BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: van Swelm RPL, Kramers C, Masereeuw R, Russel FGM. Application of urine proteomics for biomarker discovery in drug-induced liver injury. Critical Reviews in Toxicology 2014;44:823-41. [DOI: 10.3109/10408444.2014.931341] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Jiang T, Rong P, Wang W. Chemical probes for drug-induced liver injury imaging. Future Med Chem 2020;12:835-52. [PMID: 32107934 DOI: 10.4155/fmc-2019-0330] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Zhan Z, Guan Y, Mew K, Zeng W, Peng M, Hu P, Yang Y, Lu Y, Ren H. Urine α-fetoprotein and orosomucoid 1 as biomarkers of hepatitis B virus-associated hepatocellular carcinoma. Am J Physiol Gastrointest Liver Physiol 2020;318:G305-12. [PMID: 31736338 DOI: 10.1152/ajpgi.00267.2019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
3 Chen J, Wang Z, She M, Liu M, Zhao Z, Chen X, Liu P, Zhang S, Li J. Precise Synthesis of GSH-Specific Fluorescent Probe for Hepatotoxicity Assessment Guided by Theoretical Calculation. ACS Appl Mater Interfaces 2019;11:32605-12. [DOI: 10.1021/acsami.9b08522] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
4 Stieger B, Mahdi ZM. Model Systems for Studying the Role of Canalicular Efflux Transporters in Drug-Induced Cholestatic Liver Disease. J Pharm Sci 2017;106:2295-301. [PMID: 28385542 DOI: 10.1016/j.xphs.2017.03.023] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
5 Araújo AM, Carvalho M, Carvalho F, Bastos ML, Guedes de Pinho P. Metabolomic approaches in the discovery of potential urinary biomarkers of drug-induced liver injury (DILI). Crit Rev Toxicol 2017;47:633-49. [PMID: 28436314 DOI: 10.1080/10408444.2017.1309638] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
6 Shi W, Jiang Y, Zhao DS, Jiang LL, Liu FJ, Wu ZT, Li ZQ, Wang LL, Zhou J, Li P, Li HJ. Metabolomic-transcriptomic landscape of 8-epidiosbulbin E acetate -a major diterpenoid lactone from Dioscorea bulbifera tuber induces hepatotoxicity. Food Chem Toxicol 2020;135:110887. [PMID: 31626840 DOI: 10.1016/j.fct.2019.110887] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Liu X, Dai R, Ke M, Suheryani I, Meng W, Deng Y. Differential Proteomic Analysis of Dimethylnitrosamine (DMN)-Induced Liver Fibrosis. Proteomics 2017;17:1700267. [DOI: 10.1002/pmic.201700267] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
8 Liu X, Lai H, Peng J, Cheng D, Zhang X, Yuan L. Chromophore‐Modified Highly Selective Ratiometric Upconversion Nanoprobes for Detection of ONOO ‐Related Hepatotoxicity In Vivo. Small 2019;15:1902737. [DOI: 10.1002/smll.201902737] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 11.0] [Reference Citation Analysis]
9 Wu L, Ding Q, Wang X, Li P, Fan N, Zhou Y, Tong L, Zhang W, Zhang W, Tang B. Visualization of Dynamic Changes in Labile Iron(II) Pools in Endoplasmic Reticulum Stress-Mediated Drug-Induced Liver Injury. Anal Chem 2020;92:1245-51. [DOI: 10.1021/acs.analchem.9b04411] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
10 Risaliti L, Yu X, Vanti G, Bergonzi MC, Wang M, Bilia AR. Hydroxyethyl cellulose hydrogel for skin delivery of khellin loaded in ascosomes: Characterization, in vitro/in vivo performance and acute toxicity. Int J Biol Macromol 2021;179:217-29. [PMID: 33662425 DOI: 10.1016/j.ijbiomac.2021.02.206] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
11 Ma B, Lu M, Yu B, Tian J. A galactose-mediated targeting nanoprobe for intracellular hydroxyl radical imaging to predict drug-induced liver injury. RSC Adv 2018;8:22062-8. [DOI: 10.1039/c8ra01424h] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
12 Chen J, Huang D, She M, Wang Z, Chen X, Liu P, Zhang S, Li J. Recent Progress in Fluorescent Sensors for Drug-Induced Liver Injury Assessment. ACS Sens 2021;6:628-40. [DOI: 10.1021/acssensors.0c02343] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
13 Zhao D, Jiang L, Fan Y, Dong L, Ma J, Dong X, Xu X, Li P, Li H. Identification of urine tauro-β-muricholic acid as a promising biomarker in Polygoni Multiflori Radix-induced hepatotoxicity by targeted metabolomics of bile acids. Food and Chemical Toxicology 2017;108:532-42. [DOI: 10.1016/j.fct.2017.02.030] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
14 Zhuang H, Li B, Zhao M, Wei P, Yuan W, Zhang M, Han X, Chen Y, Yi T. Real-time monitoring and accurate diagnosis of drug-induced hepatotoxicity in vivo by ratio-fluorescence and photoacoustic imaging of peroxynitrite. Nanoscale 2020;12:10216-25. [PMID: 32356536 DOI: 10.1039/d0nr00963f] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]