BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Thorat ND, Tofail SAM, von Rechenberg B, Townley H, Brennan G, Silien C, Yadav HM, Steffen T, Bauer J. Physically stimulated nanotheranostics for next generation cancer therapy: Focus on magnetic and light stimulations. Applied Physics Reviews 2019;6:041306. [DOI: 10.1063/1.5049467] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Kalaiselvan CR, Laha SS, Somvanshi SB, Tabish TA, Thorat ND, Sahu NK. Manganese ferrite (MnFe2O4) nanostructures for cancer theranostics. Coordination Chemistry Reviews 2022;473:214809. [DOI: 10.1016/j.ccr.2022.214809] [Reference Citation Analysis]
2 Divband B, Gharehaghaji N, Hassani S. Fe3O4/Graphene-Based Nanotheranostics for Bimodal Magnetic Resonance/Fluorescence Imaging and Cancer Therapy. J Inorg Organomet Polym. [DOI: 10.1007/s10904-022-02457-z] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Premcheska S, Lederer M, Kaczmarek AM. The importance, status, and perspectives of hybrid lanthanide-doped upconversion nanothermometers for theranostics. Chem Commun (Camb) 2022;58:4288-307. [PMID: 35258046 DOI: 10.1039/d1cc07164e] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
4 Zhang S, Zhang W, Dong J, Liu L. Optical theorem of an infinite circular cylinder in weakly absorbing media. Phys Rev A 2022;105. [DOI: 10.1103/physreva.105.023516] [Reference Citation Analysis]
5 Montiel Schneider MG, Martín MJ, Otarola J, Vakarelska E, Simeonov V, Lassalle V, Nedyalkova M. Biomedical Applications of Iron Oxide Nanoparticles: Current Insights Progress and Perspectives. Pharmaceutics 2022;14:204. [DOI: 10.3390/pharmaceutics14010204] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 13.0] [Reference Citation Analysis]
6 Kamzin AS, Obaidat IM, Kozlov VS, Voronina EV, Narayanaswamy V, Al-omari IA. Magnetic Nanocomposites Graphene Oxide/Magnetite + Cobalt Ferrite (GrO/Fe3O4 + CoFe2O4) for Magnetic Hyperthermia. Phys Solid State. [DOI: 10.1134/s106378342107009x] [Reference Citation Analysis]
7 Kadkhoda J, Tarighatnia A, Barar J, Aghanejad A, Davaran S. Recent advances and trends in nanoparticles based photothermal and photodynamic therapy. Photodiagnosis Photodyn Ther 2021;37:102697. [PMID: 34936918 DOI: 10.1016/j.pdpdt.2021.102697] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
8 Meireles IBDCJ, Cipreste MF, Gastelois PL, Macedo WAA, Gomes DA, de Sousa EMB. Synthesis and characterization of gold nanorods coated by mesoporous silica MCM-41 as a platform bioapplication in photohyperthermia. Nanotechnology 2021;32. [PMID: 34547742 DOI: 10.1088/1361-6528/ac28db] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Camacho-Fernández JC, González-Quijano GK, Séverac C, Dague E, Gigoux V, Santoyo-Salazar J, Martinez-Rivas A. Nanobiomechanical behavior of Fe3O4@SiO2and Fe3O4@SiO2-NH2nanoparticles over HeLa cells interfaces. Nanotechnology 2021;32. [PMID: 34111853 DOI: 10.1088/1361-6528/ac0a13] [Reference Citation Analysis]
10 Rajan A, Sahu NK. Hydrophobic-to-Hydrophilic Transition of Fe 3 O 4 Nanorods for Magnetically Induced Hyperthermia. ACS Appl Nano Mater 2021;4:4642-53. [DOI: 10.1021/acsanm.1c00274] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Crăciunescu I, Palade P, Iacob N, Ispas GM, Stanciu AE, Kuncser V, Turcu RP. High-Performance Functionalized Magnetic Nanoparticles with Tailored Sizes and Shapes for Localized Hyperthermia Applications. J Phys Chem C 2021;125:11132-46. [DOI: 10.1021/acs.jpcc.1c01053] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
12 Abbasi M, Ghoran SH, Niakan MH, Jamali K, Moeini Z, Jangjou A, Izadpanah P, Amani AM. Mesoporous silica nanoparticle: Heralding a brighter future in cancer nanomedicine. Microporous and Mesoporous Materials 2021;319:110967. [DOI: 10.1016/j.micromeso.2021.110967] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
13 Barrera G, Allia P, Tiberto P. Dipolar interactions among magnetite nanoparticles for magnetic hyperthermia: a rate-equation approach. Nanoscale 2021;13:4103-21. [PMID: 33570053 DOI: 10.1039/d0nr07397k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
14 Lozano-pedraza C, Plaza-mayoral E, Espinosa A, Sot B, Serrano A, Salas G, Blanco-andujar C, Cotin G, Felder-flesch D, Begin-colin S, Teran FJ. Assessing the parameters modulating optical losses of iron oxide nanoparticles under near infrared irradiation. Nanoscale Adv 2021;3:6490-502. [DOI: 10.1039/d1na00601k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
15 Khot VM, Salunkhe AB, Pricl S, Bauer J, Thorat ND, Townley H. Nanomedicine-driven molecular targeting, drug delivery, and therapeutic approaches to cancer chemoresistance. Drug Discov Today 2021;26:724-39. [PMID: 33359624 DOI: 10.1016/j.drudis.2020.12.016] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
16 Rajan A, Sahu NK. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy. J Nanopart Res 2020;22. [DOI: 10.1007/s11051-020-05045-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 19] [Article Influence: 5.5] [Reference Citation Analysis]
17 Thorat ND, Bauer J. Functional smart hybrid nanostructures based nanotheranostic approach for advanced cancer treatment. Applied Surface Science 2020;527:146809. [DOI: 10.1016/j.apsusc.2020.146809] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
18 Kamzin AS, Valiullin AA, Bingolbali A, Doǧan N. Structural Transformations of Ni1 – xCuxFe2O4 Nanoparticles Depending on the Number of Cu Ions. Phys Solid State 2020;62:1231-9. [DOI: 10.1134/s1063783420070070] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Brennan G, Thorat ND, Pescio M, Bergamino S, Bauer J, Liu N, Tofail SAM, Silien C. Spectral drifts in surface textured Fe3O4-Au, core-shell nanoparticles enhance spectra-selective photothermal heating and scatter imaging. Nanoscale 2020;12:12632-8. [PMID: 32510529 DOI: 10.1039/d0nr01463j] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
20 Thorat ND, Townley HE, Patil RM, Tofail SAM, Bauer J. Comprehensive approach of hybrid nanoplatforms in drug delivery and theranostics to combat cancer. Drug Discov Today 2020;25:1245-52. [PMID: 32371139 DOI: 10.1016/j.drudis.2020.04.018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
21 Salunkhe A, Khot V, Patil SI, Tofail SA, Bauer J, Thorat ND. MRI Guided Magneto-chemotherapy with High-Magnetic-Moment Iron Oxide Nanoparticles for Cancer Theranostics. ACS Appl Bio Mater 2020;3:2305-13. [DOI: 10.1021/acsabm.0c00077] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
22 Barrera G, Allia P, Tiberto P. Temperature-dependent heating efficiency of magnetic nanoparticles for applications in precision nanomedicine. Nanoscale 2020;12:6360-77. [DOI: 10.1039/c9nr09503a] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 7.5] [Reference Citation Analysis]