BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Loschinski R, Böttcher M, Stoll A, Bruns H, Mackensen A, Mougiakakos D. IL-21 modulates memory and exhaustion phenotype of T-cells in a fatty acid oxidation-dependent manner. Oncotarget 2018;9:13125-38. [PMID: 29568345 DOI: 10.18632/oncotarget.24442] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Ando M, Ito M, Srirat T, Kondo T, Yoshimura A. Memory T cell, exhaustion, and tumor immunity. Immunol Med 2020;43:1-9. [PMID: 31822213 DOI: 10.1080/25785826.2019.1698261] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 9.7] [Reference Citation Analysis]
2 Loucif H, Dagenais-Lussier X, Beji C, Cassin L, Jrade H, Tellitchenko R, Routy JP, Olagnier D, van Grevenynghe J. Lipophagy confers a key metabolic advantage that ensures protective CD8A T-cell responses against HIV-1. Autophagy 2021;:1-16. [PMID: 33459125 DOI: 10.1080/15548627.2021.1874134] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Bansal R, Reshef R. Revving the CAR - Combination strategies to enhance CAR T cell effectiveness. Blood Rev 2021;45:100695. [PMID: 32402724 DOI: 10.1016/j.blre.2020.100695] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
4 Dimauro I, Grazioli E, Lisi V, Guidotti F, Fantini C, Antinozzi C, Sgrò P, Antonioni A, Di Luigi L, Capranica L, Caporossi D. Systemic Response of Antioxidants, Heat Shock Proteins, and Inflammatory Biomarkers to Short-Lasting Exercise Training in Healthy Male Subjects. Oxid Med Cell Longev 2021;2021:1938492. [PMID: 34853628 DOI: 10.1155/2021/1938492] [Reference Citation Analysis]
5 Ren HM, Lukacher AE. IL-21 in Homeostasis of Resident Memory and Exhausted CD8 T Cells during Persistent Infection. Int J Mol Sci 2020;21:E6966. [PMID: 32971931 DOI: 10.3390/ijms21186966] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
6 Asao H. Interleukin-21 in Viral Infections. Int J Mol Sci 2021;22:9521. [PMID: 34502427 DOI: 10.3390/ijms22179521] [Reference Citation Analysis]
7 Sun Y, Preiss NK, Valenteros KB, Kamal Y, Usherwood YK, Frost HR, Usherwood EJ. Zbtb20 Restrains CD8 T Cell Immunometabolism and Restricts Memory Differentiation and Antitumor Immunity. J Immunol 2020;205:2649-66. [PMID: 32998985 DOI: 10.4049/jimmunol.2000459] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
8 Zhu Z, Parikh P, Zhao H, Givens NT, Beck DB, Willson CM, Bai Q, Wakefield MR, Fang Y. Targeting immunometabolism of neoplasms by interleukins: A promising immunotherapeutic strategy for cancer treatment. Cancer Lett 2021;518:94-101. [PMID: 34153401 DOI: 10.1016/j.canlet.2021.06.013] [Reference Citation Analysis]
9 Bishop EL, Gudgeon N, Dimeloe S. Control of T Cell Metabolism by Cytokines and Hormones. Front Immunol 2021;12:653605. [PMID: 33927722 DOI: 10.3389/fimmu.2021.653605] [Reference Citation Analysis]
10 O'sullivan D. The metabolic spectrum of memory T cells. Immunol Cell Biol 2019;97:636-46. [DOI: 10.1111/imcb.12274] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
11 Falavinha BC, Barisón MJ, Rebelatto CLK, Marcon BH, de Melo Aguiar A, da Silva EB, Stimamiglio MA, Shigunov P. Interleukin 21 Receptor Affects Adipogenesis of Human Adipose-Derived Stem/Stromal Cells. Stem Cells Int 2022;2022:4930932. [PMID: 35047041 DOI: 10.1155/2022/4930932] [Reference Citation Analysis]
12 Ren HM, Kolawole EM, Ren M, Jin G, Netherby-Winslow CS, Wade Q, Shwetank, Rahman ZSM, Evavold BD, Lukacher AE. IL-21 from high-affinity CD4 T cells drives differentiation of brain-resident CD8 T cells during persistent viral infection. Sci Immunol 2020;5:eabb5590. [PMID: 32948671 DOI: 10.1126/sciimmunol.abb5590] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
13 Chan JD, Lai J, Slaney CY, Kallies A, Beavis PA, Darcy PK. Cellular networks controlling T cell persistence in adoptive cell therapy. Nat Rev Immunol 2021. [PMID: 33879873 DOI: 10.1038/s41577-021-00539-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Leitner BP, Siebel S, Akingbesote ND, Zhang X, Perry RJ. Insulin and cancer: a tangled web. Biochem J 2022;479:583-607. [PMID: 35244142 DOI: 10.1042/BCJ20210134] [Reference Citation Analysis]
15 Jitschin R, Böttcher M, Saul D, Lukassen S, Bruns H, Loschinski R, Ekici AB, Reis A, Mackensen A, Mougiakakos D. Inflammation-induced glycolytic switch controls suppressivity of mesenchymal stem cells via STAT1 glycosylation. Leukemia 2019;33:1783-96. [PMID: 30679801 DOI: 10.1038/s41375-018-0376-6] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
16 Du L, Nai Y, Shen M, Li T, Huang J, Han X, Wang W, Pang D, Jin A. IL-21 Optimizes the CAR-T Cell Preparation Through Improving Lentivirus Mediated Transfection Efficiency of T Cells and Enhancing CAR-T Cell Cytotoxic Activities. Front Mol Biosci 2021;8:675179. [PMID: 34179083 DOI: 10.3389/fmolb.2021.675179] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Tu VY, Ayari A, O'Connor RS. Beyond the Lactate Paradox: How Lactate and Acidity Impact T Cell Therapies against Cancer. Antibodies (Basel) 2021;10:25. [PMID: 34203136 DOI: 10.3390/antib10030025] [Reference Citation Analysis]
18 Boroughs AC, Larson RC, Marjanovic ND, Gosik K, Castano AP, Porter CBM, Lorrey SJ, Ashenberg O, Jerby L, Hofree M, Smith-Rosario G, Morris R, Gould J, Riley LS, Berger TR, Riesenfeld SJ, Rozenblatt-Rosen O, Choi BD, Regev A, Maus MV. A Distinct Transcriptional Program in Human CAR T Cells Bearing the 4-1BB Signaling Domain Revealed by scRNA-Seq. Mol Ther 2020;28:2577-92. [PMID: 32755564 DOI: 10.1016/j.ymthe.2020.07.023] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
19 Peña-Asensio J, Calvo H, Torralba M, Miquel J, Sanz-de-Villalobos E, Larrubia JR. Gamma-Chain Receptor Cytokines & PD-1 Manipulation to Restore HCV-Specific CD8+ T Cell Response during Chronic Hepatitis C. Cells 2021;10:538. [PMID: 33802622 DOI: 10.3390/cells10030538] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Shourian M, Beltra JC, Bourdin B, Decaluwe H. Common gamma chain cytokines and CD8 T cells in cancer. Semin Immunol 2019;42:101307. [PMID: 31604532 DOI: 10.1016/j.smim.2019.101307] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
21 Hermans D, Gautam S, García-Cañaveras JC, Gromer D, Mitra S, Spolski R, Li P, Christensen S, Nguyen R, Lin JX, Oh J, Du N, Veenbergen S, Fioravanti J, Ebina-Shibuya R, Bleck C, Neckers LM, Rabinowitz JD, Gattinoni L, Leonard WJ. Lactate dehydrogenase inhibition synergizes with IL-21 to promote CD8+ T cell stemness and antitumor immunity. Proc Natl Acad Sci U S A 2020;117:6047-55. [PMID: 32123114 DOI: 10.1073/pnas.1920413117] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 19.5] [Reference Citation Analysis]
22 Knochelmann HM, Smith AS, Dwyer CJ, Wyatt MM, Mehrotra S, Paulos CM. CAR T Cells in Solid Tumors: Blueprints for Building Effective Therapies. Front Immunol 2018;9:1740. [PMID: 30140266 DOI: 10.3389/fimmu.2018.01740] [Cited by in Crossref: 90] [Cited by in F6Publishing: 87] [Article Influence: 22.5] [Reference Citation Analysis]
23 Loucif H, Dagenais-Lussier X, Beji C, Telittchenko R, Routy JP, van Grevenynghe J. Plasticity in T-cell mitochondrial metabolism: A necessary peacekeeper during the troubled times of persistent HIV-1 infection. Cytokine Growth Factor Rev 2020;55:26-36. [PMID: 32151523 DOI: 10.1016/j.cytogfr.2020.02.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
24 Ren HM, Lukacher AE, Rahman ZSM, Olsen NJ. New developments implicating IL-21 in autoimmune disease. J Autoimmun 2021;122:102689. [PMID: 34224936 DOI: 10.1016/j.jaut.2021.102689] [Reference Citation Analysis]
25 Oberholtzer N, Quinn KM, Chakraborty P, Mehrotra S. New Developments in T Cell Immunometabolism and Implications for Cancer Immunotherapy. Cells 2022;11:708. [DOI: 10.3390/cells11040708] [Reference Citation Analysis]
26 Huang Y, Hu KJ, Hu YX, Huang H. [Universal chimeric antigen receptor T cells therapy: current status and future perspectives]. Zhonghua Xue Ye Xue Za Zhi 2021;42:782-6. [PMID: 34753238 DOI: 10.3760/cma.j.issn.0253-2727.2021.09.015] [Reference Citation Analysis]
27 Rad S M AH, Halpin JC, Mollaei M, Smith Bell SWJ, Hirankarn N, McLellan AD. Metabolic and Mitochondrial Functioning in Chimeric Antigen Receptor (CAR)-T Cells. Cancers (Basel) 2021;13:1229. [PMID: 33799768 DOI: 10.3390/cancers13061229] [Reference Citation Analysis]
28 Dalel J, Ung SK, Hayes P, Black SL, Joseph S, King DF, Makinde J, Gilmour J; IAVI Protocol C investigators list. HIV-1 infection and the lack of viral control are associated with greater expression of interleukin-21 receptor on CD8+ T cells. AIDS 2021;35:1167-77. [PMID: 33710028 DOI: 10.1097/QAD.0000000000002864] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Zhang M, Jin X, Sun R, Xiong X, Wang J, Xie D, Zhao M. Optimization of metabolism to improve efficacy during CAR-T cell manufacturing. J Transl Med 2021;19:499. [PMID: 34876185 DOI: 10.1186/s12967-021-03165-x] [Reference Citation Analysis]