BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Barrera G, Allia P, Tiberto P. Temperature-dependent heating efficiency of magnetic nanoparticles for applications in precision nanomedicine. Nanoscale 2020;12:6360-77. [DOI: 10.1039/c9nr09503a] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
Number Citing Articles
1 Barrera G, Allia P, Tiberto P. Magnetization Dynamics of Superparamagnetic Nanoparticles for Magnetic Particle Spectroscopy and Imaging. Phys Rev Applied 2022;18. [DOI: 10.1103/physrevapplied.18.024077] [Reference Citation Analysis]
2 Coïsson M, Barrera G, Celegato F, Allia P, Tiberto P. Specific loss power of magnetic nanoparticles: A machine learning approach. APL Materials 2022;10:081108. [DOI: 10.1063/5.0099498] [Reference Citation Analysis]
3 Gan WW, Chan LW, Li W, Wong TW. Critical clinical gaps in cancer precision nanomedicine development. J Control Release 2022:S0168-3659(22)00190-0. [PMID: 35378214 DOI: 10.1016/j.jconrel.2022.03.055] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
4 Barrera G, Allia P, Tiberto P. Magnetic Nanoparticle Imaging: Insight on the Effects of Magnetic Interactions and Hysteresis of Tracers. ACS Appl Nano Mater 2022;5:2699-714. [DOI: 10.1021/acsanm.1c04368] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Ferreira RAS, Mamontova E, Botas AMP, Shestakov M, Vanacken J, Moshchalkov V, Guari Y, Chibotaru LF, Luneau D, André PS, Larionova J, Long J, Carlos LD. Synchronous Temperature and Magnetic Field Dual‐Sensing by Luminescence in a Dysprosium Single‐Molecule Magnet. Advanced Optical Materials 2021;9:2101495. [DOI: 10.1002/adom.202101495] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
6 Camacho de la Rosa A, Becerril D, Gómez-farfán G, Esquivel-sirvent R. Time-Harmonic Photothermal Heating by Nanoparticles in a Non-Fourier Medium. J Phys Chem C 2021;125:22856-62. [DOI: 10.1021/acs.jpcc.1c06874] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Tang Y, Flesch RC, Jin T, He M. Computational evaluation of malignant tissue apoptosis in magnetic hyperthermia considering intratumoral injection strategy. International Journal of Heat and Mass Transfer 2021;178:121609. [DOI: 10.1016/j.ijheatmasstransfer.2021.121609] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Barrera G, Allia P, Tiberto P. Heating ability modulation by clustering of magnetic particles for precision therapy and diagnosis. J Phys D: Appl Phys 2021;54:315003. [DOI: 10.1088/1361-6463/ac000b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Marć M, Drzewiński A, Wolak WW, Najder-Kozdrowska L, Dudek MR. Filtration of Nanoparticle Agglomerates in Aqueous Colloidal Suspensions Exposed to an External Radio-Frequency Magnetic Field. Nanomaterials (Basel) 2021;11:1737. [PMID: 34361123 DOI: 10.3390/nano11071737] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Barrera G, Allia P, Tiberto P. Dipolar interactions among magnetite nanoparticles for magnetic hyperthermia: a rate-equation approach. Nanoscale 2021;13:4103-21. [PMID: 33570053 DOI: 10.1039/d0nr07397k] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
11 Mohapatra DK, Camp PJ, Philip J. Influence of size polydispersity on magnetic field tunable structures in magnetic nanofluids containing superparamagnetic nanoparticles. Nanoscale Adv 2021;3:3573-92. [DOI: 10.1039/d1na00131k] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
12 Pashchenko AV, Liedienov NA, Fesych IV, Li Q, Pitsyuga VG, Turchenko VA, Pogrebnyak VG, Liu B, Levchenko GG. Smart magnetic nanopowder based on the manganite perovskite for local hyperthermia. RSC Adv 2020;10:30907-16. [PMID: 35516065 DOI: 10.1039/d0ra06779b] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
13 Etemadi H, Plieger PG. Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances. Adv Therap 2020;3:2000061. [DOI: 10.1002/adtp.202000061] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 18.5] [Reference Citation Analysis]
14 Vilas-Boas V, Carvalho F, Espiña B. Magnetic Hyperthermia for Cancer Treatment: Main Parameters Affecting the Outcome of In Vitro and In Vivo Studies. Molecules 2020;25:E2874. [PMID: 32580417 DOI: 10.3390/molecules25122874] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 12.0] [Reference Citation Analysis]
15 Barrera G, Allia P, Tiberto P. Fine tuning and optimization of magnetic hyperthermia treatments using versatile trapezoidal driving-field waveforms. Nanoscale Adv 2020;2:4652-4664. [DOI: 10.1039/d0na00358a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]