BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Babu L, Uppalapati SR, Sripathy MH, Reddy PN. Evaluation of Recombinant Multi-Epitope Outer Membrane Protein-Based Klebsiella pneumoniae Subunit Vaccine in Mouse Model. Front Microbiol 2017;8:1805. [PMID: 28979250 DOI: 10.3389/fmicb.2017.01805] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 4.4] [Reference Citation Analysis]
Number Citing Articles
1 Wang C, Li Y, Wang S, Yan X, Xiao J, Chen Y, Zheng K, Tan Y, Yu J, Lu C, Wu Y. Evaluation of a tandem Chlamydia psittaci Pgp3 multiepitope peptide vaccine against a pulmonary chlamydial challenge in mice. Microb Pathog 2020;147:104256. [PMID: 32416138 DOI: 10.1016/j.micpath.2020.104256] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
2 Peng Z, Wu J, Wang K, Li X, Sun P, Zhang L, Huang J, Liu Y, Hua X, Yu Y, Pan C, Wang H, Zhu L. Production of a Promising Biosynthetic Self-Assembled Nanoconjugate Vaccine against Klebsiella Pneumoniae Serotype O2 in a General Escherichia Coli Host. Adv Sci (Weinh) 2021;8:e2100549. [PMID: 34032027 DOI: 10.1002/advs.202100549] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Kota RK, Srirama K, Reddy PN. IgY antibodies of chicken do not bind staphylococcal binder of immunoglobulin (Sbi) from Staphylococcus aureus. Ann Microbiol 2019;69:531-40. [DOI: 10.1007/s13213-019-1441-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
4 Eger E, Schwabe M, Schulig L, Hübner N, Bohnert JA, Bornscheuer UT, Heiden SE, Müller JU, Adnan F, Becker K, Correa-martinez CL, Guenther S, Idelevich EA, Baecker D, Schaufler K, Singh A. Extensively Drug-Resistant Klebsiella pneumoniae Counteracts Fitness and Virulence Costs That Accompanied Ceftazidime-Avibactam Resistance Acquisition. Microbiol Spectr. [DOI: 10.1128/spectrum.00148-22] [Reference Citation Analysis]
5 Makam S, Srirama K, Dirisala VR, Reddy PN. An efficient method for integration of PCR fragments into adjacent or overlapping restriction sites during gene cloning. 3 Biotech 2018;8:197. [PMID: 29581929 DOI: 10.1007/s13205-018-1214-2] [Reference Citation Analysis]
6 Park HJ, Ko HL, Won DH, Hwang DB, Shin YS, Kwak HW, Kim HJ, Yun JW, Nam JH. Comprehensive Analysis of the Safety Profile of a Single-Stranded RNA Nano-Structure Adjuvant. Pharmaceutics 2019;11:E464. [PMID: 31500241 DOI: 10.3390/pharmaceutics11090464] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
7 Guerra MES, Destro G, Vieira B, Lima AS, Ferraz LFC, Hakansson AP, Darrieux M, Converso TR. Klebsiella pneumoniae Biofilms and Their Role in Disease Pathogenesis. Front Cell Infect Microbiol 2022;12:877995. [DOI: 10.3389/fcimb.2022.877995] [Reference Citation Analysis]
8 Mahapatra SR, Dey J, Kaur T, Sarangi R, Bajoria AA, Kushwaha GS, Misra N, Suar M. Immunoinformatics and molecular docking studies reveal a novel Multi-Epitope peptide vaccine against pneumonia infection. Vaccine 2021;39:6221-37. [PMID: 34556364 DOI: 10.1016/j.vaccine.2021.09.025] [Reference Citation Analysis]
9 Du X, Xue J, Jiang M, Lin S, Huang Y, Deng K, Shu L, Xu H, Li Z, Yao J, Chen S, Shen Z, Feng G. A Multiepitope Peptide, rOmp22, Encapsulated in Chitosan-PLGA Nanoparticles as a Candidate Vaccine Against Acinetobacter baumannii Infection. Int J Nanomedicine 2021;16:1819-36. [PMID: 33707942 DOI: 10.2147/IJN.S296527] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Zargaran FN, Akya A, Rezaeian S, Ghadiri K, Lorestani RC, Madanchi H, Safaei S, Rostamian M. B Cell Epitopes of Four Fimbriae Antigens of Klebsiella pneumoniae: A Comprehensive In Silico Study for Vaccine Development. Int J Pept Res Ther 2020;:1-12. [PMID: 33250677 DOI: 10.1007/s10989-020-10134-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
11 Hussein KE, Bahey-El-Din M, Sheweita SA. Immunization with the outer membrane proteins OmpK17 and OmpK36 elicits protection against Klebsiella pneumoniae in the murine infection model. Microb Pathog 2018;119:12-8. [PMID: 29626658 DOI: 10.1016/j.micpath.2018.04.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
12 Solanki V, Sharma S, Tiwari V. Subtractive Proteomics and Reverse Vaccinology Strategies for Designing a Multiepitope Vaccine Targeting Membrane Proteins of Klebsiella pneumoniae. Int J Pept Res Ther 2021;27:1177-95. [DOI: 10.1007/s10989-021-10159-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
13 Choi M, Tennant SM, Simon R, Cross AS. Progress towards the development of Klebsiella vaccines. Expert Rev Vaccines 2019;18:681-91. [PMID: 31250679 DOI: 10.1080/14760584.2019.1635460] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
14 Rodrigues MX, Yang Y, de Souza Meira EB Jr, do Carmo Silva J, Bicalho RC. Development and evaluation of a new recombinant protein vaccine (YidR) against Klebsiella pneumoniae infection. Vaccine 2020;38:4640-8. [PMID: 32444194 DOI: 10.1016/j.vaccine.2020.03.057] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
15 Rostamian M, Farasat A, Chegene Lorestani R, Nemati Zargaran F, Ghadiri K, Akya A. Immunoinformatics and molecular dynamics studies to predict T-cell-specific epitopes of four Klebsiella pneumoniae fimbriae antigens. J Biomol Struct Dyn 2020;:1-11. [PMID: 32820713 DOI: 10.1080/07391102.2020.1810126] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
16 Hu G, Chen X, Chu W, Ma Z, Miao Y, Luo X, Fu Y. Immunogenic characteristics of the outer membrane phosphoporin as a vaccine candidate against Klebsiella pneumoniae. Vet Res 2022;53:5. [PMID: 35063026 DOI: 10.1186/s13567-022-01023-2] [Reference Citation Analysis]
17 Assoni L, Girardello R, Converso TR, Darrieux M. Current Stage in the Development of Klebsiella pneumoniae Vaccines. Infect Dis Ther 2021;10:2157-75. [PMID: 34476772 DOI: 10.1007/s40121-021-00533-4] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 López-Siles M, Corral-Lugo A, McConnell MJ. Vaccines for multidrug resistant Gram negative bacteria: lessons from the past for guiding future success. FEMS Microbiol Rev 2021;45:fuaa054. [PMID: 33289833 DOI: 10.1093/femsre/fuaa054] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Mehmood A, Naseer S, Ali A, Fatimah H, Rehman S, Kiani AK. Identification of novel vaccine candidates against carbapenem resistant Klebsiella pneumoniae: A systematic reverse proteomic approach. Comput Biol Chem 2020;89:107380. [PMID: 32992120 DOI: 10.1016/j.compbiolchem.2020.107380] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
20 You HS, Lee SH, Kang SS, Hyun SH. OmpA of Klebsiella pneumoniae ATCC 13883 induces pyroptosis in HEp-2 cells, leading to cell-cycle arrest and apoptosis. Microbes Infect 2020;22:432-40. [PMID: 32569734 DOI: 10.1016/j.micinf.2020.06.002] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Emelianova AG, Petrova NV, Fremez C, Fontanié M, Tarasov SА, Epstein ОI. Therapeutic potential of highly diluted antibodies in antibiotic-resistant infection. European Journal of Pharmaceutical Sciences 2022. [DOI: 10.1016/j.ejps.2022.106161] [Reference Citation Analysis]
22 Tomazi T, Tomazi ACCH, Silva JCC, Bringhenti L, Bravo MLMC, Rodrigues MX, Bicalho RC. Immunization with a novel recombinant protein (YidR) reduced the risk of clinical mastitis caused by Klebsiella spp. and decreased milk losses and culling risk after Escherichia coli infections. J Dairy Sci 2021;104:4787-802. [PMID: 33612238 DOI: 10.3168/jds.2020-19173] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
23 Reddy PN, Makam SS, Kota RK, Yatung G, Urs RM, Batra H, Tuteja U. Functional characterization of a broad and potent neutralizing monoclonal antibody directed against outer membrane protein (OMP) of Salmonella typhimurium. Appl Microbiol Biotechnol 2020;104:2651-61. [PMID: 31997109 DOI: 10.1007/s00253-020-10394-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Liu EY, Chen J, Lin J, Wang C, Fung C, Ding Y, Chang F, Siu LK. Cross-protection induced by highly conserved outer membrane proteins (Omps) in mice immunized with OmpC of Salmonella Typhi or OmpK36 of Klebsiella pneumoniae. Vaccine 2022. [DOI: 10.1016/j.vaccine.2022.03.016] [Reference Citation Analysis]
25 Vieira de Araujo AE, Conde LV, da Silva Junior HC, de Almeida Machado L, Lara FA, Chapeaurouge A, Pauer H, Pires Hardoim CC, Martha Antunes LC, D'Alincourt Carvalho-Assef AP, Moreno Senna JP. Cross-reactivity and immunotherapeutic potential of BamA recombinant protein from Acinetobacter baumannii. Microbes Infect 2021;23:104801. [PMID: 33582283 DOI: 10.1016/j.micinf.2021.104801] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Lin-Zhao Z, Tong-Yang B, Yi-Xuan Y, Ning-Guo S, Xing-Zhang D, Nan-Ji S, Lv B, Huan-Kang Y, Feng-Shan X, Mei-Shi Q, Wen-Sun W, Dong-Qian A. Construction and immune efficacy of recombinant Lactobacillus casei expressing OmpAI of Aeromonas veronii C5-I as molecular adjuvant. Microb Pathog 2021;156:104827. [PMID: 33892129 DOI: 10.1016/j.micpath.2021.104827] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]