BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Boccaletto P, Stefaniak F, Ray A, Cappannini A, Mukherjee S, Purta E, Kurkowska M, Shirvanizadeh N, Destefanis E, Groza P, Avşar G, Romitelli A, Pir P, Dassi E, Conticello SG, Aguilo F, Bujnicki JM. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res 2021:gkab1083. [PMID: 34893873 DOI: 10.1093/nar/gkab1083] [Cited by in Crossref: 52] [Cited by in F6Publishing: 69] [Article Influence: 26.0] [Reference Citation Analysis]
Number Citing Articles
1 Yang Y, Liu Z, Lu J, Sun Y, Fu Y, Pan M, Xie X, Ge Q. Analysis approaches for the identification and prediction of N(6)-methyladenosine sites. Epigenetics 2023;18:2158284. [PMID: 36562485 DOI: 10.1080/15592294.2022.2158284] [Reference Citation Analysis]
2 Decombe A, El Kazzi P, Decroly E. Interplay of RNA 2'-O-methylations with viral replication. Curr Opin Virol 2023;59:101302. [PMID: 36764118 DOI: 10.1016/j.coviro.2023.101302] [Reference Citation Analysis]
3 Dodson TA, Nieuwoudt S, Morse CN, Pierre V, Liu C, Senyo SE, Prestwich EG. Ribonucleosides from tRNA in hyperglycemic mammalian cells and diabetic murine cardiac models. Life Sci 2023;318:121462. [PMID: 36736767 DOI: 10.1016/j.lfs.2023.121462] [Reference Citation Analysis]
4 Allan MF, Brivanlou A, Rouskin S. RNA levers and switches controlling viral gene expression. Trends Biochem Sci 2023;48:391-406. [PMID: 36710231 DOI: 10.1016/j.tibs.2022.12.002] [Reference Citation Analysis]
5 Herbert A, Hatfield A, Lackey L. How does precursor RNA structure influence RNA processing and gene expression? Biosci Rep 2023;43. [PMID: 36689327 DOI: 10.1042/BSR20220149] [Reference Citation Analysis]
6 Hao L, Zhang J, Liu Z, Lin X, Guo J. Epitranscriptomics in the development, functions, and disorders of cancer stem cells. Front Oncol 2023;13. [DOI: 10.3389/fonc.2023.1145766] [Reference Citation Analysis]
7 Wang ZY, Li P, Hu J, Xu Q, Zhang CY. Construction of a Single-Molecule Biosensor for Antibody-Free Detection of Locus-Specific N(6)-Methyladenosine in Cancer Cells and Tissues. Anal Chem 2023. [PMID: 36930460 DOI: 10.1021/acs.analchem.3c00730] [Reference Citation Analysis]
8 Podskoczyj K, Klos A, Drewniak S, Leszczynska G. Two-step conversion of uridine and cytidine to variously C5-C functionalized analogs. Org Biomol Chem 2023. [PMID: 36924236 DOI: 10.1039/d3ob00161j] [Reference Citation Analysis]
9 Li Q, Cheng X, Song C, Liu T. M6A-BERT-Stacking: A Tissue-Specific Predictor for Identifying RNA N6-Methyladenosine Sites Based on BERT and Stacking Strategy. Symmetry 2023;15:731. [DOI: 10.3390/sym15030731] [Reference Citation Analysis]
10 Chen L, Gao Y, Xu S, Yuan J, Wang M, Li T, Gong J. N6-methyladenosine reader YTHDF family in biological processes: Structures, roles, and mechanisms. Front Immunol 2023;14. [DOI: 10.3389/fimmu.2023.1162607] [Reference Citation Analysis]
11 Lee YH, Ren D, Jeon B, Liu HW. S-Adenosylmethionine: more than just a methyl donor. Nat Prod Rep 2023. [PMID: 36891755 DOI: 10.1039/d2np00086e] [Reference Citation Analysis]
12 Xu Y, Tian N, Shi H, Zhou C, Wang Y, Liang FS. A Split CRISPR/Cas13b System for Conditional RNA Regulation and Editing. J Am Chem Soc 2023;145:5561-9. [PMID: 36811465 DOI: 10.1021/jacs.3c01087] [Reference Citation Analysis]
13 Chen YN, Shen XY, Yu Y, Xue CY, Zhou YL, Zhang XX. In-source fragmentation of nucleosides in electrospray ionization towards more sensitive and accurate nucleoside analysis. Analyst 2023. [PMID: 36883656 DOI: 10.1039/d3an00047h] [Reference Citation Analysis]
14 Xie Y, Chan LY, Cheung MY, Li MW, Lam HM. Current technical advancements in plant epitranscriptomic studies. Plant Genome 2023;:e20316. [PMID: 36890704 DOI: 10.1002/tpg2.20316] [Reference Citation Analysis]
15 Shen L, Ma J, Li P, Wu Y, Yu H. Recent advances in the plant epitranscriptome. Genome Biol 2023;24:43. [PMID: 36882788 DOI: 10.1186/s13059-023-02872-6] [Reference Citation Analysis]
16 Bessler L, Vogt LM, Lander M, Dal Magro C, Keller P, Kühlborn J, Kampf CJ, Opatz T, Helm M. A New Bacterial Adenosine-Derived Nucleoside as an Example of RNA Modification Damage. Angew Chem Int Ed Engl 2023;62:e202217128. [PMID: 36629490 DOI: 10.1002/anie.202217128] [Reference Citation Analysis]
17 Wang X, Ding Y, Li R, Zhang R, Ge X, Gao R, Wang M, Huang Y, Zhang F, Zhao B, Liao W, Du J. N(6)-methyladenosine of Spi2a attenuates inflammation and sepsis-associated myocardial dysfunction in mice. Nat Commun 2023;14:1185. [PMID: 36864027 DOI: 10.1038/s41467-023-36865-7] [Reference Citation Analysis]
18 Barraud P, Tisné C. Cracking the case of m(7)G modification in human tRNAs. Nat Struct Mol Biol 2023;30:242-3. [PMID: 36922621 DOI: 10.1038/s41594-023-00937-5] [Reference Citation Analysis]
19 Wang S, Li H, Lian Z, Deng S. The Role of m(6)A Modifications in B-Cell Development and B-Cell-Related Diseases. Int J Mol Sci 2023;24. [PMID: 36902149 DOI: 10.3390/ijms24054721] [Reference Citation Analysis]
20 Achour C, Bhattarai DP, Groza P, Román ÁC, Aguilo F. METTL3 regulates breast cancer-associated alternative splicing switches. Oncogene 2023;42:911-25. [PMID: 36725888 DOI: 10.1038/s41388-023-02602-z] [Reference Citation Analysis]
21 Cho G, Lee J, Kim J. Identification of a novel 5-aminomethyl-2-thiouridine methyltransferase in tRNA modification. Nucleic Acids Res 2023;51:1971-83. [PMID: 36762482 DOI: 10.1093/nar/gkad048] [Reference Citation Analysis]
22 Patel A, Clark KD. Characterizing RNA modifications in the central nervous system and single cells by RNA sequencing and liquid chromatography-tandem mass spectrometry techniques. Anal Bioanal Chem 2023. [PMID: 36840809 DOI: 10.1007/s00216-023-04604-y] [Reference Citation Analysis]
23 Tomasi FG, Kimura S, Rubin EJ, Waldor MK. A tRNA modification in Mycobacterium tuberculosis facilitates optimal intracellular growth. bioRxiv 2023:2023. [PMID: 36865327 DOI: 10.1101/2023.02.20.529267] [Reference Citation Analysis]
24 Mei Y, Wang X. RNA modification in mRNA cancer vaccines. Clin Exp Med 2023;:1-15. [PMID: 36788153 DOI: 10.1007/s10238-023-01020-5] [Reference Citation Analysis]
25 Singh BN, Tran H, Kramer J, Kirishenko E, Changela N, Wang F, Feng Y, Kumar D, Tu M, Lan J, Bizet M, Fuks Fß, Steward R. Tet-dependent 5-hydroxymethyl-Cytosine modification of mRNA regulates the axon guidance genes robo2 and slit in Drosophila. Res Sq 2023:rs. [PMID: 36824980 DOI: 10.21203/rs.3.rs-2511705/v1] [Reference Citation Analysis]
26 Ueda H, Dasgupta B, Yu BY. RNA Modification Detection Using Nanopore Direct RNA Sequencing and nanoDoc2. Methods Mol Biol 2023;2632:299-319. [PMID: 36781737 DOI: 10.1007/978-1-0716-2996-3_21] [Reference Citation Analysis]
27 Di Fazio A, Gullerova M. An old friend with a new face: tRNA-derived small RNAs with big regulatory potential in cancer biology. Br J Cancer 2023. [PMID: 36759729 DOI: 10.1038/s41416-023-02191-4] [Reference Citation Analysis]
28 Giegé R, Eriani G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res 2023;51:1528-70. [PMID: 36744444 DOI: 10.1093/nar/gkad007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
29 Xu Y, Wang Y, Liang FS. A CRISPR-based Strategy for Temporally Controlled Site-Specific Editing of RNA Modifications. Bio Protoc 2023;13:e4607. [PMID: 36816993 DOI: 10.21769/BioProtoc.4607] [Reference Citation Analysis]
30 Bao Z, Li T, Liu J. Determining RNA Natural Modifications and Nucleoside Analog-Labeled Sites by a Chemical/Enzyme-Induced Base Mutation Principle. Molecules 2023;28. [PMID: 36838506 DOI: 10.3390/molecules28041517] [Reference Citation Analysis]
31 Urbelienė N, Tiškus M, Tamulaitienė G, Gasparavičiūtė R, Lapinskaitė R, Jauniškis V, Sūdžius J, Meškienė R, Tauraitė D, Skrodenytė E, Urbelis G, Vaitekūnas J, Meškys R. Cytidine deaminases catalyze the conversion of N(S,O)(4)-substituted pyrimidine nucleosides. Sci Adv 2023;9:eade4361. [PMID: 36735785 DOI: 10.1126/sciadv.ade4361] [Reference Citation Analysis]
32 Yu X, Liu H, Chang N, Fu W, Guo Z, Wang Y. Circular RNAs: New players involved in the regulation of cognition and cognitive diseases. Front Neurosci 2023;17:1097878. [PMID: 36816112 DOI: 10.3389/fnins.2023.1097878] [Reference Citation Analysis]
33 Petri BJ, Klinge CM. m6A readers, writers, erasers, and the m6A epitranscriptome in breast cancer. J Mol Endocrinol 2023;70. [PMID: 36367225 DOI: 10.1530/JME-22-0110] [Reference Citation Analysis]
34 Tao W, Xie N, Cheng Q, Feng Y, Yuan B. Sensitive determination of inosine RNA modification in single cell by chemical derivatization coupled with mass spectrometry analysis. Chinese Chemical Letters 2023. [DOI: 10.1016/j.cclet.2023.108243] [Reference Citation Analysis]
35 Lampi M, Gregorova P, Qasim MS, Ahlblad NCV, Sarin LP. Bacteriophage Infection of the Marine Bacterium Shewanella glacialimarina Induces Dynamic Changes in tRNA Modifications. Microorganisms 2023;11. [PMID: 36838320 DOI: 10.3390/microorganisms11020355] [Reference Citation Analysis]
36 Chuong NN, Doan PPT, Wang L, Kim JH, Kim J. Current Insights into m(6)A RNA Methylation and Its Emerging Role in Plant Circadian Clock. Plants (Basel) 2023;12. [PMID: 36771711 DOI: 10.3390/plants12030624] [Reference Citation Analysis]
37 Hori H. Transfer RNA Modification Enzymes with a Thiouridine Synthetase, Methyltransferase and Pseudouridine Synthase (THUMP) Domain and the Nucleosides They Produce in tRNA. Genes (Basel) 2023;14. [PMID: 36833309 DOI: 10.3390/genes14020382] [Reference Citation Analysis]
38 Drino A, König L, Capitanchik C, Sanadgol N, Janisiw E, Rappol T, Vilardo E, Schaefer MR. Identification of RNA helicases with unwinding activity on angiogenin-processed tRNAs. Nucleic Acids Res 2023;51:1326-52. [PMID: 36718960 DOI: 10.1093/nar/gkad033] [Reference Citation Analysis]
39 Wang Y, Wang X, Cui X, Meng J, Rong R. Self-attention enabled deep learning of dihydrouridine (D) modification on mRNAs unveiled a distinct sequence signature from tRNAs. Mol Ther Nucleic Acids 2023;31:411-20. [PMID: 36845339 DOI: 10.1016/j.omtn.2023.01.014] [Reference Citation Analysis]
40 Yao H, Gao CC, Zhang D, Xu J, Song G, Fan X, Liang DB, Chen YS, Li Q, Guo Y, Cai YT, Hu L, Zhao YL, Sun YP, Yang Y, Han J, Yang YG. scm(6)A-seq reveals single-cell landscapes of the dynamic m(6)A during oocyte maturation and early embryonic development. Nat Commun 2023;14:315. [PMID: 36658155 DOI: 10.1038/s41467-023-35958-7] [Reference Citation Analysis]
41 Singh BN, Tran H, Kramer J, Kirishenko E, Changela N, Wang F, Feng Y, Kumar D, Tu M, Liang S, Lan J, Bizet M, Fuks Fß, Steward R. Tet-dependent 5-hydroxymethyl-Cytosine modification of mRNA regulates the axon guidance genes robo2 and slit in Drosophila. bioRxiv 2023:2023. [PMID: 36711932 DOI: 10.1101/2023.01.03.522592] [Reference Citation Analysis]
42 Gosset-Erard C, Didierjean M, Pansanel J, Lechner A, Wolff P, Kuhn L, Aubriet F, Leize-Wagner E, Chaimbault P, François YN. Nucleos'ID: A New Search Engine Enabling the Untargeted Identification of RNA Post-transcriptional Modifications from Tandem Mass Spectrometry Analyses of Nucleosides. Anal Chem 2023;95:1608-17. [PMID: 36598775 DOI: 10.1021/acs.analchem.2c04722] [Reference Citation Analysis]
43 Tang J, Chen S, Jia G. Detection, regulation, and functions of RNA N(6)-methyladenosine modification in plants. Plant Commun 2023;:100546. [PMID: 36627844 DOI: 10.1016/j.xplc.2023.100546] [Reference Citation Analysis]
44 Cooke MS, Chang Y, Chen Y, Hu C, Chao M. Nucleic acid adductomics – The next generation of adductomics towards assessing environmental health risks. Science of The Total Environment 2023;856:159192. [DOI: 10.1016/j.scitotenv.2022.159192] [Reference Citation Analysis]
45 Chen Y, Zuo X, Wei Q, Xu J, Liu X, Liu S, Wang H, Luo Q, Wang Y, Yang Y, Zhao H, Xu J, Liu T, Yi P. Upregulation of LRRC8A by m(5)C modification-mediated mRNA stability suppresses apoptosis and facilitates tumorigenesis in cervical cancer. Int J Biol Sci 2023;19:691-704. [PMID: 36632452 DOI: 10.7150/ijbs.79205] [Reference Citation Analysis]
46 Ruiz-Arroyo VM, Raj R, Babu K, Onolbaatar O, Roberts PH, Nam Y. Structures and mechanisms of tRNA methylation by METTL1-WDR4. Nature 2023;613:383-90. [PMID: 36599982 DOI: 10.1038/s41586-022-05565-5] [Reference Citation Analysis]
47 Huynh TN, Stewart V. Purine catabolism by enterobacteria. Advances in Microbial Physiology 2023. [DOI: 10.1016/bs.ampbs.2023.01.001] [Reference Citation Analysis]
48 Martinez De La Cruz B, Darsinou M, Riccio A. From form to function: m(6)A methylation links mRNA structure to metabolism. Adv Biol Regul 2023;87:100926. [PMID: 36513580 DOI: 10.1016/j.jbior.2022.100926] [Reference Citation Analysis]
49 Ding J, Chen M, Xie N, Xie C, Xiong N, He J, Wang J, Guo C, Feng Y, Yuan B. Quantitative and site-specific detection of inosine modification in RNA by acrylonitrile labeling-mediated elongation stalling. Biosensors and Bioelectronics 2023;219:114821. [DOI: 10.1016/j.bios.2022.114821] [Reference Citation Analysis]
50 Farrell RE. Transcriptomes and bioinformatics. RNA Methodologies 2023. [DOI: 10.1016/b978-0-323-90221-2.00034-5] [Reference Citation Analysis]
51 Cayir A. Role of RNA epigenetics in development. Perinatal and Developmental Epigenetics 2023. [DOI: 10.1016/b978-0-12-821785-6.00003-7] [Reference Citation Analysis]
52 Jürgenstein K, Tagel M, Ilves H, Leppik M, Kivisaar M, Remme J. Variance in translational fidelity of different bacterial species is affected by pseudouridines in the tRNA anticodon stem-loop. RNA Biology 2022;19:1050-8. [DOI: 10.1080/15476286.2022.2121447] [Reference Citation Analysis]
53 Yared M, Yoluç Y, Catala M, Tisné C, Kaiser S, Barraud P. Different modification pathways for m1A58 incorporation in yeast elongator and initiator tRNAs.. [DOI: 10.1101/2022.12.16.520695] [Reference Citation Analysis]
54 Wang X, Guo Z, Yan F. RNA Epigenetics in Chronic Lung Diseases. Genes (Basel) 2022;13. [PMID: 36553648 DOI: 10.3390/genes13122381] [Reference Citation Analysis]
55 Hamar R, Varga M. The role of post-transcriptional modifications during development. BIOLOGIA FUTURA 2022. [DOI: 10.1007/s42977-022-00142-3] [Reference Citation Analysis]
56 Chen C, Ye L. The m1A modification of tRNAs: a translational accelerator of T-cell activation. Cell Mol Immunol 2022;19:1328-9. [PMID: 36336727 DOI: 10.1038/s41423-022-00942-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Prokhorova DV, Vokhtantsev IP, Tolstova PO, Zhuravlev ES, Kulishova LM, Zharkov DO, Stepanov GA. Natural Nucleoside Modifications in Guide RNAs Can Modulate the Activity of the CRISPR-Cas9 System In Vitro. CRISPR J 2022;5:799-812. [PMID: 36350691 DOI: 10.1089/crispr.2022.0069] [Reference Citation Analysis]
58 Lee MY, Ojeda-Britez S, Ehrbar D, Samwer A, Begley TJ, Melendez JA. Selenoproteins and the senescence-associated epitranscriptome. Exp Biol Med (Maywood) 2022;247:2090-102. [PMID: 36036467 DOI: 10.1177/15353702221116592] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
59 Hong J, Xu K, Lee JH. Biological roles of the RNA m(6)A modification and its implications in cancer. Exp Mol Med 2022;54:1822-32. [PMID: 36446846 DOI: 10.1038/s12276-022-00897-8] [Reference Citation Analysis]
60 Lombard M, Reed CJ, Pecqueur L, Faivre B, Toubdji S, Sudol C, Brégeon D, de Crécy-Lagard V, Hamdane D. Evolutionary Diversity of Dus2 Enzymes Reveals Novel Structural and Functional Features among Members of the RNA Dihydrouridine Synthases Family. Biomolecules 2022;12. [PMID: 36551188 DOI: 10.3390/biom12121760] [Reference Citation Analysis]
61 Lei HT, Wang ZH, Li B, Sun Y, Mei SQ, Yang JH, Qu LH, Zheng LL. tModBase: deciphering the landscape of tRNA modifications and their dynamic changes from epitranscriptome data. Nucleic Acids Res 2023;51:D315-27. [PMID: 36408909 DOI: 10.1093/nar/gkac1087] [Reference Citation Analysis]
62 Zhang X, Yin H, Zhang X, Jiang X, Liu Y, Zhang H, Peng Y, Li D, Yu Y, Zhang J, Cheng S, Yang A, Zhang R. N6-methyladenosine modification governs liver glycogenesis by stabilizing the glycogen synthase 2 mRNA. Nat Commun 2022;13:7038. [PMID: 36396934 DOI: 10.1038/s41467-022-34808-2] [Reference Citation Analysis]
63 Zhang Y, Jiang J, Ma J, Wei Z, Wang Y, Song B, Meng J, Jia G, de Magalhães JP, Rigden DJ, Hang D, Chen K. DirectRMDB: a database of post-transcriptional RNA modifications unveiled from direct RNA sequencing technology. Nucleic Acids Res 2023;51:D106-16. [PMID: 36382409 DOI: 10.1093/nar/gkac1061] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
64 Arzumanian VA, Dolgalev GV, Kurbatov IY, Kiseleva OI, Poverennaya EV. Epitranscriptome: Review of Top 25 Most-Studied RNA Modifications. Int J Mol Sci 2022;23. [PMID: 36430347 DOI: 10.3390/ijms232213851] [Reference Citation Analysis]
65 Su C, Jin M, Zhang W. Conservation and Diversification of tRNA t6A-Modifying Enzymes across the Three Domains of Life. IJMS 2022;23:13600. [DOI: 10.3390/ijms232113600] [Reference Citation Analysis]
66 Li Z, Mao J, Huang D, Song B, Meng J. RNADSN: Transfer-Learning 5-Methyluridine (m5U) Modification on mRNAs from Common Features of tRNA. IJMS 2022;23:13493. [DOI: 10.3390/ijms232113493] [Reference Citation Analysis]
67 Bohdan DR, Voronina VV, Bujnicki JM, Baulin EF. A comprehensive survey of long-range tertiary interactions and motifs in non-coding RNA structures.. [DOI: 10.1101/2022.11.01.514747] [Reference Citation Analysis]
68 Ramos J. RNA modifications: an overview of select web-based tools. RNA 2022;28:1440-5. [PMID: 36104107 DOI: 10.1261/rna.079443.122] [Reference Citation Analysis]
69 Zhang J, Xu C. Gene product diversity: adaptive or not? Trends Genet 2022;38:1112-22. [PMID: 35641344 DOI: 10.1016/j.tig.2022.05.002] [Reference Citation Analysis]
70 Dedon PC, Begley TJ. Dysfunctional tRNA reprogramming and codon-biased translation in cancer. Trends in Molecular Medicine 2022;28:964-978. [DOI: 10.1016/j.molmed.2022.09.007] [Reference Citation Analysis]
71 Begik O, Mattick JS, Novoa EM. Exploring the epitranscriptome by native RNA sequencing. RNA 2022;28:1430-9. [PMID: 36104106 DOI: 10.1261/rna.079404.122] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
72 Katanski CD, Alshammary H, Watkins CP, Huang S, Gonzales-Reiche A, Sordillo EM, van Bakel H, Lolans K, Simon V, Pan T; Mount Sinai PSP study group. tRNA abundance, modification and fragmentation in nasopharyngeal swabs as biomarkers for COVID-19 severity. Front Cell Dev Biol 2022;10:999351. [PMID: 36393870 DOI: 10.3389/fcell.2022.999351] [Reference Citation Analysis]
73 Yang Z, Zhang S, Xia T, Fan Y, Shan Y, Zhang K, Xiong J, Gu M, You B. RNA Modifications Meet Tumors. CMAR 2022;Volume 14:3223-3243. [DOI: 10.2147/cmar.s391067] [Reference Citation Analysis]
74 Wang L, Hu X, Liu X, Feng Y, Zhang Y, Han J, Liu X, Meng F. m7G regulator-mediated methylation modification patterns define immune cell infiltration and patient survival. Front Immunol 2022;13. [DOI: 10.3389/fimmu.2022.1022720] [Reference Citation Analysis]
75 White LK, Hesselberth JR. Modification mapping by nanopore sequencing. Front Genet 2022;13. [DOI: 10.3389/fgene.2022.1037134] [Reference Citation Analysis]
76 Mcfeely CAL, Dods KK, Patel SS, Hartman MCT. Expansion of the genetic code through reassignment of redundant sense codons using fully modified tRNA. Nucleic Acids Research 2022. [DOI: 10.1093/nar/gkac846] [Reference Citation Analysis]
77 Wang L, Lin S. Emerging functions of tRNA modifications in mRNA translation and diseases. J Genet Genomics 2022:S1673-8527(22)00243-0. [PMID: 36309201 DOI: 10.1016/j.jgg.2022.10.002] [Reference Citation Analysis]
78 Caldwell RM, Flynn RA. Discovering glycoRNA: Traditional and Non‐Canonical Approaches to Studying RNA Modifications. Israel Journal of Chemistry 2022. [DOI: 10.1002/ijch.202200059] [Reference Citation Analysis]
79 Cappannini A, Mosca K, Mukherjee S, Moafinejad SN, Sinden RR, Arluison V, Bujnicki J, Wien F. NACDDB: Nucleic Acid Circular Dichroism Database. Nucleic Acids Res 2023;51:D226-31. [PMID: 36280237 DOI: 10.1093/nar/gkac829] [Reference Citation Analysis]
80 Mikawy NN, Roy HA, Israel E, Hamlow LA, Zhu Y, Berden G, Oomens J, Frieler CE, Rodgers MT. 5-Halogenation of Uridine Suppresses Protonation-Induced Tautomerization and Enhances Glycosidic Bond Stability of Protonated Uridine: Investigations via IRMPD Action Spectroscopy, ER-CID Experiments, and Theoretical Calculations. J Am Soc Mass Spectrom 2022. [DOI: 10.1021/jasms.2c00231] [Reference Citation Analysis]
81 Wada M, Ito K. The CGA Codon Decoding through Arg-tRNA^ICG Supply Governed by Tad2/Tad3 in Saccharomyces cerevisiae.. [DOI: 10.32388/hen7af] [Reference Citation Analysis]
82 Zhang X, Wang Y, Dong B, Jiang Y, Liu D, Xie K, Yu Y. Expression pattern and clinical value of Key RNA methylation modification regulators in ischemic stroke. Front Genet 2022;13:1009145. [DOI: 10.3389/fgene.2022.1009145] [Reference Citation Analysis]
83 Zhao J, Wang R, Zhang Y, Wang Y, Li N, Wang B, Zhang J, Han H, Zhao Y, Xing H, Chu Z, Tian F, Wang P, Duan X, Bai S, Zhang Y, Zhang H. TRMT6 is Suppressed by miR-191-5p and Functions as a Tumor Promoter in Ovarian Cancer.. [DOI: 10.21203/rs.3.rs-2101187/v1] [Reference Citation Analysis]
84 Bessler L, Kaur N, Vogt LM, Flemmich L, Siebenaller C, Winz ML, Tuorto F, Micura R, Ehrenhofer-Murray AE, Helm M. Functional integration of a semi-synthetic azido-queuosine derivative into translation and a tRNA modification circuit. Nucleic Acids Res 2022:gkac822. [PMID: 36169220 DOI: 10.1093/nar/gkac822] [Reference Citation Analysis]
85 He C, Zhang X, Zhu S, Zheng J, Wang Y, Wang Q, Yin H, Fu Y, Xue S, Tang J, Zhao X. Integrative pan-cancer analysis and clinical characterization of the N7-methylguanosine (m7G) RNA modification regulators in human cancers. Front Genet 2022;13:998147. [DOI: 10.3389/fgene.2022.998147] [Reference Citation Analysis]
86 Sethi AJ, Mateos PA, Hayashi R, Shirokikh N, Eyras E. R2Dtool: Positional interpretation of RNA-centric information in the context of transcriptomic and genomic features.. [DOI: 10.1101/2022.09.23.509222] [Reference Citation Analysis]
87 Bogard B, Tellier G, Francastel C, Hubé F. A Tool to Design Bridging Oligos Used to Detect Pseudouridylation Sites on RNA after CMC Treatment. ncRNA 2022;8:63. [DOI: 10.3390/ncrna8050063] [Reference Citation Analysis]
88 Luo Z, Su W, Lou L, Qiu W, Xiao X, Xu Z. DLm6Am: A Deep-Learning-Based Tool for Identifying N6,2′-O-Dimethyladenosine Sites in RNA Sequences. IJMS 2022;23:11026. [DOI: 10.3390/ijms231911026] [Reference Citation Analysis]
89 Xu Z, Jiang J, Wang S. The Critical Role of RNA m6A Methylation in Gliomas: Targeting the Hallmarks of Cancer. Cell Mol Neurobiol. [DOI: 10.1007/s10571-022-01283-8] [Reference Citation Analysis]
90 You XJ, Zhang S, Chen JJ, Tang F, He J, Wang J, Qi CB, Feng YQ, Yuan BF. Formation and removal of 1,N6-dimethyladenosine in mammalian transfer RNA. Nucleic Acids Res 2022:gkac770. [PMID: 36095124 DOI: 10.1093/nar/gkac770] [Reference Citation Analysis]
91 Dubuc K, Marchais M, Gilbert I, Bastien A, Nenonene KE, Khandjian EW, Viger RS, Robert C. Epitranscriptome marks detection and localization of RNA modifying proteins in mammalian ovarian follicles.. [DOI: 10.21203/rs.3.rs-2026855/v1] [Reference Citation Analysis]
92 Deng L, Kumar J, Rose R, McIntyre W, Fabris D. Analyzing RNA posttranscriptional modifications to decipher the epitranscriptomic code. Mass Spectrom Rev 2022;:e21798. [PMID: 36052666 DOI: 10.1002/mas.21798] [Reference Citation Analysis]
93 Fan Y, Li X, Sun H, Gao Z, Zhu Z, Yuan K. Role of WTAP in Cancer: From Mechanisms to the Therapeutic Potential. Biomolecules 2022;12:1224. [PMID: 36139062 DOI: 10.3390/biom12091224] [Reference Citation Analysis]
94 Kallert E, Fischer TR, Schneider S, Grimm M, Helm M, Kersten C. Protein-Based Virtual Screening Tools Applied for RNA-Ligand Docking Identify New Binders of the preQ1-Riboswitch. J Chem Inf Model 2022. [PMID: 35994617 DOI: 10.1021/acs.jcim.2c00751] [Reference Citation Analysis]
95 Dome A, Dymova M, Richter V, Stepanov G. Post-Transcriptional Modifications of RNA as Regulators of Apoptosis in Glioblastoma. IJMS 2022;23:9272. [DOI: 10.3390/ijms23169272] [Reference Citation Analysis]
96 Zhang X, Su H, Chen H, Li Q, Liu X, Zhang L, Wu WKK, Chan MTV, Chen H. RNA Modifications in Gastrointestinal Cancer: Current Status and Future Perspectives. Biomedicines 2022;10:1918. [DOI: 10.3390/biomedicines10081918] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
97 Blaze J, Akbarian S. The tRNA regulome in neurodevelopmental and neuropsychiatric disease. Mol Psychiatry 2022;27:3204-13. [PMID: 35505091 DOI: 10.1038/s41380-022-01585-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
98 Gosset-Erard C, Lechner A, Wolff P, Aubriet F, Leize-Wagner E, Chaimbault P, François YN. Optimization of nucleotides dephosphorylation for RNA structural characterization by tandem mass spectrometry hyphenated with separation methods. J Chromatogr B Analyt Technol Biomed Life Sci 2022;1208:123396. [PMID: 35917777 DOI: 10.1016/j.jchromb.2022.123396] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
99 Mersinoglu B, Cristinelli S, Ciuffi A. The Impact of Epitranscriptomics on Antiviral Innate Immunity. Viruses 2022;14:1666. [DOI: 10.3390/v14081666] [Reference Citation Analysis]
100 Chen H, Li H, Lin M, Fan W, Zhang Y, Lin Y, Wu S. Research Progress for RNA Modifications in Physiological and Pathological Angiogenesis. Front Genet 2022;13:952667. [DOI: 10.3389/fgene.2022.952667] [Reference Citation Analysis]
101 del Valle-morales D, Le P, Saviana M, Romano G, Nigita G, Nana-sinkam P, Acunzo M. The Epitranscriptome in miRNAs: Crosstalk, Detection, and Function in Cancer. Genes 2022;13:1289. [DOI: 10.3390/genes13071289] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
102 Goldman E. Transfer RNA. eLS 2022. [DOI: 10.1002/9780470015902.a0029477] [Reference Citation Analysis]
103 Qin S, Zhang Q, Xu Y, Ma S, Wang T, Huang Y, Ju S. m6A-modified circRNAs: detections, mechanisms, and prospects in cancers. Mol Med 2022;28:79. [PMID: 35836125 DOI: 10.1186/s10020-022-00505-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
104 Wang S, Li H, Lian Z, Deng S. The Role of RNA Modification in HIV-1 Infection. IJMS 2022;23:7571. [DOI: 10.3390/ijms23147571] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
105 Bassett M, Salemi M, Rife Magalis B. Lessons Learned and Yet-to-Be Learned on the Importance of RNA Structure in SARS-CoV-2 Replication. Microbiol Mol Biol Rev. [DOI: 10.1128/mmbr.00057-21] [Reference Citation Analysis]
106 Abebe JS, Verstraten R, Depledge DP. Nanopore-Based Detection of Viral RNA Modifications. mBio 2022;13:e0370221. [PMID: 35579392 DOI: 10.1128/mbio.03702-21] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
107 Rösner L, Reichert D, Rau K, Muthmann N, Rentmeister A. Sequence-specific targeting of RNA. Methods 2022:S1046-2023(22)00147-5. [PMID: 35764247 DOI: 10.1016/j.ymeth.2022.06.007] [Reference Citation Analysis]
108 Imanishi M. Mechanisms and Strategies for Determining m6 A RNA Modification Sites by Natural and Engineered m6 A Effector Proteins. Chem Asian J 2022;:e202200367. [PMID: 35750635 DOI: 10.1002/asia.202200367] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
109 Chen JJ, You XJ, Li L, Xie NB, Ding JH, Yuan BF, Feng YQ. Single-Base Resolution Detection of Adenosine-to-Inosine RNA Editing by Endonuclease-Mediated Sequencing. Anal Chem 2022;94:8740-7. [PMID: 35678728 DOI: 10.1021/acs.analchem.2c01226] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
110 Jiapaer Z, Su D, Hua L, Lehmann HI, Gokulnath P, Vulugundam G, Song S, Zhang L, Gong Y, Li G. Regulation and roles of RNA modifications in aging-related diseases. Aging Cell 2022;:e13657. [PMID: 35718942 DOI: 10.1111/acel.13657] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
111 Katanski CD, Watkins CP, Zhang W, Reyer M, Miller S, Pan T. Analysis of queuosine and 2-thio tRNA modifications by high throughput sequencing. Nucleic Acids Res 2022;50:e99. [PMID: 35713550 DOI: 10.1093/nar/gkac517] [Reference Citation Analysis]
112 Lu F, Gao J, Hou Y, Cao K, Xia Y, Chen Z, Yu H, Chang L, Li W. Construction of a Novel Prognostic Model in Lung Adenocarcinoma Based on 7-Methylguanosine-Related Gene Signatures. Front Oncol 2022;12:876360. [DOI: 10.3389/fonc.2022.876360] [Reference Citation Analysis]
113 Kallert E, Fischer TR, Schneider S, Grimm M, Helm M, Kersten C. Protein-based Virtual Screening Tools applied for RNA-Ligand Docking identify new Binders of the preQ1-Riboswitch.. [DOI: 10.1101/2022.06.10.494309] [Reference Citation Analysis]
114 Melzer ME, Sweedler JV, Clark KD. Rapid Determination of RNA Modifications in Consensus Motifs by Nuclease Protection with Ion-Tagged Oligonucleotide Probes and Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. Genes 2022;13:1008. [DOI: 10.3390/genes13061008] [Reference Citation Analysis]
115 Xu Y, Liang F. On demand CRISPR-mediated RNA N6-methyladenosine editing. Genes & Diseases 2022. [DOI: 10.1016/j.gendis.2022.05.019] [Reference Citation Analysis]
116 Liu Y, Zhu T, Jiang Y, Bu J, Zhu X, Gu X. The Key Role of RNA Modification in Breast Cancer. Front Cell Dev Biol 2022;10:885133. [DOI: 10.3389/fcell.2022.885133] [Reference Citation Analysis]
117 Finet O, Yague-Sanz C, Marchand F, Hermand D. The Dihydrouridine landscape from tRNA to mRNA: a perspective on synthesis, structural impact and function. RNA Biol 2022;19:735-50. [PMID: 35638108 DOI: 10.1080/15476286.2022.2078094] [Reference Citation Analysis]
118 White LK, Strugar SM, Macfadden A, Hesselberth JR. Direct detection of RNA repair by nanopore sequencing.. [DOI: 10.1101/2022.05.29.493267] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
119 Liang W, Yi H, Mao C, Meng Q, Wu X, Li S, Xue J. Research Progress of RNA Methylation Modification in Colorectal Cancer. Front Pharmacol 2022;13:903699. [PMID: 35614935 DOI: 10.3389/fphar.2022.903699] [Reference Citation Analysis]
120 Jin H, Huo C, Zhou T, Xie S. m1A RNA Modification in Gene Expression Regulation. Genes 2022;13:910. [DOI: 10.3390/genes13050910] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
121 Makhamreh A, Tavakoli S, Gamper H, Nabizadehmashhadtoroghi M, Fallahi A, Hou Y, Rouhanifard SH, Wanunu M. Messenger-RNA Modification Standards and Machine Learning Models Facilitate Absolute Site-Specific Pseudouridine Quantification.. [DOI: 10.1101/2022.05.06.490948] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
122 He Z, Xu J, Shi H, Wu S. m5CRegpred: Epitranscriptome Target Prediction of 5-Methylcytosine (m5C) Regulators Based on Sequencing Features. Genes 2022;13:677. [DOI: 10.3390/genes13040677] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
123 Achour C, Groza P, Bhattarai DP, Román Á, Aguilo F. METTL3 regulates breast cancer-associated alternative splicing switches.. [DOI: 10.1101/2022.04.11.487899] [Reference Citation Analysis]
124 Cerneckis J, Cui Q, He C, Yi C, Shi Y. Decoding pseudouridine: an emerging target for therapeutic development. Trends in Pharmacological Sciences 2022. [DOI: 10.1016/j.tips.2022.03.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
125 D’esposito RJ, Myers CA, Chen AA, Vangaveti S. Challenges with Simulating Modified RNA: Insights into Role and Reciprocity of Experimental and Computational Approaches. Genes 2022;13:540. [DOI: 10.3390/genes13030540] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
126 Rigden DJ, Fernández XM. The 2022 Nucleic Acids Research database issue and the online molecular biology database collection. Nucleic Acids Res 2022;50:D1-D10. [PMID: 34986604 DOI: 10.1093/nar/gkab1195] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
127 Liang F, Xu Y. RNA Epigenetics and Epitranscriptomics: The Emerging Gene Regulatory Landscape Through RNA Modifications. Reference Module in Life Sciences 2022. [DOI: 10.1016/b978-0-12-821618-7.00102-4] [Reference Citation Analysis]
128 吴 念. Research Progress of RNA m5C Methylation Modification and Its Detection Technology in Tumors. ACM 2022;12:5407-5414. [DOI: 10.12677/acm.2022.126783] [Reference Citation Analysis]