BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hsueh YH, Tsai PH, Lin KS. pH-Dependent Antimicrobial Properties of Copper Oxide Nanoparticles in Staphylococcus aureus. Int J Mol Sci 2017;18:E793. [PMID: 28397766 DOI: 10.3390/ijms18040793] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 4.6] [Reference Citation Analysis]
Number Citing Articles
1 Abo‐zeid Y, Williams GR. The potential anti‐infective applications of metal oxide nanoparticles: A systematic review. WIREs Nanomed Nanobiotechnol 2020;12. [DOI: 10.1002/wnan.1592] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 8.3] [Reference Citation Analysis]
2 Bankier C, Cheong Y, Mahalingam S, Edirisinghe M, Ren G, Cloutman-Green E, Ciric L. A comparison of methods to assess the antimicrobial activity of nanoparticle combinations on bacterial cells. PLoS One 2018;13:e0192093. [PMID: 29390022 DOI: 10.1371/journal.pone.0192093] [Cited by in Crossref: 47] [Cited by in F6Publishing: 30] [Article Influence: 11.8] [Reference Citation Analysis]
3 Fernandez AC, Sakthivel P, Jesudurai J. Semiconducting metal oxides for gas sensor applications. J Mater Sci: Mater Electron 2018;29:357-64. [DOI: 10.1007/s10854-017-7924-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.2] [Reference Citation Analysis]
4 Grigore M, Grumezescu A, Holban A, Mogoşanu G, Andronescu E. Collagen-Nanoparticles Composites for Wound Healing and Infection Control. Metals 2017;7:516. [DOI: 10.3390/met7120516] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 2.2] [Reference Citation Analysis]
5 Verma N, Kumar N. Synthesis and Biomedical Applications of Copper Oxide Nanoparticles: An Expanding Horizon. ACS Biomater Sci Eng 2019;5:1170-88. [DOI: 10.1021/acsbiomaterials.8b01092] [Cited by in Crossref: 77] [Cited by in F6Publishing: 36] [Article Influence: 25.7] [Reference Citation Analysis]
6 Aderibigbe BA. Metal-Based Nanoparticles for the Treatment of Infectious Diseases. Molecules 2017;22:E1370. [PMID: 28820471 DOI: 10.3390/molecules22081370] [Cited by in Crossref: 80] [Cited by in F6Publishing: 48] [Article Influence: 16.0] [Reference Citation Analysis]
7 Bezza FA, Tichapondwa SM, Chirwa EMN. Fabrication of monodispersed copper oxide nanoparticles with potential application as antimicrobial agents. Sci Rep 2020;10:16680. [PMID: 33028867 DOI: 10.1038/s41598-020-73497-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
8 Kim A, Muthuchamy N, Yoon C, Joo SH, Park KH. MOF-Derived Cu@Cu₂O Nanocatalyst for Oxygen Reduction Reaction and Cycloaddition Reaction. Nanomaterials (Basel) 2018;8:E138. [PMID: 29495634 DOI: 10.3390/nano8030138] [Cited by in Crossref: 37] [Cited by in F6Publishing: 19] [Article Influence: 9.3] [Reference Citation Analysis]
9 Rydosz A. The Use of Copper Oxide Thin Films in Gas-Sensing Applications. Coatings 2018;8:425. [DOI: 10.3390/coatings8120425] [Cited by in Crossref: 46] [Cited by in F6Publishing: 4] [Article Influence: 11.5] [Reference Citation Analysis]
10 Nikolova MP, Chavali MS. Metal Oxide Nanoparticles as Biomedical Materials. Biomimetics (Basel) 2020;5:E27. [PMID: 32521669 DOI: 10.3390/biomimetics5020027] [Cited by in Crossref: 35] [Cited by in F6Publishing: 20] [Article Influence: 17.5] [Reference Citation Analysis]
11 Pandey M, Singh M, Wasnik K, Gupta S, Patra S, Gupta PS, Pareek D, Chaitanya NSN, Maity S, Reddy ABM, Tilak R, Paik P. Targeted and Enhanced Antimicrobial Inhibition of Mesoporous ZnO-Ag2O/Ag, ZnO-CuO, and ZnO-SnO2 Composite Nanoparticles. ACS Omega 2021;6:31615-31. [PMID: 34869986 DOI: 10.1021/acsomega.1c04139] [Reference Citation Analysis]
12 Tavakoli A, Hashemzadeh MS. Inhibition of herpes simplex virus type 1 by copper oxide nanoparticles. J Virol Methods 2020;275:113688. [PMID: 31271792 DOI: 10.1016/j.jviromet.2019.113688] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
13 Hsueh YH, Hsieh CT, Chiu ST, Tsai PH, Liu CY, Ke WJ. Antibacterial Property of Composites of Reduced Graphene Oxide with Nano-Silver and Zinc Oxide Nanoparticles Synthesized Using a Microwave-Assisted Approach. Int J Mol Sci 2019;20:E5394. [PMID: 31671904 DOI: 10.3390/ijms20215394] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
14 Zhang M, Yang Y, Liu Y, Fu J, Lu J, Yang Y, Jiao J, Yu C. 3D-Nanosponge enabled segregation: a versatile approach for highly dispersed and high content functionalization of metal oxide species. Mater Chem Front 2020;4:1739-46. [DOI: 10.1039/d0qm00115e] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Hibbitts A, O'Leary C. Emerging Nanomedicine Therapies to Counter the Rise of Methicillin-Resistant Staphylococcus aureus. Materials (Basel) 2018;11:E321. [PMID: 29473883 DOI: 10.3390/ma11020321] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
16 Algharib SA, Dawood A, Xie S. Nanoparticles for treatment of bovine Staphylococcus aureus mastitis. Drug Deliv 2020;27:292-308. [PMID: 32036717 DOI: 10.1080/10717544.2020.1724209] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
17 Pardhi DM, Şen Karaman D, Timonen J, Wu W, Zhang Q, Satija S, Mehta M, Charbe N, McCarron PA, Tambuwala MM, Bakshi HA, Negi P, Aljabali AA, Dua K, Chellappan DK, Behera A, Pathak K, Watharkar RB, Rautio J, Rosenholm JM. Anti-bacterial activity of inorganic nanomaterials and their antimicrobial peptide conjugates against resistant and non-resistant pathogens. Int J Pharm 2020;586:119531. [PMID: 32540348 DOI: 10.1016/j.ijpharm.2020.119531] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
18 Bankier C, Matharu RK, Cheong YK, Ren GG, Cloutman-Green E, Ciric L. Synergistic Antibacterial Effects of Metallic Nanoparticle Combinations. Sci Rep 2019;9:16074. [PMID: 31690845 DOI: 10.1038/s41598-019-52473-2] [Cited by in Crossref: 56] [Cited by in F6Publishing: 40] [Article Influence: 18.7] [Reference Citation Analysis]
19 Joshi B, Regmi C, Dhakal D, Gyawali G, Lee SW. Efficient inactivation of Staphylococcus aureus by silver and copper loaded photocatalytic titanate nanotubes. Progress in Natural Science: Materials International 2018;28:15-23. [DOI: 10.1016/j.pnsc.2018.01.004] [Cited by in Crossref: 23] [Cited by in F6Publishing: 9] [Article Influence: 5.8] [Reference Citation Analysis]