BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bernier A, Sagan SM. The Diverse Roles of microRNAs at the Host⁻Virus Interface. Viruses 2018;10:E440. [PMID: 30126238 DOI: 10.3390/v10080440] [Cited by in Crossref: 40] [Cited by in F6Publishing: 39] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Wu F, Lu F, Fan X, Chao J, Liu C, Pan Q, Sun H, Zhang X. Immune-related miRNA-mRNA regulation network in the livers of DHAV-3-infected ducklings. BMC Genomics 2020;21:123. [PMID: 32019511 DOI: 10.1186/s12864-020-6539-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
2 Kanda T, Yoshida A, Ikebuchi Y, Ikeda H, Sakaguchi T, Urabe S, Minami H, Nakao K, Inoue H, Isomoto H. Autophagy-related 16-like 1 is influenced by human herpes virus 1-encoded microRNAs in biopsy samples from the lower esophageal sphincter muscle during per-oral endoscopic myotomy for esophageal achalasia. Biomed Rep 2021;14:7. [PMID: 33235722 DOI: 10.3892/br.2020.1383] [Reference Citation Analysis]
3 Yu T, Chen M, Wang C. Annotation of miRNAs in COVID-19 coronavirus. Journal of Electronic Science and Technology 2021;19:100060. [DOI: 10.1016/j.jnlest.2020.100060] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
4 Cui M, Chen S, Zhang S, Cheng A, Pan Y, Huang J, Hu Z, Zhang X, Wang M, Zhu D, Chen S, Liu M, Zhao X, Wu Y, Yang Q, Liu Y, Zhang L, Yu Y, Yin Z, Jing B, Rehman MU, Tian B, Pan L, Jia R. Duck Tembusu Virus Utilizes miR-221-3p Expression to Facilitate Viral Replication via Targeting of Suppressor of Cytokine Signaling 5. Front Microbiol 2020;11:596. [PMID: 32373087 DOI: 10.3389/fmicb.2020.00596] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
5 Lin S, Wang Y, Zhao Z, Wu W, Su Y, Zhang Z, Shen M, Wu P, Qian H, Guo X. Two Putative Cypovirus-Encoded miRNAs Co-regulate the Host Gene of GTP-Binding Nuclear Protein Ran and Facilitate Virus Replication. Front Physiol 2021;12:663482. [PMID: 34421632 DOI: 10.3389/fphys.2021.663482] [Reference Citation Analysis]
6 Zhang X, Chu H, Wen L, Shuai H, Yang D, Wang Y, Hou Y, Zhu Z, Yuan S, Yin F, Chan JF, Yuen KY. Competing endogenous RNA network profiling reveals novel host dependency factors required for MERS-CoV propagation. Emerg Microbes Infect 2020;9:733-46. [PMID: 32223537 DOI: 10.1080/22221751.2020.1738277] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 15.5] [Reference Citation Analysis]
7 Bakre AA, Duffy C, Abdullah H, Cosby SL, Tripp RA. Small Non-coding RNA Expression Following Respiratory Syncytial Virus or Measles Virus Infection of Neuronal Cells. Front Microbiol 2021;12:671852. [PMID: 34539595 DOI: 10.3389/fmicb.2021.671852] [Reference Citation Analysis]
8 Bernier A, Sagan SM. Beyond sites 1 and 2, miR-122 target sites in the HCV genome have negligible contributions to HCV RNA accumulation in cell culture. J Gen Virol 2019;100:217-26. [PMID: 30652963 DOI: 10.1099/jgv.0.001217] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
9 Hao Q, Wang Q, Qian H, Jiang J, Liu X, Xia W. Identification and functional characterization of miR-451a as a novel plasma-based biomarker for occult hepatitis B virus infection. Microb Pathog 2021;161:105233. [PMID: 34626767 DOI: 10.1016/j.micpath.2021.105233] [Reference Citation Analysis]
10 Li H, Li J, Zhai Y, Zhang L, Cui P, Feng L, Yan W, Fu X, Tian Y, Wang H, Yang X. Gga-miR-30d regulates infectious bronchitis virus infection by targeting USP47 in HD11 cells. Microb Pathog 2020;141:103998. [PMID: 31982568 DOI: 10.1016/j.micpath.2020.103998] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
11 Ikebuchi Y, Kanda T, Ikeda H, Yoshida A, Sakaguchi T, Urabe S, Minami H, Nakao K, Kuwamoto S, Inoue H, Isomoto H. Identification of human herpes virus 1 encoded micro RNA s in biopsy samples of lower esophageal sphincter muscle during peroral endoscopic myotomy for esophageal achalasia. Digestive Endoscopy 2019;32:136-42. [DOI: 10.1111/den.13491] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
12 Tabata K, Neufeldt CJ, Bartenschlager R. Hepatitis C Virus Replication. Cold Spring Harb Perspect Med. 2020;10. [PMID: 31570388 DOI: 10.1101/cshperspect.a037093] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
13 Wang P, He J. Nucleic Acid Sensing in Invertebrate Antiviral Immunity. Nucleic Acid Sensing and Immunity - Part B. Elsevier; 2019. pp. 287-360. [DOI: 10.1016/bs.ircmb.2018.11.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
14 Min K, Kim JY, Lee SK. Epstein-Barr virus miR-BART1-3p suppresses apoptosis and promotes migration of gastric carcinoma cells by targeting DAB2. Int J Biol Sci 2020;16:694-707. [PMID: 32025216 DOI: 10.7150/ijbs.36595] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
15 Meng F, Siu GK, Mok BW, Sun J, Fung KSC, Lam JY, Wong NK, Gedefaw L, Luo S, Lee TMH, Yip SP, Huang CL. Viral MicroRNAs Encoded by Nucleocapsid Gene of SARS-CoV-2 Are Detected during Infection, and Targeting Metabolic Pathways in Host Cells. Cells 2021;10:1762. [PMID: 34359932 DOI: 10.3390/cells10071762] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Lewandowska M, Sharoni T, Admoni Y, Aharoni R, Moran Y. Functional characterization of the cnidarian antiviral immune response reveals ancestral complexity. Mol Biol Evol 2021:msab197. [PMID: 34180999 DOI: 10.1093/molbev/msab197] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Zhang L, Zhang L, Pan Y, Gao J, Xu Y, Li X, Tian Z, Chen H, Wang Y. Downregulation of miR-218 by porcine reproductive and respiratory syndrome virus facilitates viral replication via inhibition of type I interferon responses. J Biol Chem 2021;296:100683. [PMID: 33887325 DOI: 10.1016/j.jbc.2021.100683] [Reference Citation Analysis]
18 Khan MA, Islam ABMMK. SARS-CoV-2 Proteins Exploit Host's Genetic and Epigenetic Mediators for the Annexation of Key Host Signaling Pathways. Front Mol Biosci 2020;7:598583. [PMID: 33585554 DOI: 10.3389/fmolb.2020.598583] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
19 Ghosh N, Saha I, Sharma N, Sarkar JP. Human miRNAs to Identify Potential Regions of SARS-CoV-2. ACS Omega. [DOI: 10.1021/acsomega.2c01907] [Reference Citation Analysis]
20 Narożna M, Rubiś B. Anti-SARS-CoV-2 Strategies and the Potential Role of miRNA in the Assessment of COVID-19 Morbidity, Recurrence, and Therapy. Int J Mol Sci 2021;22:8663. [PMID: 34445368 DOI: 10.3390/ijms22168663] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Szumna M, Hukowska-szematowicz B. MicroRNAs as new immunity regulators in viral and bacterial infections. Acta Biologica 2020;27:93-108. [DOI: 10.18276/ab.2020.27-09] [Reference Citation Analysis]
22 Canatan D, De Sanctis V. The impact of MicroRNAs (miRNAs) on the genotype of coronaviruses. Acta Biomed 2020;91:195-8. [PMID: 32420944 DOI: 10.23750/abm.v91i2.9534] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
23 Fernández-Moreno R, Torre-Cisneros J, Cantisán S. Human cytomegalovirus (HCMV)-encoded microRNAs: potential biomarkers and clinical applications. RNA Biol 2021;:1-9. [PMID: 34039247 DOI: 10.1080/15476286.2021.1930757] [Reference Citation Analysis]
24 Liu Z, Wang J, Ge Y, Xu Y, Guo M, Mi K, Xu R, Pei Y, Zhang Q, Luan X, Hu Z, Chi Y, Liu X. SARS-CoV-2 encoded microRNAs are involved in the process of virus infection and host immune response. J Biomed Res 2021;35:216-27. [PMID: 33963094 DOI: 10.7555/JBR.35.20200154] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Wang H, Tian Z, Xu Y, Wang Q, Ding SW, Li Y. Altering Intracellular Localization of the RNA Interference Factors by Influenza A Virus Non-structural Protein 1. Front Microbiol 2020;11:590904. [PMID: 33281788 DOI: 10.3389/fmicb.2020.590904] [Reference Citation Analysis]
26 Sardar R, Satish D, Birla S, Gupta D. Integrative analyses of SARS-CoV-2 genomes from different geographical locations reveal unique features potentially consequential to host-virus interaction, pathogenesis and clues for novel therapies. Heliyon 2020;6:e04658. [PMID: 32844125 DOI: 10.1016/j.heliyon.2020.e04658] [Cited by in Crossref: 24] [Cited by in F6Publishing: 49] [Article Influence: 12.0] [Reference Citation Analysis]
27 Withers JB, Mondol V, Pawlica P, Rosa-Mercado NA, Tycowski KT, Ghasempur S, Torabi SF, Steitz JA. Idiosyncrasies of Viral Noncoding RNAs Provide Insights into Host Cell Biology. Annu Rev Virol 2019;6:297-317. [PMID: 31039329 DOI: 10.1146/annurev-virology-092818-015811] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
28 Oliver GF, Orang AV, Appukuttan B, Marri S, Michael MZ, Marsh GA, Smith JR. Expression of microRNA in human retinal pigment epithelial cells following infection with Zaire ebolavirus. BMC Res Notes 2019;12:639. [PMID: 31570108 DOI: 10.1186/s13104-019-4671-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
29 Mishra R, Lahon A, Banerjea AC. Dengue Virus Degrades USP33-ATF3 Axis via Extracellular Vesicles to Activate Human Microglial Cells. J Immunol 2020;205:1787-98. [PMID: 32848034 DOI: 10.4049/jimmunol.2000411] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
30 Merino GA, Raad J, Bugnon LA, Yones C, Kamenetzky L, Claus J, Ariel F, Milone DH, Stegmayer G. Novel SARS-CoV-2 encoded small RNAs in the passage to humans. Bioinformatics 2021;36:5571-81. [PMID: 33244583 DOI: 10.1093/bioinformatics/btaa1002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
31 Nicolas Calderon K, Fabian Galindo J, Bermudez-Santana CI. Evaluation of Conserved RNA Secondary Structures within and between Geographic Lineages of Zika Virus. Life (Basel) 2021;11:344. [PMID: 33919874 DOI: 10.3390/life11040344] [Reference Citation Analysis]
32 Tang CK, Tsai CH, Wu CP, Lin YH, Wei SC, Lu YH, Li CH, Wu YL. MicroRNAs from Snellenius manilae bracovirus regulate innate and cellular immune responses of its host Spodoptera litura. Commun Biol 2021;4:52. [PMID: 33420334 DOI: 10.1038/s42003-020-01563-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
33 Parray A, Mir FA, Doudin A, Iskandarani A, Danjuma MM, Kuni RAT, Abdelmajid A, Abdelhafez I, Arif R, Mulhim M, Abukhattab M, Dar SR, Moustafa AA, Elkord E, Al Khal AL, Elzouki AN, Cyprian F. SnoRNAs and miRNAs Networks Underlying COVID-19 Disease Severity. Vaccines (Basel) 2021;9:1056. [PMID: 34696164 DOI: 10.3390/vaccines9101056] [Reference Citation Analysis]
34 Marchi R, Sugita B, Centa A, Fonseca AS, Bortoletto S, Fiorentin K, Ferreira S, Cavalli LR. The role of microRNAs in modulating SARS-CoV-2 infection in human cells: a systematic review. Infect Genet Evol 2021;91:104832. [PMID: 33812037 DOI: 10.1016/j.meegid.2021.104832] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
35 Abedi F, Rezaee R, Hayes AW, Nasiripour S, Karimi G. MicroRNAs and SARS-CoV-2 life cycle, pathogenesis, and mutations: biomarkers or therapeutic agents? Cell Cycle 2021;20:143-53. [PMID: 33382348 DOI: 10.1080/15384101.2020.1867792] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
36 Almutairy BK, Alshetaili A, Anwer MK, Ali N. In silico identification of MicroRNAs targeting the key nucleator of stress granules, G3BP: Promising therapeutics for SARS-CoV-2 infection. Saudi J Biol Sci 2021;28:7499-504. [PMID: 34456603 DOI: 10.1016/j.sjbs.2021.08.056] [Reference Citation Analysis]
37 Prasad K, Alasmari AF, Ali N, Khan R, Alghamdi A, Kumar V. Insights into the SARS-CoV-2-Mediated Alteration in the Stress Granule Protein Regulatory Networks in Humans. Pathogens 2021;10:1459. [PMID: 34832615 DOI: 10.3390/pathogens10111459] [Reference Citation Analysis]
38 Gedefaw L, Ullah S, Lee TMH, Yip SP, Huang CL. Targeting Inflammasome Activation in COVID-19: Delivery of RNA Interference-Based Therapeutic Molecules. Biomedicines 2021;9:1823. [PMID: 34944639 DOI: 10.3390/biomedicines9121823] [Reference Citation Analysis]
39 [DOI: 10.1101/2020.05.06.050260] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
40 Sarma A, Phukan H, Halder N, Madanan MG. An in-silico approach to study the possible interactions of miRNA between human and SARS-CoV2. Comput Biol Chem 2020;88:107352. [PMID: 32771962 DOI: 10.1016/j.compbiolchem.2020.107352] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
41 Silwal P, Kim YS, Basu J, Jo E. The roles of microRNAs in regulation of autophagy during bacterial infection. Seminars in Cell & Developmental Biology 2020;101:51-8. [DOI: 10.1016/j.semcdb.2019.07.011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
42 Sardar R, Satish D, Gupta D. Identification of Novel SARS-CoV-2 Drug Targets by Host MicroRNAs and Transcription Factors Co-regulatory Interaction Network Analysis. Front Genet 2020;11:571274. [PMID: 33173539 DOI: 10.3389/fgene.2020.571274] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
43 Jafarinejad-Farsangi S, Jazi MM, Rostamzadeh F, Hadizadeh M. High affinity of host human microRNAs to SARS-CoV-2 genome: An in silico analysis. Noncoding RNA Res 2020;5:222-31. [PMID: 33251388 DOI: 10.1016/j.ncrna.2020.11.005] [Cited by in F6Publishing: 12] [Reference Citation Analysis]
44 Gay LA, Turner PC, Renne R. Contemporary Ribonomics Methods for Viral microRNA Target Analysis. Noncoding RNA 2018;4:E31. [PMID: 30424002 DOI: 10.3390/ncrna4040031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
45 Mishra R, Banerjea AC. SARS-CoV-2 Spike Targets USP33-IRF9 Axis via Exosomal miR-148a to Activate Human Microglia. Front Immunol 2021;12:656700. [PMID: 33936086 DOI: 10.3389/fimmu.2021.656700] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]