, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom; Centre for Safe and Improved Food, SRUC, Kings buildings, West Mains Road, Edinburg EH9 3JG, United Kingdom.
| |
Collapse
|
36
|
Torres-Vanda M, Gutiérrez-Aguilar R. Mexican Plants Involved in Glucose Homeostasis and Body Weight Control: Systematic Review. Nutrients 2023; 15:2070. [PMID: 37432178 DOI: 10.3390/nu15092070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Obesity is defined as abnormal or excessive fat accumulation, provoking many different diseases, such as obesity and type 2 diabetes. Type 2 diabetes is a chronic-degenerative disease characterized by increased blood glucose levels. Obesity and type 2 diabetes are currently considered public health problems, and their prevalence has increased over the last few years. Because of the high cost involved in the treatment of both diseases, different alternatives have been sought. However, the general population uses medicinal plants, in the form of tea or infusions, to treat different diseases. Therefore, traditional medicine using medicinal plants has been investigated as a possible treatment for type 2 diabetes and body weight control. AIM OF THE STUDY The purpose of this review is to find medicinal plants used in Mexico that could exert their beneficial effect by regulating insulin secretion and body weight control. MATERIAL AND METHOD For the development of this review, Mexican plants used in traditional medicine to treat type 2 diabetes and body weight control were searched in PubMed, Google Scholar, and Scopus. The inclusion criteria include plants that presented a significant reduction in blood glucose levels and/or an increase in insulin secretion. RESULTS We found 306 Mexican plants with hypoglycemic effects. However, plants that did not show evidence of an increase in insulin secretion were eliminated. Finally, only five plants were included in this review: Momordica charantia L. (melón amargo), Cucurbita ficifolia bouché (chilacayote), Coriandrum sativum L. (cilantro), Persea americana Mill. (aguacate) Bidens pilosa (amor seco), including 39 articles in total. Here, we summarized the plant extracts (aqueous and organic) that have previously been reported to present hypoglycemic effects, body weight control, increased secretion and sensitivity of insulin, improvement of pancreatic β cells, and glucose tolerance. Additionally, these effects may be due to different bioactive compounds present in the plants' extracts. CONCLUSION Both in vivo and in vitro studies are required to understand the mechanism of action of these plant extracts regarding insulin secretion to be used as a possible treatment for type 2 diabetes and body weight control in the future.
Collapse
Affiliation(s)
- Montserrat Torres-Vanda
- Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México "Federico Gómez", Mexico City 06720, Mexico
| | - Ruth Gutiérrez-Aguilar
- Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México "Federico Gómez", Mexico City 06720, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
37
|
Efosa JO, Omage K, Azeke MA. Hibiscus sabdariffa calyx protect against oxidative stress and aluminium chloride-induced neurotoxicity in the brain of experimental rats. Toxicol Rep 2023; 10:469-480. [PMID: 37396846 PMCID: PMC10313867 DOI: 10.1016/j.toxrep.2023.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/28/2023] [Accepted: 04/16/2023] [Indexed: 07/04/2023] Open
Abstract
We evaluated the antioxidant and neuroprotective potentials of extracts of Hibiscus sabdariffa calyx in Wistar albino male rats injected intraperitoneally with aluminium chloride at a dose of 7 mg/kg/day. Phytochemical screening of H. sabdariffa calyx show that coumarin glycosides and steroid were absent after drying at 50 oC. At 30 oC, there were significant (p < 0.05) highest amounts of phenols, flavonoids, alkaloids, tannin, and saponin. The extracts showed significantly (p < 0.05) high dose-dependent antioxidant activities. MDA significantly (p < 0.05) increased, while GSH, GPX, SOD, CAT activities significantly (p < 0.05) decreased in the brain of the experimental rats induced with AlCl3, while treatment with the extracts reversed these effects to a relatively normal level. At doses of 500 and 1000 mg/kg body weight, the extracts of the calyx dried at 30 oC exhibited the highest capacity to increase the activities of GSH and GPx. Also, AlCl3 caused significant increases (p < 0.05) in the percentage inhibition of acetylcholinesterase and butyrylcholinesterase activities, and a significantly (p < 0.05) lower protein levels in the brain of the test rats, while treatment with the extracts, at low and high doses, significantly (p < 0.05) reversed these effects in the rat brain to near normal.H. sabdariffa exhibited a good potential to protect against oxidative stress and neurotoxicity.
Collapse
Affiliation(s)
- John Osarenren Efosa
- Department of Physical Laboratory Technology, School of Applied Sciences and Technology, Auchi Polytechnic, Edo State, Nigeria
| | - Kingsley Omage
- Department of Biochemistry, College of Basic Medical Sciences, Igbinedion University Okada, Edo State, Nigeria
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine, University Hospital Tübingen, Germany
| | - Marshall Arebojie Azeke
- Department of Biochemistry, Faculty of Life Sciences, Ambrose Alli University, Edo State, Nigeria
| |
Collapse
|
38
|
Mokgalaboni K, Phoswa WN. Corchorus olitorius extract exhibit anti-hyperglycemic and anti-inflammatory properties in rodent models of obesity and diabetes mellitus. Front Nutr 2023; 10:1099880. [PMID: 37090773 PMCID: PMC10113448 DOI: 10.3389/fnut.2023.1099880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
Obesity and type 2 diabetes (T2D) are chronic conditions with detrimental impacts on the overall health of individuals. Presently, the use of pharmacological agents in obesity and T2D offers limited benefits and pose side effects. This warrant studies on remedies that are less toxic and inexpensive while effective in ameliorating secondary complications in obesity and T2D. Plant-based remedies have been explored increasingly due to their remarkable properties and safety profile. We searched for pre-clinical evidence published from inception until 2023 on PubMed, Scopus, Google, and Semantic scholar on Corchorus olitorius (C. olitorius) in both obesity and T2D. Our focus was to understand the beneficial impact of this plant-based remedy on basic glycemic, lipid, inflammatory, and biomarkers of oxidative stress. The evidence gathered in this review suggests that C. olitorius treatment may significantly reduce blood glucose, body weight, total cholesterol, triglycerides, and low-density lipoprotein (LDL) in concomitant with increasing high-density lipoprotein-cholesterol (HDL-c) in rodent models of obesity and T2D. Interestingly, this effect was consistent with the reduction of malonaldehyde, superoxide dismutase and catalases, tumor necrosis factor-alpha, interleukins, and leptin. Some of the mechanisms by which C. olitorius reduces blood glucose levels is through stimulation of insulin secretion, increasing β-cell proliferation, thus promoting insulin sensitivity; the process which is mediated by ascorbic acid present in this plant. C. olitorius anti-hyperlipidemia is attributable to the content of ferulic acid found in this plant, which inhibits 3-Hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase inhibitors and thus results in reduced synthesis of cholesterol and increased hepatic LDL-c receptor expression, respectively. The present review provides extensive knowledge and further highlights the potential benefits of C. olitorius on basic metabolic parameters, lipid profile, inflammation, and oxidative stress in rodent models of obesity and T2D.
Collapse
|
39
|
Kohli D, Champawat PS, Mudgal VD. Asparagus (Asparagus racemosus L.) roots: nutritional profile, medicinal profile, preservation, and value addition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2239-2250. [PMID: 36433663 DOI: 10.1002/jsfa.12358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 11/02/2022] [Accepted: 11/26/2022] [Indexed: 06/16/2023]
Abstract
Asparagus (Asparagus racemosus L.) is one of the most significant traditional medicinal plants, containing phytochemicals that are non-nutritive but beneficial to health. It contains bioactive metabolites such as fructo-oligosaccharides, polysaccharides, asparosides, shatavarins, sapogenins, racemosols, isoflavones, glycosides, mucilage, and fatty acids, while saponin is one of the main active constituents of asparagus roots. Asparagus helps in fertility promotion, stress management, and hormone modulation. It also treats stomach ulcers, kidney disorders, and Alzheimer's disease. Substitution of asparagus powder or extract for value addition of food products (such as beverages, bakery, and milk) enhances the nutritional and functional properties. Currently, the plant is considered endangered in its natural habitat because of its destructive harvesting, habitat destruction, and deforestation. As it is a highly perishable commodity, it needs proper handling, preservation, and storage. This review will outline the medicinal properties, uses, value addition, and preservation techniques of asparagus roots. The study found that, till now, the only preservation techniques used to increase the shelf life of asparagus roots are drying and irradiation. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Deepika Kohli
- Department of Processing and Food Engineering, CTAE, MPUAT, Udaipur, Rajasthan, India
| | - Padam Singh Champawat
- Department of Processing and Food Engineering, CTAE, MPUAT, Udaipur, Rajasthan, India
| | | |
Collapse
|
40
|
Nabila I, Thadeus MS, Herardi R. Hepatoprotective Effect of Parijoto Fruit Extract (Medinilla speciosa Blume) on Male Mice Fed with High-Fat Diet. JURNAL GIZI DAN PANGAN 2023. [DOI: 10.25182/jgp.2023.18.1.21-30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
This study aims to determine the effectiveness of parijoto fruit extract (Medinilla speciosa Blume) in improving the condition of fatty liver in male balb/c mice (Mus musculus L.) fed with a high-fat diet. Thirty male balb/c mice weighing 20 to 30 g were randomly divided into six groups, i.e: 1) Standard feed and Carboxymethyl Cellulose Sodium or CMC-Na 0.5% (K1); 2) High-fat diet and CMC-Na 0.5% (K2); 3) High-fat diet and simvastatin 0.026 mg/day (K3); 4) High-fat diet and parijoto fruit extract 5.6 mg/20 g BW (P1); 5) High-fat diet and parijoto fruit extract 8.4 mg/20 g BW (P2); 6) High-fat diet and parijoto fruit extract 11.2 mg/20 g BW (P3). Standard feed, high-fat diet, simvastatin, and parijoto fruit extract were administered for 56 days. On the 57th day, the total of 30 mice were terminated and the livers were then removed for H&E staining histopathological slides. Data on the degree of fatty liver on histopathological slides were collected and analyzed using the Kruskal-Wallis test and followed by the Mann-Whitney test. The histopathological analysis showed Medinilla speciosa Blume extract at a dose of 5.6 mg/20 g BW in group P1 prevent the steatosis degree compared to high-fat feed mice in group K2 (p>0.05). Parijoto fruit extract could act as the potential treatment for fatty liver.
Collapse
|
41
|
Ondevilla JC, Hanashima S, Mukogawa A, Miyazato DG, Umegawa Y, Murata M. Effect of the number of sugar units on the interaction between diosgenyl saponin and membrane lipids. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184145. [PMID: 36914020 DOI: 10.1016/j.bbamem.2023.184145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/15/2023]
Abstract
Saponin is the main bioactive component of the Dioscorea species, which are traditionally used for treating chronic diseases. An understanding of the interaction process of bioactive saponins with biomembranes provides insights into their development as therapeutic agents. The biological effects of saponins have been thought to be associated with membrane cholesterol (Chol). To shed light on the exact mechanisms of their interactions, we investigated the effects of diosgenyl saponins trillin (TRL) and dioscin (DSN) on the dynamic behavior of lipids and membrane properties in palmitoyloleolylphosphatidylcholine (POPC) bilayers using solid-state NMR and fluorescence spectroscopy. The membrane effects of diosgenin, a sapogenin of TRL and DSN, are similar to those of Chol, suggesting that diosgenin plays a major role in membrane binding and POPC chain ordering. The amphiphilicity of TRL and DSN enabled them to interact with POPC bilayers, regardless of Chol. In the presence of Chol, the sugar residues more prominently influenced the membrane-disrupting effects of saponins. The activity of DSN, which bears three sugar units, led to perturbation and further disruption of the membrane in the presence of Chol. However, TRL, which bears one sugar residue, increased the ordering of POPC chains while maintaining the integrity of the bilayer. This effect on the phospholipid bilayers is similar to that of cholesteryl glucoside. The influence of the number of sugars in saponin is discussed in more detail.
Collapse
Affiliation(s)
- Joan Candice Ondevilla
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, De La Salle University, 2401 Taft Avenue, Manila 0922, Philippines
| | - Shinya Hanashima
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8552, Japan.
| | - Akane Mukogawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Darcy Garza Miyazato
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yuichi Umegawa
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Forefront Research Centre for Fundamental Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Michio Murata
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Forefront Research Centre for Fundamental Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
42
|
Murugesan M, Kandhavelu M, Thiyagarajan R, Natesan S, Rajendran P, Murugesan A. Marine halophyte derived polyphenols inhibit glioma cell growth through mitogen-activated protein kinase signaling pathway. Biomed Pharmacother 2023; 159:114288. [PMID: 36682245 DOI: 10.1016/j.biopha.2023.114288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Plants that are pharmacologically significant require intensive phytochemical characterization for bioactive profiling of the compounds, which has enabled their safe use in ayurvedic medicine. The present study is focused on the phytochemical analyses, quantitative estimation and profiling of secondary metabolites of leaf extract, as well as the antioxidant and cytotoxic activity of the potent halophytes such as Avicennia marina, Ceriops tagal, Ipomoea pes-caprae, and Sonneratia apetala. The in vitro antioxidant property was investigated using DPPH, ferric reducing antioxidant capacity (FRAP) assay. Bioactive compounds such as phenols, flavonoids, saponin and alkaloids were quantitatively estimated from the extracts of A.marina, C.tagal, I.pes-capra and S.apetala, which possessed higher phenol content than the other studied halophytes. The extracts at 200 µg/ml revealed higher antioxidant activity than the standard ascorbic acid and it functions as a powerful oxygen free radical scavenger with 77.37%, 75.35% and 72.84% for S.apetala, I.pes-caprae and C.tagal respectively and with least IC50 for I.pes-caprae (11.95 µg/ml) followed by C.tagal (49.94 µg/ml). Cell viability and anti-proliferative activity of different polyphenolic fractions of C.tagal (CT1 and CT2) and I.pes-caprae fraction (IP) against LN229, SNB19 revealed Ipomoea as the promising anti-cytotoxic fraction. IP-derived polyphenols was further subjected to apoptosis, migration assay, ROS and caspase - 3 and - 7 to elucidate its potentiality as a therapeutic drug. IP-polyphenols was found to have higher percentage of inhibition than the CT1 and CT2 polyphenols of C.tagal on comparison with TMZ. All the above-mentioned in-vitro analysis further validated the ability of IP-polyphenols inducing cell death via ROS-mediated caspase dependent pathway. Further, proteomic and phospho-proteomic analysis revealed the potential role of IP-polyphenols in the regulation of cell proliferation through MMK3, p53, p70 S6 kinase and RSK1 proteins involved in mitogen-activated protein kinase signaling pathway. Our analysis confirmed the promising role of I.pes-caprae derived polyphenols as an anti-metastatic compound against GBM cells.
Collapse
Affiliation(s)
- Monica Murugesan
- Department of Zoology, Lady Doak College, Madurai Kamaraj University, Thallakulam, Madurai 625002, India
| | - Meenakshisundaram Kandhavelu
- BioMeditech and Tays Cancer Center, Tampere University Hospital, P.O. Box 553, 33101 Tampere, Finland; Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland.
| | - Ramesh Thiyagarajan
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Kingdom of Saudi Arabia
| | - Sankar Natesan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
| | - Priyatharsini Rajendran
- Department of Zoology, Lady Doak College, Madurai Kamaraj University, Thallakulam, Madurai 625002, India
| | - Akshaya Murugesan
- Department of Biotechnology, Lady Doak College, Madurai Kamaraj University, Thallakulam, Madurai 625002, India.
| |
Collapse
|
43
|
Identification of promising multi-targeting inhibitors of obesity from Vernonia amygdalina through computational analysis. Mol Divers 2023; 27:1-25. [PMID: 35179699 DOI: 10.1007/s11030-022-10397-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/24/2022] [Indexed: 02/08/2023]
Abstract
Vernonia amygdalina, a widely consumed West African food herb, can be a boon in the discovery of safe anti-obesity agents given the extensive reports on its anti-obesity and antidiabetic potentials. The main aim of this study was to screen 78 Vernonia-Derived Phytocompounds (VDPs) against the active site regions of Human Pancreatic Lipase (HPL), Human Pancreatic Amylase and Human Glucosidase (HG) as drug targets associated with obesity in silico. Structure-based virtual screening helped to identify Luteolin 7-O-glucuronoside and Andrographidoid D2 as hit compounds with dual targeting tendency towards the HPL and HG. Analysis of the molecular dynamic simulation trajectory files of the ligand-receptor complexes as computed from the thermodynamic parameters plots showed not only increased flexibility and greater interaction potential of the active site residues of the receptor towards the VDPs as indicated by the root mean square fluctuation but also higher stability as indicated by the root mean square deviation, radius of gyration and number of hydrogen bonds. The cluster analysis further showed that the interactions with important residues were preserved in the dynamic environment. These observations were further verified from Molecular Mechanics Generalized Born Surface Area Analysis, which also showed that residual contributions to the binding free energies were mainly from catalytic residues at the active sites of the enzymes. The hit compounds also feature desirable physicochemical properties and drug-likeness. This study provides in silico evidence for the inhibitory potential of phytochemicals from Vernonia amygdalina against two target enzymes in obesity.
Collapse
|
44
|
Quality and sensory attributes of composite herbal tea from Parquetina Nigrescens (Parquetina) and Cymbopogon Citratus (Lemongrass). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
45
|
Pharmacological Treatments and Natural Biocompounds in Weight Management. Pharmaceuticals (Basel) 2023; 16:ph16020212. [PMID: 37139804 PMCID: PMC9962258 DOI: 10.3390/ph16020212] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The obesity pandemic is one of society’s most urgent public health concerns. One-third of the global adult population may fall under obese or overweight by 2025, suggesting a rising demand for medical care and an exorbitant cost of healthcare expenditure in the coming years. Generally, the treatment strategy for obese patients is largely patient-centric and needs dietary, behavioral, pharmacological, and sometimes even surgical interventions. Given that obesity cases are rising in adults and children and lifestyle modifications have failed to produce the desired results, the need for medical therapy adjunct to lifestyle modifications is vital for better managing obesity. Most existing or past drugs for obesity treatment target satiety or monoamine pathways and induce a feeling of fullness in patients, while drugs such as orlistat are targeted against intestinal lipases. However, many medications targeted against neurotransmitters showed adverse events in patients, thus being withdrawn from the market. Alternatively, the combination of some drugs has been successfully tested in obesity management. However, the demand for novel, safer, and more efficacious pharmaceutical medicines for weight management does exist. The present review elucidates the current understanding of the available anti-obesity medicines of synthetic and natural origin, their main mechanisms of action, and the shortcomings associated with current weight management drugs.
Collapse
|
46
|
Mieres-Castro D, Mora-Poblete F. Saponins: Research Progress and Their Potential Role in the Post-COVID-19 Pandemic Era. Pharmaceutics 2023; 15:pharmaceutics15020348. [PMID: 36839670 PMCID: PMC9964560 DOI: 10.3390/pharmaceutics15020348] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
In the post-COVID-19 pandemic era, the new global situation and the limited therapeutic management of the disease make it necessary to take urgent measures in more effective therapies and drug development in order to counteract the negative global impacts caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its new infectious variants. In this context, plant-derived saponins-glycoside-type compounds constituted from a triterpene or steroidal aglycone and one or more sugar residues-may offer fewer side effects and promising beneficial pharmacological activities. This can then be used for the development of potential therapeutic agents against COVID-19, either as a therapy or as a complement to conventional pharmacological strategies for the treatment of the disease and its prevention. The main objective of this review was to examine the primary and current evidence in regard to the therapeutic potential of plant-derived saponins against the COVID-19 disease. Further, the aim was to also focus on those studies that highlight the potential use of saponins as a treatment against SARS-CoV-2. Saponins are antiviral agents that inhibit different pharmacological targets of the virus, as well as exhibit anti-inflammatory and antithrombotic activity in relieving symptoms and clinical complications related to the disease. In addition, saponins also possess immunostimulatory effects, which improve the efficacy and safety of vaccines for prolonging immunogenicity against SARS-CoV-2 and its infectious variants.
Collapse
|
47
|
Popoola JO, Ojuederie OB, Aworunse OS, Adelekan A, Oyelakin AS, Oyesola OL, Akinduti PA, Dahunsi SO, Adegboyega TT, Oranusi SU, Ayilara MS, Omonhinmin CA. Nutritional, functional, and bioactive properties of african underutilized legumes. FRONTIERS IN PLANT SCIENCE 2023; 14:1105364. [PMID: 37123863 PMCID: PMC10141332 DOI: 10.3389/fpls.2023.1105364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Globally, legumes are vital constituents of diet and perform critical roles in maintaining well-being owing to the dense nutritional contents and functional properties of their seeds. While much emphasis has been placed on the major grain legumes over the years, the neglected and underutilized legumes (NULs) are gaining significant recognition as probable crops to alleviate malnutrition and give a boost to food security in Africa. Consumption of these underutilized legumes has been associated with several health-promoting benefits and can be utilized as functional foods due to their rich dietary fibers, vitamins, polyunsaturated fatty acids (PUFAs), proteins/essential amino acids, micro-nutrients, and bioactive compounds. Despite the plethora of nutritional benefits, the underutilized legumes have not received much research attention compared to common mainstream grain legumes, thus hindering their adoption and utilization. Consequently, research efforts geared toward improvement, utilization, and incorporation into mainstream agriculture in Africa are more convincing than ever. This work reviews some selected NULs of Africa (Adzuki beans (Vigna angularis), African yam bean (Sphenostylis stenocarpa), Bambara groundnut (Vigna subterranea), Jack bean (Canavalia ensiformis), Kidney bean (Phaseolus vulgaris), Lima bean (Phaseolus lunatus), Marama bean (Tylosema esculentum), Mung bean, (Vigna radiata), Rice bean (Vigna Umbellata), and Winged bean (Psophocarpus tetragonolobus)), and their nutritional, and functional properties. Furthermore, we highlight the prospects and current challenges associated with the utilization of the NULs and discusses the strategies to facilitate their exploitation as not only sources of vital nutrients, but also their integration for the development of cheap and accessible functional foods.
Collapse
Affiliation(s)
- Jacob Olagbenro Popoola
- Pure and Applied Biology Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Osun, Nigeria
- Department of Biological Sciences/Biotechnology Cluster, Covenant University, Ota, Ogun, Nigeria
- *Correspondence: Jacob Olagbenro Popoola, ; Omena B. Ojuederie,
| | - Omena B. Ojuederie
- Department of Biological Sciences, Kings University, Ode-Omu, Osun, Nigeria
- Food Security and Safety Focus, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- *Correspondence: Jacob Olagbenro Popoola, ; Omena B. Ojuederie,
| | | | - Aminat Adelekan
- Department of Chemical and Food Sciences, College of Natural and Applied Sciences, Bells University of Technology, Ota, Ogun, Nigeria
| | - Abiodun S. Oyelakin
- Department of Pure and Applied Botany, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Olusola Luke Oyesola
- Department of Biological Sciences/Biotechnology Cluster, Covenant University, Ota, Ogun, Nigeria
| | - Paul A. Akinduti
- Department of Biological Sciences/Biotechnology Cluster, Covenant University, Ota, Ogun, Nigeria
| | - Samuel Olatunde Dahunsi
- Microbiology Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Osun, Nigeria
- The Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA, United States
| | - Taofeek T. Adegboyega
- Food Security and Safety Focus, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Biology Unit, Faculty of Science, Air Force Institute of Technology, Kaduna, Nigeria
| | - Solomon U. Oranusi
- Department of Biological Sciences/Biotechnology Cluster, Covenant University, Ota, Ogun, Nigeria
| | - Modupe S. Ayilara
- Department of Biological Sciences, Kings University, Ode-Omu, Osun, Nigeria
- Food Security and Safety Focus, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Conrad A. Omonhinmin
- Department of Biological Sciences/Biotechnology Cluster, Covenant University, Ota, Ogun, Nigeria
| |
Collapse
|
48
|
Raafat K, al Haj M. Modulators of diabetic neuropathy and inflammation from Saponaria officinalis: Isolation of active phytochemicals and potential mechanisms of action. J Tradit Complement Med 2023; 13:226-235. [PMID: 37128196 PMCID: PMC10148123 DOI: 10.1016/j.jtcme.2023.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Background and aim Natural metabolites are rich in neuroactive and anti-inflammatory phytochemicals. Soapwort or Saponaria officinalis (Sap) has been utilized for its immunomodulatory and ant-rheumatic properties. Thus, the aim is to exploit Sap phytochemically and to investigate Sap isolated active phytochemicals effect to modulate diabetic neuropathy and inflammation, and their possible mechanisms of action. Experimental procedure Bio-guided chromatographic fractionation and phytochemical isolation of the most abundant Sap phytochemicals utilizing RP-HPLC, 13C, and 1H NMR, in-vivo models of diabetes, diabetic neuropathy, and inflammation were used. Glucometers, HbA1c micro-columns, in-vivo hind-paw edema, tail-flick, hot plate, and Von-Frey filaments methods were utilized to investigate the acute, subchronic, and long term diabetes, inflammation, hyperalgesia, and mechanical allodynia. In-vivo antioxidant, inhibitory alpha-amylase, and alpha-glucosidase, and serum insulin levels, IL-6, IL-10, and TNF-alpha cytokines levels were utilized to investigate Sap mechanisms of action. Results and conclusion The phytochemical post-hydrolysis RP-HPLC investigation results show six major peaks; Quillaic acid (12.5%), Quillaic acid 22 β-OH (11.25%), Gypsogenin (21.25%), Phytolaccinic acid (18.75%), Phytolaccinic acid (17.50%), and Echynocystic acid (15.10%). The bio-guided chromatographic fractionation investigation utilizing reversed phase HPLC, 13C and 1H NMR has shown that Quillaic acid (QA) is the most abundant and biologically active compound. Sap 20 mg/kg has shown the highest potency in normalization of blood glucose level (BGL) acutely (6-h), subchronically (eight-days), and longer-term (eight-weeks) correlated to Sap 10 and 7 mg/kg, and QA 0.7, 1.0, 2.0 mg/kg. The highest amelioration of diabetic neuropathy (thermal hyperalgesia and mechanical allodynia) was Sap 20 mg/kg. The anti-inflammatory potentials of Sap 20 mg/kg have shown dominance in decreasing carrageenan-induced in-vivo hind-paw edema. The anti-nociceptive mechanism of action might be due to Sap insulin secretagogue and the in-vivo antioxidant potentials. The reduction of IL-6 cytokines and TNF-alpha, along with the elevation of the IL-10 cytokine level might be the underlying Sap anti-inflammatory mechanism. Phytochemically, QA has shown to be the most abundant and biologically active compound in Sap extract. Sap has shown significant (p < 0.05) anti-diabetic, anti-diabetic neuropathy, and anti-inflammatory effects. Our results provide new insights into the potential effects of Saponaria and Quillaic acid as future alternative therapies against diabetic neuropathy and inflammation.
Collapse
Affiliation(s)
- Karim Raafat
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
- Corresponding author.
| | - Mazen al Haj
- Department of Pharmacology, Faculty of Pharmacy, Arab International University, Damascus, Syria
| |
Collapse
|
49
|
Musolino V, Marrelli M, Perri MR, Palermo M, Gliozzi M, Mollace V, Conforti F. Centranthus ruber (L.) DC. and Tropaeolum majus L.: Phytochemical Profile, In Vitro Anti-Denaturation Effects and Lipase Inhibitory Activity of Two Ornamental Plants Traditionally Used as Herbal Remedies. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010032. [PMID: 36615228 PMCID: PMC9822419 DOI: 10.3390/molecules28010032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Ornamental plants often gain relevance not only for their decorative use, but also as a source of phytochemicals with interesting healing properties. Herein, spontaneous Centranthus ruber (L.) DC. and Tropaeolum majus L., mainly used as ornamental species but also traditionally consumed and used in popular medicine, were investigated. The aerial parts were extracted with methanol trough maceration, and resultant crude extracts were partitioned using solvents with increasing polarity. As previous studies mostly dealt with the phenolic content of these species, the phytochemical investigation mainly focused on nonpolar constituents, detected with GC-MS. The total phenolic and flavonoid content was also verified, and HPTLC analyses were performed. In order to explore the potential antiarthritic and anti-obesity properties, extracts and their fractions were evaluated for their anti-denaturation effects, with the use of the BSA assay, and for their ability to inhibit pancreatic lipase. The antioxidant properties and the inhibitory activity on the NO production were verified, as well. Almost all the extracts and fractions demonstrated good inhibitory effects on NO production. The n-hexane and dichloromethane fractions from T. majus, as well as the n-hexane fraction from C. ruber, were effective in protecting the protein from heat-induced denaturation (IC50 = 154.0 ± 1.9, 270.8 ± 2.3 and 450.1 ± 15.5 μg/mL, respectively). The dichloromethane fractions from both raw extracts were also effective in inhibiting pancreatic lipase, with IC50 values equal to 2.23 ± 0.02 mg/mL (for C. ruber sample), and 2.05 ± 0.02 mg/mL (T. majus). Obtained results support the traditional use of these species for their beneficial health properties and suggest that investigated plant species could be potential sources of novel antiarthritic and anti-obesity agents.
Collapse
Affiliation(s)
- Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Maria Rosaria Perri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Martina Palermo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Micaela Gliozzi
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| |
Collapse
|
50
|
Amagloh FC, Kaaya AN, Yada B, Chelangat DM, Katungisa A, Amagloh FK, Tumuhimbise GA. Bioactive compounds and antioxidant activities in peeled and unpeeled sweetpotato roots of different varieties and clones in Uganda. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|