BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Garcia PT, Guimarães LN, Dias AA, Ulhoa CJ, Coltro WK. Amperometric detection of salivary α-amylase on screen-printed carbon electrodes as a simple and inexpensive alternative for point-of-care testing. Sensors and Actuators B: Chemical 2018;258:342-8. [DOI: 10.1016/j.snb.2017.11.068] [Cited by in Crossref: 24] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Wang X, Su J, Zeng D, Liu G, Liu L, Xu Y, Wang C, Liu X, Wang L, Mi X. Gold nano-flowers (Au NFs) modified screen-printed carbon electrode electrochemical biosensor for label-free and quantitative detection of glycated hemoglobin. Talanta 2019;201:119-25. [PMID: 31122401 DOI: 10.1016/j.talanta.2019.03.100] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
2 Akceoglu GA, Saylan Y, Inci F. A Snapshot of Microfluidics in Point‐of‐Care Diagnostics: Multifaceted Integrity with Materials and Sensors. Adv Mater Technol 2021;6:2100049. [DOI: 10.1002/admt.202100049] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 14.0] [Reference Citation Analysis]
3 Soto D, Orozco J. Hybrid Nanobioengineered Nanomaterial-Based Electrochemical Biosensors. Molecules 2022;27:3841. [PMID: 35744967 DOI: 10.3390/molecules27123841] [Reference Citation Analysis]
4 Biscay J, Findlay E, Dennany L. Electrochemical monitoring of alcohol in sweat. Talanta 2021;224:121815. [PMID: 33379040 DOI: 10.1016/j.talanta.2020.121815] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
5 Ma H, Kang Q, Wang T, Yu L. A liquid crystals-based sensing platform for detection of α-amylase coupled with destruction of host-guest interaction. Colloids and Surfaces B: Biointerfaces 2019;173:616-22. [DOI: 10.1016/j.colsurfb.2018.10.036] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
6 Pérez-fernández B, Muñiz ADLE. Electrochemical biosensors based on nanomaterials for aflatoxins detection: A review (2015–2021). Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.339658] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
7 Huang X, Xu D, Chen J, Liu J, Li Y, Song J, Ma X, Guo J. Smartphone-based analytical biosensors. Analyst 2018;143:5339-51. [DOI: 10.1039/c8an01269e] [Cited by in Crossref: 109] [Cited by in F6Publishing: 34] [Article Influence: 27.3] [Reference Citation Analysis]
8 Rebelo TSCR, Miranda IM, Brandão ATSC, Sousa LIG, Ribeiro JA, Silva AF, Pereira CM. A Disposable Saliva Electrochemical MIP-Based Biosensor for Detection of the Stress Biomarker α-Amylase in Point-of-Care Applications. Electrochem 2021;2:427-38. [DOI: 10.3390/electrochem2030028] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Hersey M, Berger SN, Holmes J, West A, Hashemi P. Recent Developments in Carbon Sensors for At-Source Electroanalysis. Anal Chem 2019;91:27-43. [PMID: 30481001 DOI: 10.1021/acs.analchem.8b05151] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 4.8] [Reference Citation Analysis]
10 Dehghani Z, Mohammadnejad J, Hosseini M. A new colorimetric assay for amylase based on starch-supported Cu/Au nanocluster peroxidase-like activity. Anal Bioanal Chem 2019;411:3621-9. [DOI: 10.1007/s00216-019-01844-9] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 5.3] [Reference Citation Analysis]
11 Villalonga A, Mayol B, Villalonga R, Vilela D. Electrochemical aptasensors for clinical diagnosis. A review of the last five years. Sensors and Actuators B: Chemical 2022;369:132318. [DOI: 10.1016/j.snb.2022.132318] [Reference Citation Analysis]
12 Magar HS, Abbas MN, Ali MB, Ahmed MA. Picomolar-sensitive impedimetric sensor for salivary calcium analysis at POC based on SAM of Schiff base–modified gold electrode. J Solid State Electrochem 2020;24:723-37. [DOI: 10.1007/s10008-020-04500-w] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
13 Li Y, Zuo S, Ding L, Xu P, Wang K, Liu Y, Li J, Liu C. Sensitive immunoassay of cardiac troponin I using an optimized microelectrode array in a novel integrated microfluidic electrochemical device. Anal Bioanal Chem 2020;412:8325-38. [DOI: 10.1007/s00216-020-02968-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Hu X, Liu F, Li W, Wang X, Deng H. Sensitive Detection of Serum Creatinine Based on β-Cyclodextrin-Ferrocenylmethanol Modified Screen-printed Electrode. Anal Sci 2019;35:903-9. [PMID: 31061240 DOI: 10.2116/analsci.19P015] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
15 Zhao M, Luo L, Guo Y, Zhao B, Chen X, Shi X, Khan M, Lin JM, Hu Q. Viscosity-Based Flow Sensor on Paper for Quantitative and Label-Free Detection of α-Amylase and Its Inhibitor. ACS Sens 2022;7:593-600. [PMID: 35050602 DOI: 10.1021/acssensors.1c02489] [Reference Citation Analysis]
16 Gug IT, Tertis M, Hosu O, Cristea C. Salivary biomarkers detection: Analytical and immunological methods overview. TrAC Trends in Analytical Chemistry 2019;113:301-16. [DOI: 10.1016/j.trac.2019.02.020] [Cited by in Crossref: 37] [Cited by in F6Publishing: 13] [Article Influence: 12.3] [Reference Citation Analysis]
17 Sun M, Ma B, Yuan S, Xin L, Zhao C, Liu H. Mercury thermometer-inspired test strip for concentration cell-based potentiometric detection of salivary α-amylase. Analytica Chimica Acta 2022;1206:339770. [DOI: 10.1016/j.aca.2022.339770] [Reference Citation Analysis]
18 Chen W, Yao Y, Chen T, Shen W, Tang S, Lee HK. Application of smartphone-based spectroscopy to biosample analysis: A review. Biosens Bioelectron 2021;172:112788. [PMID: 33157407 DOI: 10.1016/j.bios.2020.112788] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
19 Ozcelikay G, Karadurmus L, Kaya SI, Bakirhan NK, Ozkan SA. A Review: New Trends in Electrode Systems for Sensitive Drug and Biomolecule Analysis. Crit Rev Anal Chem 2020;50:212-25. [PMID: 31107105 DOI: 10.1080/10408347.2019.1615406] [Cited by in Crossref: 13] [Article Influence: 4.3] [Reference Citation Analysis]
20 Tsyrulneva I, Alagappan P, Liedberg B. Colorimetric Detection of Salivary α-Amylase Using Maltose as a Noncompetitive Inhibitor for Polysaccharide Cleavage. ACS Sens 2019;4:865-73. [PMID: 30895774 DOI: 10.1021/acssensors.8b01343] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
21 Garcia PT, Dias AA, Souza JAC, Coltro WKT. Batch injection analysis towards auxiliary diagnosis of periodontal diseases based on indirect amperometric detection of salivary α-amylase on a cupric oxide electrode. Anal Chim Acta 2018;1041:50-7. [PMID: 30340690 DOI: 10.1016/j.aca.2018.08.039] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
22 Zafer JB, Dede S, Karakuş E. α-Amylase assay with starch-iodine-sodium fluorescein-based fluorometric method in human serum samples. Prep Biochem Biotechnol 2021;51:599-606. [PMID: 33427021 DOI: 10.1080/10826068.2020.1843177] [Reference Citation Analysis]