BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang Q, Wang L, Wang S, Cheng H, Xu L, Pei G, Wang Y, Fu C, Jiang Y, He C, Wei Q. Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther 2022;7:78. [PMID: 35273164 DOI: 10.1038/s41392-022-00925-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Kazemi Asl S, Rahimzadegan M, Ostadrahimi R. The recent advancement in the chitosan hybrid-based scaffolds for cardiac regeneration after myocardial infarction. Carbohydrate Polymers 2023;300:120266. [DOI: 10.1016/j.carbpol.2022.120266] [Reference Citation Analysis]
2 Akhtar S, Babiker F, Akhtar UA, Benter IF. Mitigating Cardiotoxicity of Dendrimers: Angiotensin-(1-7) via Its Mas Receptor Ameliorates PAMAM-Induced Cardiac Dysfunction in the Isolated Mammalian Heart. Pharmaceutics 2022;14:2673. [DOI: 10.3390/pharmaceutics14122673] [Reference Citation Analysis]
3 Wang F, Gong Y, Chen T, Li B, Zhang W, Yin L, Zhao H, Tang Y, Wang X, Huang C. Maresin1 ameliorates ventricular remodelling and arrhythmia in mice models of myocardial infarction via NRF2/HO-1 and TLR4/NF-kB signalling. International Immunopharmacology 2022;113:109369. [DOI: 10.1016/j.intimp.2022.109369] [Reference Citation Analysis]
4 Wu B, Xiang H, Yu Y, Liu S, Song D, Lin Z, Zhu C, Wu C, Xue Y, Ji K. 3,4-benzo[a]pyrene aggravates myocardial infarction injury by activating NLRP3-related pyroptosis through PINK1/Parkin-mitophagy-mPTP opening axis.. [DOI: 10.21203/rs.3.rs-2230124/v1] [Reference Citation Analysis]
5 Huang Q, Zhang C, Tang S, Wu X, Peng X. Network Pharmacology Analyses of the Pharmacological Targets and Therapeutic Mechanisms of Salvianolic Acid A in Myocardial Infarction. Evid Based Complement Alternat Med 2022;2022:8954035. [PMID: 36248430 DOI: 10.1155/2022/8954035] [Reference Citation Analysis]
6 Fang J, Zhang Y, Chen D, Zheng Y, Jiang J. Exosomes and Exosomal Cargos: A Promising World for Ventricular Remodeling Following Myocardial Infarction. Int J Nanomedicine 2022;17:4699-719. [PMID: 36217495 DOI: 10.2147/IJN.S377479] [Reference Citation Analysis]
7 Franco D, Lozano-velasco E. Healing the Broken Hearts: A Glimpse on Next Generation Therapeutics. Hearts 2022;3:96-116. [DOI: 10.3390/hearts3040013] [Reference Citation Analysis]
8 Cai Y, Kang F, Wang X. Critical illness and bone metabolism: where are we now and what is next? Eur J Med Res 2022;27. [DOI: 10.1186/s40001-022-00805-w] [Reference Citation Analysis]
9 Lin P, Shen N, Yin F, Guo S. Sea cucumber-derived compounds for treatment of dyslipidemia: A review. Front Pharmacol 2022;13:1000315. [DOI: 10.3389/fphar.2022.1000315] [Reference Citation Analysis]
10 Hao H, Yan S, Zhao X, Han X, Fang N, Zhang Y, Dai C, Li W, Yu H, Gao Y, Wang D, Gao Q, Duan Y, Yuan Y, Li Y. Atrial myocyte-derived exosomal microRNA contributes to atrial fibrosis in atrial fibrillation. J Transl Med 2022;20:407. [PMID: 36064558 DOI: 10.1186/s12967-022-03617-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Meng J, Ma A, Zhang S, Lin D, Lin S, Li M, Zhou H, Yang B. Ganoderma Lucidum Polysaccharide Peptide attenuates post myocardial infarction fibrosis via down-regulating TGF-β1/SMAD and relieving oxidative stress. Pharmacological Research - Modern Chinese Medicine 2022;4:100152. [DOI: 10.1016/j.prmcm.2022.100152] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Wu Q, Li D, Huang C, Zhang G, Wang Z, Liu J, Yu H, Song B, Zhang N, Li B, Chu X. Glucose control independent mechanisms involved in the cardiovascular benefits of glucagon-like peptide-1 receptor agonists. Biomedicine & Pharmacotherapy 2022;153:113517. [DOI: 10.1016/j.biopha.2022.113517] [Reference Citation Analysis]
13 Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK, Nguyen GH, Le PTT, Hoang VT, Forsyth NR, Heke M, Nguyen LT. Stem cell-based therapy for human diseases. Signal Transduct Target Ther 2022;7:272. [PMID: 35933430 DOI: 10.1038/s41392-022-01134-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
14 Li Y, Feng L, Xie D, Lin M, Li Y, Chen N, Yang D, Gao J, Zhu Y, Gong Q. Icariside II, a Naturally Occurring SIRT3 Agonist, Protects against Myocardial Infarction through the AMPK/PGC-1α/Apoptosis Signaling Pathway. Antioxidants 2022;11:1465. [DOI: 10.3390/antiox11081465] [Reference Citation Analysis]
15 Li J, Wu J, Huang J, Cheng Y, Wang D, Liu Z. Uncovering the Effect and Mechanism of Rhizoma Corydalis on Myocardial Infarction Through an Integrated Network Pharmacology Approach and Experimental Verification. Front Pharmacol 2022;13:927488. [DOI: 10.3389/fphar.2022.927488] [Reference Citation Analysis]
16 Wang W, Zhao Y, Zhu P, Jia X, Wang C, Zhang Q, Li H, Wang J, Hou Y. Differential Proteomic Profiles of Coronary Serum Exosomes in Acute Myocardial Infarction Patients with or Without Diabetes Mellitus: ANGPTL6 Accelerates Regeneration of Endothelial Cells Treated with Rapamycin via MAPK Pathways. Cardiovasc Drugs Ther 2022. [PMID: 35821539 DOI: 10.1007/s10557-022-07365-5] [Reference Citation Analysis]
17 Li H, Zhu J, Xu YW, Mou FF, Shan XL, Wang QL, Liu BN, Ning K, Liu JJ, Wang YC, Mi JX, Wei X, Shao SJ, Cui GH, Lu R, Guo HD. Notoginsenoside R1-loaded mesoporous silica nanoparticles targeting the site of injury through inflammatory cells improves heart repair after myocardial infarction. Redox Biol 2022;54:102384. [PMID: 35777198 DOI: 10.1016/j.redox.2022.102384] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Liu M, Zhang L, Tao S, Lu N, Pan R. Anti-Inflammation Relieving Heart Dysfunction and Depressive Behaviors of Mice Under Myocardial Infarction and Chronic Stress. Heart Mind 2022;6:159. [DOI: 10.4103/hm.hm_9_22] [Reference Citation Analysis]