BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mackow NA, Shen J, Adnan M, Khan AS, Fries BC, Diago-Navarro E. CRISPR-Cas influences the acquisition of antibiotic resistance in Klebsiella pneumoniae. PLoS One 2019;14:e0225131. [PMID: 31747398 DOI: 10.1371/journal.pone.0225131] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
Number Citing Articles
1 Wang G, Song G, Xu Y. Association of CRISPR/Cas System with the Drug Resistance in Klebsiella pneumoniae. Infect Drug Resist 2020;13:1929-35. [PMID: 32606841 DOI: 10.2147/IDR.S253380] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Alduhaidhawi AHM, Alhuchaimi SN, Al- Mayah TA, Al-ouqaili MT, Alkafaas SS, Muthupandian S, Saki M. Prevalence of CRISPR-Cas Systems and Their Possible Association with Antibiotic Resistance in Enterococcus faecalis and Enterococcus faecium Collected from Hospital Wastewater. IDR 2022;Volume 15:1143-54. [DOI: 10.2147/idr.s358248] [Reference Citation Analysis]
3 Wheatley RM, MacLean RC. CRISPR-Cas systems restrict horizontal gene transfer in Pseudomonas aeruginosa. ISME J 2021;15:1420-33. [PMID: 33349652 DOI: 10.1038/s41396-020-00860-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
4 Rodrigues C, Desai S, Passet V, Gajjar D, Brisse S. Genomic evolution of the globally disseminated multidrug-resistant Klebsiella pneumoniae clonal group 147. Microb Genom 2022;8. [PMID: 35019836 DOI: 10.1099/mgen.0.000737] [Reference Citation Analysis]
5 Roy S, Naha S, Rao A, Basu S. CRISPR-Cas system, antibiotic resistance and virulence in bacteria: Through a common lens. Prog Mol Biol Transl Sci 2021;178:123-74. [PMID: 33685595 DOI: 10.1016/bs.pmbts.2020.12.005] [Reference Citation Analysis]
6 Lee CH, Chuah SK, Chang CC, Chen FJ. The Surface Protein Fructose-1, 6 Bisphosphate Aldolase of Klebsiella pneumoniae Serotype K1: Role of Interaction with Neutrophils. Pathogens 2020;9:E1009. [PMID: 33266305 DOI: 10.3390/pathogens9121009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
7 Pursey E, Dimitriu T, Paganelli FL, Westra ER, van Houte S. CRISPR-Cas is associated with fewer antibiotic resistance genes in bacterial pathogens. Philos Trans R Soc Lond B Biol Sci 2022;377:20200464. [PMID: 34839714 DOI: 10.1098/rstb.2020.0464] [Reference Citation Analysis]
8 Bao M, Chen Q, Xu Z, Jensen EC, Liu C, Waitkus JT, Yuan X, He Q, Qin P, Du K. Challenges and Opportunities for Clustered Regularly Interspaced Short Palindromic Repeats Based Molecular Biosensing. ACS Sens 2021;6:2497-522. [PMID: 34143608 DOI: 10.1021/acssensors.1c00530] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Das S, Bombaywala S, Srivastava S, Kapley A, Dhodapkar R, Dafale NA. Genome plasticity as a paradigm of antibiotic resistance spread in ESKAPE pathogens. Environ Sci Pollut Res. [DOI: 10.1007/s11356-022-19840-5] [Reference Citation Analysis]
10 Ma P, He LL, Pironti A, Laibinis HH, Ernst CM, Manson AL, Bhattacharyya RP, Earl AM, Livny J, Hung DT. Genetic determinants facilitating the evolution of resistance to carbapenem antibiotics. Elife 2021;10:e67310. [PMID: 33871353 DOI: 10.7554/eLife.67310] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Dong J, Feng C, Wang P, Li R, Zou Q. Comparative genomics analysis of Acinetobacter baumannii multi-drug resistant and drug sensitive strains in China. Microbial Pathogenesis 2022;165:105492. [DOI: 10.1016/j.micpath.2022.105492] [Reference Citation Analysis]
12 Wan F, Draz MS, Gu M, Yu W, Ruan Z, Luo Q. Novel Strategy to Combat Antibiotic Resistance: A Sight into the Combination of CRISPR/Cas9 and Nanoparticles. Pharmaceutics 2021;13:352. [PMID: 33800235 DOI: 10.3390/pharmaceutics13030352] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]