BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Deng G, Yao L, Zeng F, Xiao L, Wang Z. Nomogram For Preoperative Prediction Of Microvascular Invasion Risk In Hepatocellular Carcinoma. Cancer Manag Res. 2019;11:9037-9045. [PMID: 31695495 DOI: 10.2147/cmar.s216178] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
Number Citing Articles
1 Wang X, Fu Y, Zhu C, Hu X, Zou H, Sun C. New insights into a microvascular invasion prediction model in hepatocellular carcinoma: A retrospective study from the SEER database and China. Front Surg 2022;9:1046713. [PMID: 36684226 DOI: 10.3389/fsurg.2022.1046713] [Reference Citation Analysis]
2 Zhou Y, Sun S, Liu Q, Xu X, Zhang Y, Zhang Y. TED: Two-stage expert-guided interpretable diagnosis framework for microvascular invasion in hepatocellular carcinoma. Medical Image Analysis 2022;82:102575. [DOI: 10.1016/j.media.2022.102575] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Li S, Zeng Q, Liang R, Long J, Liu Y, Xiao H, Sun K. Using Systemic Inflammatory Markers to Predict Microvascular Invasion Before Surgery in Patients With Hepatocellular Carcinoma. Front Surg 2022;9:833779. [DOI: 10.3389/fsurg.2022.833779] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Liu W, Zhang L, Xin Z, Zhang H, You L, Bai L, Zhou J, Ying B. A Promising Preoperative Prediction Model for Microvascular Invasion in Hepatocellular Carcinoma Based on an Extreme Gradient Boosting Algorithm. Front Oncol 2022;12:852736. [DOI: 10.3389/fonc.2022.852736] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Gu Y, Zheng F, Zhang Y, Qiao S. Novel Nomogram Based on Inflammatory Markers for the Preoperative Prediction of Microvascular Invasion in Solitary Primary Hepatocellular Carcinoma. CMAR 2022;Volume 14:895-907. [DOI: 10.2147/cmar.s346976] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Mouchli M, Reddy S, Gerrard M, Boardman L, Rubio M. Usefulness of neutrophil-to-lymphocyte ratio (NLR) as a prognostic predictor after treatment of hepatocellular carcinoma." Review article. Ann Hepatol 2021;22:100249. [PMID: 32896610 DOI: 10.1016/j.aohep.2020.08.067] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 14.0] [Reference Citation Analysis]
7 Yanhan W, Lianfang L, Hao L, Yunfeng D, Nannan S, Fanfan L, Chengzhan Z, Meilong W, Chuandong S. Effect of Microvascular Invasion on the Prognosis in Hepatocellular Carcinoma and Analysis of Related Risk Factors: A Two-Center Study. Front Surg 2021;8:733343. [PMID: 34869551 DOI: 10.3389/fsurg.2021.733343] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
8 Deng G, Wang W, Li Y, Sun H, Chen X, Zeng F. Nomogram based on autophagy related genes for predicting the survival in melanoma. BMC Cancer 2021;21:1258. [PMID: 34809598 DOI: 10.1186/s12885-021-08928-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Zhang D, Wei Q, Wu GG, Zhang XY, Lu WW, Lv WZ, Liao JT, Cui XW, Ni XJ, Dietrich CF. Preoperative Prediction of Microvascular Invasion in Patients With Hepatocellular Carcinoma Based on Radiomics Nomogram Using Contrast-Enhanced Ultrasound. Front Oncol 2021;11:709339. [PMID: 34557410 DOI: 10.3389/fonc.2021.709339] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
10 Lin E, Zou B, Zeng G, Cai C, Li P, Chen J, Li D, Zhang B, Li J. The impact of liver fibrosis on microvascular invasion and prognosis of hepatocellular carcinoma with a solitary nodule: a Surveillance, Epidemiology, and End Results (SEER) database analysis. Ann Transl Med 2021;9:1310. [PMID: 34532447 DOI: 10.21037/atm-21-3731] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Mao S, Yu X, Yang Y, Shan Y, Mugaanyi J, Wu S, Lu C. Preoperative nomogram for microvascular invasion prediction based on clinical database in hepatocellular carcinoma. Sci Rep 2021;11:13999. [PMID: 34234239 DOI: 10.1038/s41598-021-93528-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
12 Chong H, Zhou P, Yang C, Zeng M. An excellent nomogram predicts microvascular invasion that cannot independently stratify outcomes of small hepatocellular carcinoma. Ann Transl Med 2021;9:757. [PMID: 34268370 DOI: 10.21037/atm-20-7952] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
13 Gundlach JP, Schmidt S, Bernsmeier A, Günther R, Kataev V, Trentmann J, Schäfer JP, Röcken C, Becker T, Braun F. Indication of Liver Transplantation for Hepatocellular Carcinoma Should Be Reconsidered in Case of Microvascular Invasion and Multilocular Tumor Occurrence. J Clin Med 2021;10:1155. [PMID: 33801887 DOI: 10.3390/jcm10061155] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Zeng F, Deng G, Cui Y, Zhang Y, Dai M, Chen L, Han D, Li W, Guo K, Chen X, Shen M, Pan P. A predictive model for the severity of COVID-19 in elderly patients. Aging (Albany NY) 2020;12:20982-96. [PMID: 33170150 DOI: 10.18632/aging.103980] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
15 Zeng F, Su J, Peng C, Liao M, Zhao S, Guo Y, Chen X, Deng G. Prognostic Implications of Metabolism Related Gene Signature in Cutaneous Melanoma. Front Oncol 2020;10:1710. [PMID: 33014847 DOI: 10.3389/fonc.2020.01710] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
16 Wang L, Jin YX, Ji YZ, Mu Y, Zhang SC, Pan SY. Development and validation of a prediction model for microvascular invasion in hepatocellular carcinoma. World J Gastroenterol 2020; 26(14): 1647-1659 [PMID: 32327913 DOI: 10.3748/wjg.v26.i14.1647] [Cited by in CrossRef: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]