BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang P, Liu X, Berzin TM, Glissen Brown JR, Liu P, Zhou C, Lei L, Li L, Guo Z, Lei S, Xiong F, Wang H, Song Y, Pan Y, Zhou G. Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study. The Lancet Gastroenterology & Hepatology 2020;5:343-51. [DOI: 10.1016/s2468-1253(19)30411-x] [Cited by in Crossref: 96] [Cited by in F6Publishing: 43] [Article Influence: 48.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhou G, Xiao X, Tu M, Liu P, Yang D, Liu X, Zhang R, Li L, Lei S, Wang H, Song Y, Wang P. Computer aided detection for laterally spreading tumors and sessile serrated adenomas during colonoscopy.PloS One. 2020;15:e0231880. [PMID: 32315365 DOI: 10.1371/journal.pone.0231880] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
2 Ahmad OF. Deep learning for colorectal polyp detection: time for clinical implementation? Lancet Gastroenterol Hepatol 2020;5:330-1. [PMID: 31981521 DOI: 10.1016/S2468-1253(19)30431-5] [Reference Citation Analysis]
3 Okagawa Y, Abe S, Yamada M, Oda I, Saito Y. Artificial Intelligence in Endoscopy. Dig Dis Sci 2021. [PMID: 34155567 DOI: 10.1007/s10620-021-07086-z] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Liu X, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK; SPIRIT-AI and CONSORT-AI Working Group. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat Med 2020;26:1364-74. [PMID: 32908283 DOI: 10.1038/s41591-020-1034-x] [Cited by in Crossref: 85] [Cited by in F6Publishing: 71] [Article Influence: 42.5] [Reference Citation Analysis]
5 Aguilera-Chuchuca MJ, Sánchez-Luna SA, González Suárez B, Ernest-Suárez K, Gelrud A, Berzin TM. The emerging role of artificial intelligence in gastrointestinal endoscopy: A review. Gastroenterol Hepatol 2021:S0210-5705(21)00309-5. [PMID: 34793895 DOI: 10.1016/j.gastrohep.2021.11.004] [Reference Citation Analysis]
6 Yang H, Hu B. Early gastrointestinal cancer: The application of artificial intelligence. Artif Intell Gastrointest Endosc 2021; 2(4): 185-197 [DOI: 10.37126/aige.v2.i4.185] [Reference Citation Analysis]
7 Cruz Rivera S, Liu X, Chan AW, Denniston AK, Calvert MJ; SPIRIT-AI and CONSORT-AI Working Group. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. Lancet Digit Health 2020;2:e549-60. [PMID: 33328049 DOI: 10.1016/S2589-7500(20)30219-3] [Cited by in Crossref: 22] [Cited by in F6Publishing: 5] [Article Influence: 11.0] [Reference Citation Analysis]
8 Elhage SA, Deerenberg EB, Ayuso SA, Murphy KJ, Shao JM, Kercher KW, Smart NJ, Fischer JP, Augenstein VA, Colavita PD, Heniford BT. Development and Validation of Image-Based Deep Learning Models to Predict Surgical Complexity and Complications in Abdominal Wall Reconstruction. JAMA Surg 2021. [PMID: 34232255 DOI: 10.1001/jamasurg.2021.3012] [Reference Citation Analysis]
9 Shen L, Kann BH, Taylor RA, Shung DL. The Clinician's Guide to the Machine Learning Galaxy. Front Physiol 2021;12:658583. [PMID: 33889088 DOI: 10.3389/fphys.2021.658583] [Reference Citation Analysis]
10 Taghiakbari M, Mori Y, von Renteln D. Artificial intelligence-assisted colonoscopy: A review of current state of practice and research. World J Gastroenterol 2021; 27(47): 8103-8122 [DOI: 10.3748/wjg.v27.i47.8103] [Reference Citation Analysis]
11 Li D, Pehrson LM, Lauridsen CA, Tøttrup L, Fraccaro M, Elliott D, Zając HD, Darkner S, Carlsen JF, Nielsen MB. The Added Effect of Artificial Intelligence on Physicians' Performance in Detecting Thoracic Pathologies on CT and Chest X-ray: A Systematic Review. Diagnostics (Basel) 2021;11:2206. [PMID: 34943442 DOI: 10.3390/diagnostics11122206] [Reference Citation Analysis]
12 Lui TKL, Leung WK. Is artificial intelligence the final answer to missed polyps in colonoscopy? World J Gastroenterol 2020; 26(35): 5248-5255 [PMID: 32994685 DOI: 10.3748/wjg.v26.i35.5248] [Cited by in CrossRef: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Zhu XW, Yan J, He YL, Liu G, Li X. Application of deep learning based artificial intelligence technology in identification of colorectal polyps. Shijie Huaren Xiaohua Zazhi 2021; 29(20): 1201-1206 [DOI: 10.11569/wcjd.v29.i20.1201] [Reference Citation Analysis]
14 Siontis GCM, Sweda R, Noseworthy PA, Friedman PA, Siontis KC, Patel CJ. Development and validation pathways of artificial intelligence tools evaluated in randomised clinical trials. BMJ Health Care Inform 2021;28:e100466. [PMID: 34969668 DOI: 10.1136/bmjhci-2021-100466] [Reference Citation Analysis]
15 Sinagra E, Badalamenti M, Maida M, Spadaccini M, Maselli R, Rossi F, Conoscenti G, Raimondo D, Pallio S, Repici A, Anderloni A. Use of artificial intelligence in improving adenoma detection rate during colonoscopy: Might both endoscopists and pathologists be further helped. World J Gastroenterol 2020; 26(39): 5911-5918 [PMID: 33132644 DOI: 10.3748/wjg.v26.i39.5911] [Cited by in CrossRef: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
16 Attardo S, Chandrasekar VT, Spadaccini M, Maselli R, Patel HK, Desai M, Capogreco A, Badalamenti M, Galtieri PA, Pellegatta G, Fugazza A, Carrara S, Anderloni A, Occhipinti P, Hassan C, Sharma P, Repici A. Artificial intelligence technologies for the detection of colorectal lesions: The future is now. World J Gastroenterol 2020; 26(37): 5606-5616 [PMID: 33088155 DOI: 10.3748/wjg.v26.i37.5606] [Cited by in CrossRef: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Lo B, Burisch J. Artificial intelligence assisted assessment of endoscopic disease activity in inflammatory bowel disease. Artif Intell Gastrointest Endosc 2021; 2(4): 95-102 [DOI: 10.37126/aige.v2.i4.95] [Reference Citation Analysis]
18 Liu X, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK; SPIRIT-AI and CONSORT-AI Working Group. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Lancet Digit Health 2020;2:e537-48. [PMID: 33328048 DOI: 10.1016/S2589-7500(20)30218-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 7.5] [Reference Citation Analysis]
19 Dougherty KE, Melkonian VJ, Montenegro GA. Artificial intelligence in polyp detection - where are we and where are we headed? Artif Intell Gastrointest Endosc 2021; 2(6): 211-219 [DOI: 10.37126/aige.v2.i6.211] [Reference Citation Analysis]
20 Liu X, Rivera SC, Moher D, Calvert MJ, Denniston AK;  SPIRIT-AI and CONSORT-AI Working Group. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI Extension. BMJ. 2020;370:m3164. [PMID: 32909959 DOI: 10.1136/bmj.m3164] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 14.5] [Reference Citation Analysis]
21 Antonelli G, Gkolfakis P, Tziatzios G, Papanikolaou IS, Triantafyllou K, Hassan C. Artificial intelligence-aided colonoscopy: Recent developments and future perspectives. World J Gastroenterol 2020; 26(47): 7436-7443 [PMID: 33384546 DOI: 10.3748/wjg.v26.i47.7436] [Cited by in CrossRef: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
22 Glissen Brown JR, Berzin TM. Adoption of New Technologies: Artificial Intelligence. Gastrointest Endosc Clin N Am 2021;31:743-58. [PMID: 34538413 DOI: 10.1016/j.giec.2021.05.010] [Reference Citation Analysis]
23 Korreman S, Eriksen JG, Grau C. The changing role of radiation oncology professionals in a world of AI - Just jobs lost - Or a solution to the under-provision of radiotherapy? Clin Transl Radiat Oncol 2021;26:104-7. [PMID: 33364449 DOI: 10.1016/j.ctro.2020.04.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
24 Kleppe A, Skrede OJ, De Raedt S, Liestøl K, Kerr DJ, Danielsen HE. Designing deep learning studies in cancer diagnostics. Nat Rev Cancer 2021;21:199-211. [PMID: 33514930 DOI: 10.1038/s41568-020-00327-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
25 Lazăr DC, Avram MF, Faur AC, Romoşan I, Goldiş A. The role of computer-assisted systems for upper-endoscopy quality monitoring and assessment of gastric lesions. Gastroenterol Rep (Oxf) 2021;9:185-204. [PMID: 34316369 DOI: 10.1093/gastro/goab008] [Reference Citation Analysis]
26 Nazarian S, Glover B, Ashrafian H, Darzi A, Teare J. Diagnostic Accuracy of Artificial Intelligence and Computer-Aided Diagnosis for the Detection and Characterization of Colorectal Polyps: Systematic Review and Meta-analysis. J Med Internet Res 2021;23:e27370. [PMID: 34259645 DOI: 10.2196/27370] [Reference Citation Analysis]
27 Kröner PT, Engels MM, Glicksberg BS, Johnson KW, Mzaik O, van Hooft JE, Wallace MB, El-Serag HB, Krittanawong C. Artificial intelligence in gastroenterology: A state-of-the-art review. World J Gastroenterol 2021; 27(40): 6794-6824 [PMID: 34790008 DOI: 10.3748/wjg.v27.i40.6794] [Reference Citation Analysis]
28 Murakami D, Yamato M, Arai M, Nishino T. Artificial intelligence in colonoscopy. Lancet Gastroenterol Hepatol 2021;6:984-5. [PMID: 34774156 DOI: 10.1016/S2468-1253(21)00379-4] [Reference Citation Analysis]
29 Yoo BS, D'Souza SM, Houston K, Patel A, Lau J, Elmahdi A, Parekh PJ, Johnson D. Artificial intelligence and colonoscopy − enhancements and improvements. Artif Intell Gastrointest Endosc 2021; 2(4): 157-167 [DOI: 10.37126/aige.v2.i4.157] [Reference Citation Analysis]
30 Liu P, Wang P, Glissen Brown JR, Berzin TM, Zhou G, Liu W, Xiao X, Chen Z, Zhang Z, Zhou C, Lei L, Xiong F, Li L, Liu X. The single-monitor trial: an embedded CADe system increased adenoma detection during colonoscopy: a prospective randomized study.Therap Adv Gastroenterol. 2020;13:1756284820979165. [PMID: 33403003 DOI: 10.1177/1756284820979165] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
31 Glissen Brown JR, Mansour NM, Wang P, Chuchuca MA, Minchenberg SB, Chandnani M, Liu L, Gross SA, Sengupta N, Berzin TM. Deep Learning Computer-aided Polyp Detection Reduces Adenoma Miss Rate: A United States Multi-center Randomized Tandem Colonoscopy Study (CADeT-CS Trial). Clin Gastroenterol Hepatol 2021:S1542-3565(21)00973-3. [PMID: 34530161 DOI: 10.1016/j.cgh.2021.09.009] [Reference Citation Analysis]
32 Oka A, Ishimura N, Ishihara S. A New Dawn for the Use of Artificial Intelligence in Gastroenterology, Hepatology and Pancreatology. Diagnostics (Basel) 2021;11:1719. [PMID: 34574060 DOI: 10.3390/diagnostics11091719] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
33 Ashat M, Klair JS, Singh D, Murali AR, Krishnamoorthi R. Impact of real-time use of artificial intelligence in improving adenoma detection during colonoscopy: A systematic review and meta-analysis.Endosc Int Open. 2021;9:E513-E521. [PMID: 33816771 DOI: 10.1055/a-1341-0457] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
34 Shaukat A, Colucci D, Erisson L, Phillips S, Ng J, Iglesias JE, Saltzman JR, Somers S, Brugge W. Improvement in adenoma detection using a novel artificial intelligence-aided polyp detection device. Endosc Int Open 2021;9:E263-70. [PMID: 33553591 DOI: 10.1055/a-1321-1317] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Zhou Q, Chen ZH, Cao YH, Peng S. Clinical impact and quality of randomized controlled trials involving interventions evaluating artificial intelligence prediction tools: a systematic review. NPJ Digit Med 2021;4:154. [PMID: 34711955 DOI: 10.1038/s41746-021-00524-2] [Reference Citation Analysis]
36 Mitsala A, Tsalikidis C, Pitiakoudis M, Simopoulos C, Tsaroucha AK. Artificial Intelligence in Colorectal Cancer Screening, Diagnosis and Treatment. A New Era. Curr Oncol 2021;28:1581-607. [PMID: 33922402 DOI: 10.3390/curroncol28030149] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Xu Y, Tan Y, Wang Y, Gao J, Wu D, Xu X. A Gratifying Step forward for the Application of Artificial Intelligence in the Field of Endoscopy: A Narrative Review. Surg Laparosc Endosc Percutan Tech 2020;31:254-63. [PMID: 33122593 DOI: 10.1097/SLE.0000000000000881] [Reference Citation Analysis]
38 Alloro R, Sinagra E. Artificial intelligence and colorectal cancer: How far can you go? Artif Intell Cancer 2021; 2(2): 7-11 [DOI: 10.35713/aic.v2.i2.7] [Reference Citation Analysis]
39 Zhao SB, Yang W, Wang SL, Pan P, Wang RD, Chang X, Sun ZQ, Fu XH, Shang H, Wu JR, Chen LZ, Chang J, Song P, Miao YL, He SX, Miao L, Jiang HQ, Wang W, Yang X, Dong YH, Lin H, Chen Y, Gao J, Meng QQ, Jin ZD, Li ZS, Bai Y. Establishment and validation of a computer-assisted colonic polyp localization system based on deep learning. World J Gastroenterol 2021; 27(31): 5232-5246 [PMID: 34497447 DOI: 10.3748/wjg.v27.i31.5232] [Reference Citation Analysis]
40 Cruz Rivera S, Liu X, Chan AW, Denniston AK, Calvert MJ;  SPIRIT-AI and CONSORT-AI Working Group;  SPIRIT-AI and CONSORT-AI Steering Group;  SPIRIT-AI and CONSORT-AI Consensus Group. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. Nat Med. 2020;26:1351-1363. [PMID: 32908284 DOI: 10.1038/s41591-020-1037-7] [Cited by in Crossref: 57] [Cited by in F6Publishing: 50] [Article Influence: 28.5] [Reference Citation Analysis]
41 Park SH, Choi J, Byeon JS. Key Principles of Clinical Validation, Device Approval, and Insurance Coverage Decisions of Artificial Intelligence. Korean J Radiol 2021;22:442-53. [PMID: 33629545 DOI: 10.3348/kjr.2021.0048] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Xu L, He X, Zhou J, Zhang J, Mao X, Ye G, Chen Q, Xu F, Sang J, Wang J, Ding Y, Li Y, Yu C. Artificial intelligence-assisted colonoscopy: A prospective, multicenter, randomized controlled trial of polyp detection. Cancer Med 2021;10:7184-93. [PMID: 34477306 DOI: 10.1002/cam4.4261] [Reference Citation Analysis]
43 Kader R, Baggaley RF, Hussein M, Ahmad OF, Patel N, Corbett G, Dolwani S, Stoyanov D, Lovat LB. Survey on the perceptions of UK gastroenterologists and endoscopists to artificial intelligence. Frontline Gastroenterol. [DOI: 10.1136/flgastro-2021-101994] [Reference Citation Analysis]
44 Daneshjou R, He B, Ouyang D, Zou JY. How to evaluate deep learning for cancer diagnostics - factors and recommendations. Biochim Biophys Acta Rev Cancer 2021;1875:188515. [PMID: 33513392 DOI: 10.1016/j.bbcan.2021.188515] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
45 Joseph J, LePage EM, Cheney CP, Pawa R. Artificial intelligence in colonoscopy. World J Gastroenterol 2021; 27(29): 4802-4817 [PMID: 34447227 DOI: 10.3748/wjg.v27.i29.4802] [Reference Citation Analysis]
46 Ahmad OF, Mori Y, Misawa M, Kudo SE, Anderson JT, Bernal J, Berzin TM, Bisschops R, Byrne MF, Chen PJ, East JE, Eelbode T, Elson DS, Gurudu SR, Histace A, Karnes WE, Repici A, Singh R, Valdastri P, Wallace MB, Wang P, Stoyanov D, Lovat LB. Establishing key research questions for the implementation of artificial intelligence in colonoscopy: a modified Delphi method.Endoscopy. 2021;53:893-901. [PMID: 33167043 DOI: 10.1055/a-1306-7590] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
47 Yin J, Ngiam KY, Teo HH. Role of Artificial Intelligence Applications in Real-Life Clinical Practice: Systematic Review. J Med Internet Res 2021;23:e25759. [PMID: 33885365 DOI: 10.2196/25759] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
48 Hann A, Troya J, Fitting D. Current status and limitations of artificial intelligence in colonoscopy. United European Gastroenterol J 2021;9:527-33. [PMID: 34617420 DOI: 10.1002/ueg2.12108] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
49 Lovejoy CA, Abbas AR, Ratneswaran D. An introduction to artificial intelligence in sleep medicine. J Thorac Dis 2021;13:6095-8. [PMID: 34795955 DOI: 10.21037/jtd-21-1569] [Reference Citation Analysis]
50 Milluzzo SM, Cesaro P, Grazioli LM, Olivari N, Spada C. Artificial Intelligence in Lower Gastrointestinal Endoscopy: The Current Status and Future Perspective. Clin Endosc 2021;54:329-39. [PMID: 33434961 DOI: 10.5946/ce.2020.082] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
51 Yang H, Hu B. Application of artificial intelligence to endoscopy on common gastrointestinal benign diseases. Artif Intell Gastrointest Endosc 2021; 2(2): 25-35 [DOI: 10.37126/aige.v2.i2.25] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Shah N, Jyala A, Patel H, Makker J. Utility of artificial intelligence in colonoscopy. Artif Intell Gastrointest Endosc 2021; 2(3): 79-88 [DOI: 10.37126/aige.v2.i3.79] [Reference Citation Analysis]
53 Parsa N, Byrne MF. Artificial intelligence for identification and characterization of colonic polyps. Ther Adv Gastrointest Endosc 2021;14:26317745211014698. [PMID: 34263163 DOI: 10.1177/26317745211014698] [Reference Citation Analysis]
54 Li JW, Ang TL. Colonoscopy and artificial intelligence: Bridging the gap or a gap needing to be bridged? Artif Intell Gastrointest Endosc 2021; 2(2): 36-49 [DOI: 10.37126/aige.v2.i2.36] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
55 Wang KW, Dong M. Potential applications of artificial intelligence in colorectal polyps and cancer: Recent advances and prospects. World J Gastroenterol 2020; 26(34): 5090-5100 [PMID: 32982111 DOI: 10.3748/wjg.v26.i34.5090] [Cited by in CrossRef: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
56 Rajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and medicine. Nat Med 2022. [PMID: 35058619 DOI: 10.1038/s41591-021-01614-0] [Reference Citation Analysis]
57 Gubatan J, Levitte S, Patel A, Balabanis T, Wei MT, Sinha SR. Artificial intelligence applications in inflammatory bowel disease: Emerging technologies and future directions. World J Gastroenterol 2021; 27(17): 1920-1935 [PMID: 34007130 DOI: 10.3748/wjg.v27.i17.1920] [Cited by in CrossRef: 10] [Cited by in F6Publishing: 5] [Article Influence: 10.0] [Reference Citation Analysis]
58 Mohan BP, Facciorusso A, Khan SR, Chandan S, Kassab LL, Gkolfakis P, Tziatzios G, Triantafyllou K, Adler DG. Real-time computer aided colonoscopy versus standard colonoscopy for improving adenoma detection rate: A meta-analysis of randomized-controlled trials. EClinicalMedicine 2020;29-30:100622. [PMID: 33294821 DOI: 10.1016/j.eclinm.2020.100622] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
59 Rivera SC, Liu X, Chan AW, Denniston AK, Calvert MJ;  SPIRIT-AI and CONSORT-AI Working Group. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI Extension. BMJ. 2020;370:m3210. [PMID: 32907797 DOI: 10.1136/bmj.m3210] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 14.5] [Reference Citation Analysis]
60 Kather JN, Krause J, Luedde T. [Artificial intelligence in gastroenterology]. Dtsch Med Wochenschr 2020;145:1450-4. [PMID: 33022724 DOI: 10.1055/a-1013-6593] [Reference Citation Analysis]
61 Gulati S, Emmanuel A, Patel M, Williams S, Haji A, Hayee B, Neumann H. Artificial intelligence in luminal endoscopy. Ther Adv Gastrointest Endosc 2020;13:2631774520935220. [PMID: 32637935 DOI: 10.1177/2631774520935220] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
62 Ozawa T, Ishihara S, Fujishiro M, Kumagai Y, Shichijo S, Tada T. Automated endoscopic detection and classification of colorectal polyps using convolutional neural networks. Therap Adv Gastroenterol. 2020;13:1756284820910659. [PMID: 32231710 DOI: 10.1177/1756284820910659] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 12.5] [Reference Citation Analysis]
63 Hsieh YH, Tang CP, Tseng CW, Lin TL, Leung FW. Computer-Aided Detection False Positives in Colonoscopy. Diagnostics (Basel) 2021;11:1113. [PMID: 34207226 DOI: 10.3390/diagnostics11061113] [Reference Citation Analysis]
64 Zhuang H, Bao A, Tan Y, Wang H, Xie Q, Qiu M, Xiong W, Liao F. Application and prospect of artificial intelligence in digestive endoscopy. Expert Rev Gastroenterol Hepatol 2021;:1-11. [PMID: 34937459 DOI: 10.1080/17474124.2022.2020646] [Reference Citation Analysis]
65 Huguet JM, Ferrer-Barceló L, Suárez P, Sanchez E, Prieto JD, Garcia V, Sempere J. Colorectal cancer screening and surveillance in patients with inflammatory bowel disease in 2021. World J Gastroenterol 2022; 28(5): 502-516 [DOI: 10.3748/wjg.v28.i5.502] [Reference Citation Analysis]