BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Klöting N, Berthold S, Kovacs P, Schön MR, Fasshauer M, Ruschke K, Stumvoll M, Blüher M. MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One. 2009;4:e4699. [PMID: 19259271 DOI: 10.1371/journal.pone.0004699] [Cited by in Crossref: 218] [Cited by in F6Publishing: 213] [Article Influence: 18.2] [Reference Citation Analysis]
Number Citing Articles
1 Albracht-Schulte K, Kalupahana NS, Ramalingam L, Wang S, Rahman SM, Robert-McComb J, Moustaid-Moussa N. Omega-3 fatty acids in obesity and metabolic syndrome: a mechanistic update. J Nutr Biochem 2018;58:1-16. [PMID: 29621669 DOI: 10.1016/j.jnutbio.2018.02.012] [Cited by in Crossref: 81] [Cited by in F6Publishing: 74] [Article Influence: 27.0] [Reference Citation Analysis]
2 Parra P, Serra F, Palou A. Expression of adipose microRNAs is sensitive to dietary conjugated linoleic acid treatment in mice. PLoS One 2010;5:e13005. [PMID: 20886002 DOI: 10.1371/journal.pone.0013005] [Cited by in Crossref: 80] [Cited by in F6Publishing: 71] [Article Influence: 7.3] [Reference Citation Analysis]
3 Kunej T, Jevsinek Skok D, Zorc M, Ogrinc A, Michal JJ, Kovac M, Jiang Z. Obesity gene atlas in mammals. J Genomics 2013;1:45-55. [PMID: 25031655 DOI: 10.7150/jgen.3996] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 4.0] [Reference Citation Analysis]
4 Soley L, Falank C, Reagan MR. MicroRNA Transfer Between Bone Marrow Adipose and Multiple Myeloma Cells. Curr Osteoporos Rep 2017;15:162-70. [PMID: 28432594 DOI: 10.1007/s11914-017-0360-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
5 Alexander R, Lodish H, Sun L. MicroRNAs in adipogenesis and as therapeutic targets for obesity. Expert Opin Ther Targets 2011;15:623-36. [PMID: 21355787 DOI: 10.1517/14728222.2011.561317] [Cited by in Crossref: 84] [Cited by in F6Publishing: 82] [Article Influence: 8.4] [Reference Citation Analysis]
6 Eken SM, Jin H, Chernogubova E, Maegdefessel L. Making sense in antisense: therapeutic potential of noncoding RNAs in diabetes-induced vascular dysfunction. J Diabetes Res 2013;2013:834727. [PMID: 24369540 DOI: 10.1155/2013/834727] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
7 Albuquerque D, Stice E, Rodríguez-lópez R, Manco L, Nóbrega C. Current review of genetics of human obesity: from molecular mechanisms to an evolutionary perspective. Mol Genet Genomics 2015;290:1191-221. [DOI: 10.1007/s00438-015-1015-9] [Cited by in Crossref: 122] [Cited by in F6Publishing: 96] [Article Influence: 20.3] [Reference Citation Analysis]
8 Maloyan A, Muralimanoharan S, Huffman S, Cox LA, Nathanielsz PW, Myatt L, Nijland MJ. Identification and comparative analyses of myocardial miRNAs involved in the fetal response to maternal obesity. Physiol Genomics 2013;45:889-900. [PMID: 23922128 DOI: 10.1152/physiolgenomics.00050.2013] [Cited by in Crossref: 50] [Cited by in F6Publishing: 43] [Article Influence: 6.3] [Reference Citation Analysis]
9 Izquierdo AG, Crujeiras AB. Obesity-Related Epigenetic Changes After Bariatric Surgery. Front Endocrinol (Lausanne) 2019;10:232. [PMID: 31040824 DOI: 10.3389/fendo.2019.00232] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
10 McLaughlin T, Schnittger I, Nagy A, Zanley E, Xu Y, Song Y, Nieman K, Tremmel JA, Dey D, Boyd J, Sacks H. Relationship Between Coronary Atheroma, Epicardial Adipose Tissue Inflammation, and Adipocyte Differentiation Across the Human Myocardial Bridge. J Am Heart Assoc 2021;10:e021003. [PMID: 34726081 DOI: 10.1161/JAHA.121.021003] [Reference Citation Analysis]
11 Tran TT, Kahn CR. Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nat Rev Endocrinol 2010;6:195-213. [PMID: 20195269 DOI: 10.1038/nrendo.2010.20] [Cited by in Crossref: 207] [Cited by in F6Publishing: 192] [Article Influence: 18.8] [Reference Citation Analysis]
12 Broekema M, Savage D, Monajemi H, Kalkhoven E. Gene-gene and gene-environment interactions in lipodystrophy: Lessons learned from natural PPARγ mutants. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2019;1864:715-32. [DOI: 10.1016/j.bbalip.2019.02.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
13 Meerson A, Traurig M, Ossowski V, Fleming JM, Mullins M, Baier LJ. Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF-α. Diabetologia 2013;56:1971-9. [PMID: 23756832 DOI: 10.1007/s00125-013-2950-9] [Cited by in Crossref: 117] [Cited by in F6Publishing: 105] [Article Influence: 14.6] [Reference Citation Analysis]
14 Manoel Alves J, Handerson Gomes Teles R, do Valle Gomes Gatto C, Muñoz VR, Regina Cominetti M, Garcia de Oliveira Duarte AC. Mapping Research in the Obesity, Adipose Tissue, and MicroRNA Field: A Bibliometric Analysis. Cells 2019;8:E1581. [PMID: 31817583 DOI: 10.3390/cells8121581] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Deiuliis JA. MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. Int J Obes (Lond) 2016;40:88-101. [PMID: 26311337 DOI: 10.1038/ijo.2015.170] [Cited by in Crossref: 180] [Cited by in F6Publishing: 169] [Article Influence: 30.0] [Reference Citation Analysis]
16 Xie H, Sun L, Lodish HF. Targeting microRNAs in obesity. Expert Opin Ther Targets 2009;13:1227-38. [PMID: 19650761 DOI: 10.1517/14728220903190707] [Cited by in Crossref: 75] [Cited by in F6Publishing: 65] [Article Influence: 6.3] [Reference Citation Analysis]
17 Wu X, Zou X, Chang Q, Zhang Y, Li Y, Zhang L, Huang J, Liang B. The evolutionary pattern and the regulation of stearoyl-CoA desaturase genes. Biomed Res Int 2013;2013:856521. [PMID: 24312911 DOI: 10.1155/2013/856521] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
18 Yu J, Kong X, Liu J, Lv Y, Sheng Y, Lv S, Di W, Wang C, Zhang F, Ding G. Expression profiling of PPARγ-regulated microRNAs in human subcutaneous and visceral adipogenesis in both genders. Endocrinology 2014;155:2155-65. [PMID: 24666251 DOI: 10.1210/en.2013-2105] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 4.9] [Reference Citation Analysis]
19 Tryggestad JB, Teague AM, Sparling DP, Jiang S, Chernausek SD. Macrophage-Derived microRNA-155 Increases in Obesity and Influences Adipocyte Metabolism by Targeting Peroxisome Proliferator-Activated Receptor Gamma. Obesity (Silver Spring). 2019;27:1856-1864. [PMID: 31531958 DOI: 10.1002/oby.22616] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
20 Campitelli M, Desiderio A, Cacace G, Nigro C, Prevenzano I, Leone A, de Simone S, Campiglia P, Formisano P, Raciti GA, Beguinot F, Miele C. Citrus aurantium L. Dry Extracts Ameliorate Adipocyte Differentiation of 3T3-L1 Cells Exposed to TNFα by Down-Regulating miR-155 Expression. Nutrients 2020;12:E1587. [PMID: 32481686 DOI: 10.3390/nu12061587] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Price NL, Holtrup B, Kwei SL, Wabitsch M, Rodeheffer M, Bianchini L, Suárez Y, Fernández-Hernando C. SREBP-1c/MicroRNA 33b Genomic Loci Control Adipocyte Differentiation. Mol Cell Biol 2016;36:1180-93. [PMID: 26830228 DOI: 10.1128/MCB.00745-15] [Cited by in Crossref: 34] [Cited by in F6Publishing: 19] [Article Influence: 6.8] [Reference Citation Analysis]
22 Choi WH, Ahn J, Um MY, Jung CH, Jung SE, Ha TY. Circulating microRNA expression profiling in young obese Korean women. Nutr Res Pract 2020;14:412-22. [PMID: 32765820 DOI: 10.4162/nrp.2020.14.4.412] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Ding Y, Sun X, Shan PF. MicroRNAs and Cardiovascular Disease in Diabetes Mellitus. Biomed Res Int 2017;2017:4080364. [PMID: 28299324 DOI: 10.1155/2017/4080364] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 8.5] [Reference Citation Analysis]
24 Sparks LM, Goodpaster BH, Bergman BC. The Metabolic Significance of Intermuscular Adipose Tissue: Is IMAT a Friend or a Foe to Metabolic Health? Diabetes 2021;70:2457-67. [PMID: 34711670 DOI: 10.2337/dbi19-0006] [Reference Citation Analysis]
25 Kwok KH, Lam KS, Xu A. Heterogeneity of white adipose tissue: molecular basis and clinical implications. Exp Mol Med 2016;48:e215. [PMID: 26964831 DOI: 10.1038/emm.2016.5] [Cited by in Crossref: 73] [Cited by in F6Publishing: 73] [Article Influence: 14.6] [Reference Citation Analysis]
26 Zaiou M, El Amri H, Bakillah A. The clinical potential of adipogenesis and obesity-related microRNAs. Nutr Metab Cardiovasc Dis 2018;28:91-111. [PMID: 29170059 DOI: 10.1016/j.numecd.2017.10.015] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 11.0] [Reference Citation Analysis]
27 Kantharidis P, Wang B, Carew RM, Lan HY. Diabetes complications: the microRNA perspective. Diabetes 2011;60:1832-7. [PMID: 21709278 DOI: 10.2337/db11-0082] [Cited by in Crossref: 192] [Cited by in F6Publishing: 189] [Article Influence: 19.2] [Reference Citation Analysis]
28 Matsuda A, Yan IK, Foye C, Parasramka M, Patel T. MicroRNAs as paracrine signaling mediators in cancers and metabolic diseases. Best Pract Res Clin Endocrinol Metab 2016;30:577-90. [PMID: 27923452 DOI: 10.1016/j.beem.2016.07.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
29 Victoria B, Nunez Lopez YO, Masternak MM. MicroRNAs and the metabolic hallmarks of aging. Mol Cell Endocrinol 2017;455:131-47. [PMID: 28062199 DOI: 10.1016/j.mce.2016.12.021] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 8.3] [Reference Citation Analysis]
30 Son YH, Ka S, Kim AY, Kim JB. Regulation of Adipocyte Differentiation via MicroRNAs. Endocrinol Metab (Seoul) 2014;29:122-35. [PMID: 25031884 DOI: 10.3803/EnM.2014.29.2.122] [Cited by in Crossref: 54] [Cited by in F6Publishing: 28] [Article Influence: 7.7] [Reference Citation Analysis]
31 Landrier JF, Derghal A, Mounien L. MicroRNAs in Obesity and Related Metabolic Disorders. Cells. 2019;8. [PMID: 31404962 DOI: 10.3390/cells8080859] [Cited by in Crossref: 49] [Cited by in F6Publishing: 47] [Article Influence: 24.5] [Reference Citation Analysis]
32 Virtue A, Johnson C, Lopez-Pastraña J, Shao Y, Fu H, Li X, Li YF, Yin Y, Mai J, Rizzo V, Tordoff M, Bagi Z, Shan H, Jiang X, Wang H, Yang XF. MicroRNA-155 Deficiency Leads to Decreased Atherosclerosis, Increased White Adipose Tissue Obesity, and Non-alcoholic Fatty Liver Disease: A NOVEL MOUSE MODEL OF OBESITY PARADOX. J Biol Chem 2017;292:1267-87. [PMID: 27856635 DOI: 10.1074/jbc.M116.739839] [Cited by in Crossref: 54] [Cited by in F6Publishing: 40] [Article Influence: 10.8] [Reference Citation Analysis]
33 Parts L, Hedman ÅK, Keildson S, Knights AJ, Abreu-Goodger C, van de Bunt M, Guerra-Assunção JA, Bartonicek N, van Dongen S, Mägi R, Nisbet J, Barrett A, Rantalainen M, Nica AC, Quail MA, Small KS, Glass D, Enright AJ, Winn J, Deloukas P, Dermitzakis ET, McCarthy MI, Spector TD, Durbin R, Lindgren CM; MuTHER Consortium. Extent, causes, and consequences of small RNA expression variation in human adipose tissue. PLoS Genet 2012;8:e1002704. [PMID: 22589741 DOI: 10.1371/journal.pgen.1002704] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 4.1] [Reference Citation Analysis]
34 Liu L, Li Q, Xiao X, Wu C, Gao R, Peng C, Li D, Zhang W, Du T, Wang Y, Yang S, Zhen Q, Ge Q. miR-1934, downregulated in obesity, protects against low-grade inflammation in adipocytes. Mol Cell Endocrinol 2016;428:109-17. [PMID: 27013351 DOI: 10.1016/j.mce.2016.03.026] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
35 Du J, Cheng X, Shen L, Tan Z, Luo J, Wu X, Liu C, Yang Q, Jiang Y, Tang G, Li X, Zhang S, Zhu L. Methylation of miR-145a-5p promoter mediates adipocytes differentiation. Biochem Biophys Res Commun 2016;475:140-8. [PMID: 27179777 DOI: 10.1016/j.bbrc.2016.05.057] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
36 Corrêa TA, Rogero MM. Polyphenols regulating microRNAs and inflammation biomarkers in obesity. Nutrition 2019;59:150-7. [PMID: 30471527 DOI: 10.1016/j.nut.2018.08.010] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 9.7] [Reference Citation Analysis]
37 Raza SHA, Liu GY, Zhou L, Gui LS, Khan R, Jinmeng Y, Chugang M, Schreurs NM, Ji R, Zan L. Detection of polymorphisms in the bovine leptin receptor gene affects fat deposition in two Chinese beef cattle breeds. Gene 2020;758:144957. [PMID: 32683081 DOI: 10.1016/j.gene.2020.144957] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
38 Chen YH, Heneidi S, Lee JM, Layman LC, Stepp DW, Gamboa GM, Chen BS, Chazenbalk G, Azziz R. miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes. 2013;62:2278-2286. [PMID: 23493574 DOI: 10.2337/db12-0963] [Cited by in Crossref: 144] [Cited by in F6Publishing: 140] [Article Influence: 18.0] [Reference Citation Analysis]
39 Xu X, Dong Z, Li Y, Yang Y, Yuan Z, Qu X, Kong B. The upregulation of signal transducer and activator of transcription 5-dependent microRNA-182 and microRNA-96 promotes ovarian cancer cell proliferation by targeting forkhead box O3 upon leptin stimulation. Int J Biochem Cell Biol 2013;45:536-45. [PMID: 23262295 DOI: 10.1016/j.biocel.2012.12.010] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 2.3] [Reference Citation Analysis]
40 Mir BA, Reyer H, Komolka K, Ponsuksili S, Kühn C, Maak S. Differentially Expressed miRNA-Gene Targets Related to Intramuscular Fat in Musculus Longissimus Dorsi of Charolais × Holstein F2-Crossbred Bulls. Genes (Basel) 2020;11:E700. [PMID: 32630492 DOI: 10.3390/genes11060700] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
41 Levi B, James AW, Glotzbach JP, Wan DC, Commons GW, Longaker MT. Depot-Specific Variation in the Osteogenic and Adipogenic Potential of Human Adipose-Derived Stromal Cells: . Plastic and Reconstructive Surgery 2010;126:822-34. [DOI: 10.1097/prs.0b013e3181e5f892] [Cited by in Crossref: 46] [Cited by in F6Publishing: 35] [Article Influence: 4.2] [Reference Citation Analysis]
42 Zhang D, Lu K, Dong Z, Jiang G, Xu W, Liu W. The effect of exposure to a high-fat diet on microRNA expression in the liver of blunt snout bream (Megalobrama amblycephala). PLoS One 2014;9:e96132. [PMID: 24788396 DOI: 10.1371/journal.pone.0096132] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 4.4] [Reference Citation Analysis]
43 Del Carmen Martínez-Jiménez V, Méndez-Mancilla A, Patricia Portales-Pérez D. miRNAs in nutrition, obesity, and cancer: The biology of miRNAs in metabolic disorders and its relationship with cancer development. Mol Nutr Food Res 2018;62. [PMID: 28594107 DOI: 10.1002/mnfr.201600994] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
44 Masotti A, Baldassarre A, Fabrizi M, Olivero G, Loreti MC, Giammaria P, Veronelli P, Graziani MP, Manco M. Oral glucose tolerance test unravels circulating miRNAs associated with insulin resistance in obese preschoolers: miRNAs and insulin resistance. Pediatric Obesity 2017;12:229-38. [DOI: 10.1111/ijpo.12133] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
45 Wang Q, Zhan Y, Ren N, Wang Z, Zhang Q, Wu S, Li H. Paraquat and MPTP alter microRNA expression profiles, and downregulated expression of miR-17-5p contributes to PQ-induced dopaminergic neurodegeneration. J Appl Toxicol 2018;38:665-77. [PMID: 29250806 DOI: 10.1002/jat.3571] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 5.8] [Reference Citation Analysis]
46 Jankauskas SS, Gambardella J, Sardu C, Lombardi A, Santulli G. Functional Role of miR-155 in the Pathogenesis of Diabetes Mellitus and Its Complications. Noncoding RNA 2021;7:39. [PMID: 34287359 DOI: 10.3390/ncrna7030039] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
47 Briones-Espinoza MJ, Cortés-García JD, Vega-Cárdenas M, Uresti-Rivera EU, Gómez-Otero A, López-López N, Mejía-Torres M, Portales-Pérez DP. Decreased levels and activity of Sirt1 are modulated by increased miR-34a expression in adipose tissue mononuclear cells from subjects with overweight and obesity: A pilot study. Diabetes Metab Syndr 2020;14:1347-54. [PMID: 32755834 DOI: 10.1016/j.dsx.2020.07.014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
48 Lam QL, Wang S, Ko OK, Kincade PW, Lu L. Leptin signaling maintains B-cell homeostasis via induction of Bcl-2 and Cyclin D1. Proc Natl Acad Sci U S A 2010;107:13812-7. [PMID: 20643953 DOI: 10.1073/pnas.1004185107] [Cited by in Crossref: 66] [Cited by in F6Publishing: 60] [Article Influence: 6.0] [Reference Citation Analysis]
49 Capobianco V, Nardelli C, Ferrigno M, Iaffaldano L, Pilone V, Forestieri P, Zambrano N, Sacchetti L. miRNA and protein expression profiles of visceral adipose tissue reveal miR-141/YWHAG and miR-520e/RAB11A as two potential miRNA/protein target pairs associated with severe obesity. J Proteome Res 2012;11:3358-69. [PMID: 22537031 DOI: 10.1021/pr300152z] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 4.7] [Reference Citation Analysis]
50 Heneghan HM, Miller N, Kerin MJ. Role of microRNAs in obesity and the metabolic syndrome. Obes Rev. 2010;11:354-361. [PMID: 19793375 DOI: 10.1111/j.1467-789x.2009.00659.x] [Cited by in Crossref: 140] [Cited by in F6Publishing: 70] [Article Influence: 11.7] [Reference Citation Analysis]
51 Chen Y, Zhao Y, Jin W, Li Y, Zhang Y, Ma X, Sun G, Han R, Tian Y, Li H, Kang X, Li G. MicroRNAs and their regulatory networks in Chinese Gushi chicken abdominal adipose tissue during postnatal late development. BMC Genomics 2019;20:778. [PMID: 31653195 DOI: 10.1186/s12864-019-6094-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
52 Müller G. Microvesicles/exosomes as potential novel biomarkers of metabolic diseases. Diabetes Metab Syndr Obes 2012;5:247-82. [PMID: 22924003 DOI: 10.2147/DMSO.S32923] [Cited by in Crossref: 97] [Cited by in F6Publishing: 46] [Article Influence: 10.8] [Reference Citation Analysis]
53 Dhasarathy A, Roemmich JN, Claycombe KJ. Influence of maternal obesity, diet and exercise on epigenetic regulation of adipocytes. Mol Aspects Med 2017;54:37-49. [PMID: 27825817 DOI: 10.1016/j.mam.2016.10.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.2] [Reference Citation Analysis]
54 Gharib SA, Khalyfa A, Abdelkarim A, Bhushan B, Gozal D. Integrative miRNA-mRNA profiling of adipose tissue unravels transcriptional circuits induced by sleep fragmentation. PLoS One 2012;7:e37669. [PMID: 22629440 DOI: 10.1371/journal.pone.0037669] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 3.9] [Reference Citation Analysis]
55 Lin Z, Li X, Zhan X, Sun L, Gao J, Cao Y, Qiu H. Construction of competitive endogenous RNA network reveals regulatory role of long non-coding RNAs in type 2 diabetes mellitus. J Cell Mol Med 2017;21:3204-13. [PMID: 28643459 DOI: 10.1111/jcmm.13224] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 6.8] [Reference Citation Analysis]
56 Cheung L, Fisher RM, Kuzmina N, Li D, Li X, Werngren O, Blomqvist L, Ståhle M, Landén NX. Psoriasis Skin Inflammation-Induced microRNA-26b Targets NCEH1 in Underlying Subcutaneous Adipose Tissue. Journal of Investigative Dermatology 2016;136:640-8. [DOI: 10.1016/j.jid.2015.12.008] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 3.6] [Reference Citation Analysis]
57 Tait S, Baldassarre A, Masotti A, Calura E, Martini P, Varì R, Scazzocchio B, Gessani S, Del Cornò M. Integrated Transcriptome Analysis of Human Visceral Adipocytes Unravels Dysregulated microRNA-Long Non-coding RNA-mRNA Networks in Obesity and Colorectal Cancer. Front Oncol 2020;10:1089. [PMID: 32714872 DOI: 10.3389/fonc.2020.01089] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
58 Ortega FJ, Moreno-Navarrete JM, Pardo G, Sabater M, Hummel M, Ferrer A, Rodriguez-Hermosa JI, Ruiz B, Ricart W, Peral B, Fernández-Real JM. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS One 2010;5:e9022. [PMID: 20126310 DOI: 10.1371/journal.pone.0009022] [Cited by in Crossref: 251] [Cited by in F6Publishing: 241] [Article Influence: 22.8] [Reference Citation Analysis]
59 Vailati-Riboni M, Farina G, Batistel F, Heiser A, Mitchell MD, Crookenden MA, Walker CG, Kay JK, Meier S, Roche JR, Loor JJ. Far-off and close-up dry matter intake modulate indicators of immunometabolic adaptations to lactation in subcutaneous adipose tissue of pasture-based transition dairy cows. J Dairy Sci 2017;100:2334-50. [PMID: 28088407 DOI: 10.3168/jds.2016-11790] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 4.8] [Reference Citation Analysis]
60 Chen L, Song J, Cui J, Hou J, Zheng X, Li C, Liu L. microRNAs regulate adipocyte differentiation: microRNAs regulate adipocyte differentiation. Cell Biol Int 2013;37:533-46. [DOI: 10.1002/cbin.10063] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 5.0] [Reference Citation Analysis]
61 Hilton C, Karpe F, Pinnick KE. Role of developmental transcription factors in white, brown and beige adipose tissues. Biochim Biophys Acta 2015;1851:686-96. [PMID: 25668679 DOI: 10.1016/j.bbalip.2015.02.003] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 5.7] [Reference Citation Analysis]
62 Gerin I, Bommer GT, McCoin CS, Sousa KM, Krishnan V, MacDougald OA. Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis. Am J Physiol Endocrinol Metab 2010;299:E198-206. [PMID: 20484008 DOI: 10.1152/ajpendo.00179.2010] [Cited by in Crossref: 163] [Cited by in F6Publishing: 169] [Article Influence: 14.8] [Reference Citation Analysis]
63 Gasparotto AS, Borges DO, Sassi MGM, Milani A, Rech DL, Terres M, Ely PB, Ramos MJ, Meihnardt NG, Mattevi VS. Differential expression of miRNAs related to angiogenesis and adipogenesis in subcutaneous fat of obese and nonobese women. Mol Biol Rep 2019;46:965-73. [DOI: 10.1007/s11033-018-4553-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
64 Liu X, Gong J, Wang L, Hou X, Gao H, Yan H, Zhao F, Zhang L, Wang L. Genome-Wide Profiling of the Microrna Transcriptome Regulatory Network to Identify Putative Candidate Genes Associated with Backfat Deposition in Pigs. Animals (Basel) 2019;9:E313. [PMID: 31159441 DOI: 10.3390/ani9060313] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
65 Karolina DS, Armugam A, Sepramaniam S, Jeyaseelan K. miRNAs and diabetes mellitus. Expert Review of Endocrinology & Metabolism 2014;7:281-300. [DOI: 10.1586/eem.12.21] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.9] [Reference Citation Analysis]
66 Das S, Mohamed IN, Teoh SL, Thevaraj T, Ku Ahmad Nasir KN, Zawawi A, Salim HH, Zhou DK. Micro-RNA and the Features of Metabolic Syndrome: A Narrative Review. MRMC 2020;20:626-35. [DOI: 10.2174/1389557520666200122124445] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
67 Krieg L, Didt K, Karkossa I, Bernhart SH, Kehr S, Subramanian N, Lindhorst A, Schaudinn A, Tabei S, Keller M, Stumvoll M, Dietrich A, von Bergen M, Stadler PF, Laurencikiene J, Krüger M, Blüher M, Gericke M, Schubert K, Kovacs P, Chakaroun R, Massier L. Multiomics reveal unique signatures of human epiploic adipose tissue related to systemic insulin resistance. Gut 2021:gutjnl-2021-324603. [PMID: 34598978 DOI: 10.1136/gutjnl-2021-324603] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Wei W, Sun W, Han H, Chu W, Zhang L, Chen J. miR-130a regulates differential lipid accumulation between intramuscular and subcutaneous adipose tissues of pigs via suppressing PPARG expression. Gene 2017;636:23-9. [DOI: 10.1016/j.gene.2017.08.036] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
69 Rohde K, Klös M, Hopp L, Liu X, Keller M, Stumvoll M, Dietrich A, Schön MR, Gärtner D, Lohmann T, Dreßler M, Kovacs P, Binder H, Blüher M, Böttcher Y. IRS1 DNA promoter methylation and expression in human adipose tissue are related to fat distribution and metabolic traits. Sci Rep 2017;7:12369. [PMID: 28959056 DOI: 10.1038/s41598-017-12393-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
70 Neville MJ, Collins JM, Gloyn AL, McCarthy MI, Karpe F. Comprehensive human adipose tissue mRNA and microRNA endogenous control selection for quantitative real-time-PCR normalization. Obesity (Silver Spring) 2011;19:888-92. [PMID: 20948521 DOI: 10.1038/oby.2010.257] [Cited by in Crossref: 85] [Cited by in F6Publishing: 81] [Article Influence: 7.7] [Reference Citation Analysis]
71 Nayor M, Shah SH, Murthy V, Shah RV. Molecular Aspects of Lifestyle and Environmental Effects in Patients With Diabetes: JACC Focus Seminar. J Am Coll Cardiol 2021;78:481-95. [PMID: 34325838 DOI: 10.1016/j.jacc.2021.02.070] [Reference Citation Analysis]
72 Mazaki-Tovi S, Tarca AL, Vaisbuch E, Kusanovic JP, Than NG, Chaiworapongsa T, Dong Z, Hassan SS, Romero R. Characterization of visceral and subcutaneous adipose tissue transcriptome in pregnant women with and without spontaneous labor at term: implication of alternative splicing in the metabolic adaptations of adipose tissue to parturition. J Perinat Med 2016;44:813-35. [PMID: 26994472 DOI: 10.1515/jpm-2015-0259] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
73 Sharma H, Estep M, Birerdinc A, Afendy A, Moazzez A, Elariny H, Goodman Z, Chandhoke V, Baranova A, Younossi ZM. Expression of genes for microRNA-processing enzymes is altered in advanced non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2013;28:1410-1415. [PMID: 23663110 DOI: 10.1111/jgh.12268] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 4.0] [Reference Citation Analysis]
74 Rome S. Are extracellular microRNAs involved in type 2 diabetes and related pathologies? Clin Biochem. 2013;46:937-945. [PMID: 23499584 DOI: 10.1016/j.clinbiochem.2013.02.018] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 3.5] [Reference Citation Analysis]
75 Szabo G, Csak T. Role of MicroRNAs in NAFLD/NASH. Dig Dis Sci. 2016;61:1314-1324. [PMID: 26769057 DOI: 10.1007/s10620-015-4002-4] [Cited by in Crossref: 50] [Cited by in F6Publishing: 43] [Article Influence: 10.0] [Reference Citation Analysis]
76 Milagro FI, Miranda J, Portillo MP, Fernandez-Quintela A, Campión J, Martínez JA. High-throughput sequencing of microRNAs in peripheral blood mononuclear cells: identification of potential weight loss biomarkers. PLoS One 2013;8:e54319. [PMID: 23335998 DOI: 10.1371/journal.pone.0054319] [Cited by in Crossref: 54] [Cited by in F6Publishing: 47] [Article Influence: 6.8] [Reference Citation Analysis]
77 Quintanilha BJ, Reis BZ, Duarte GBS, Cozzolino SMF, Rogero MM. Nutrimiromics: Role of microRNAs and Nutrition in Modulating Inflammation and Chronic Diseases. Nutrients 2017;9:E1168. [PMID: 29077020 DOI: 10.3390/nu9111168] [Cited by in Crossref: 55] [Cited by in F6Publishing: 47] [Article Influence: 13.8] [Reference Citation Analysis]
78 Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 2012;13:239-250. [PMID: 22436747 DOI: 10.1038/nrm3328] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
79 Ghaffari N, Parry S, Elovitz MA, Durnwald CP. The Effect of an Obesogenic Maternal Environment on Expression of Fetal Umbilical Cord Blood miRNA. Reprod Sci 2015;22:860-4. [PMID: 25544675 DOI: 10.1177/1933719114565032] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
80 Hodges WM, O'Brien F, Fulzele S, Hamrick MW. Function of microRNAs in the Osteogenic Differentiation and Therapeutic Application of Adipose-Derived Stem Cells (ASCs). Int J Mol Sci 2017;18:E2597. [PMID: 29207475 DOI: 10.3390/ijms18122597] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
81 Bork-Jensen J, Thuesen AC, Bang-Bertelsen CH, Grunnet LG, Pociot F, Beck-Nielsen H, Ozanne SE, Poulsen P, Vaag A. Genetic versus Non-Genetic Regulation of miR-103, miR-143 and miR-483-3p Expression in Adipose Tissue and Their Metabolic Implications-A Twin Study. Genes (Basel) 2014;5:508-17. [PMID: 25010252 DOI: 10.3390/genes5030508] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
82 Switonski M, Stachowiak M, Cieslak J, Bartz M, Grzes M. Genetics of fat tissue accumulation in pigs: a comparative approach. J Appl Genet 2010;51:153-68. [DOI: 10.1007/bf03195724] [Cited by in Crossref: 71] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
83 Hendy OM, Rabie H, El Fouly A, Abdel-Samiee M, Abdelmotelb N, Elshormilisy AA, Allam M, Ali ST, Bahaa El-Deen NM, Abdelsattar S, Mohamed SM. The Circulating Micro-RNAs (-122, -34a and -99a) as Predictive Biomarkers for Non-Alcoholic Fatty Liver Diseases. Diabetes Metab Syndr Obes 2019;12:2715-23. [PMID: 31908512 DOI: 10.2147/DMSO.S231321] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
84 Heneghan HM, Miller N, McAnena OJ, O’Brien T, Kerin MJ. Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers. J Clin Endocrinol Metab. 2011;96:E846-E850. [PMID: 21367929 DOI: 10.1210/jc.2010-2701] [Cited by in Crossref: 142] [Cited by in F6Publishing: 130] [Article Influence: 14.2] [Reference Citation Analysis]
85 Karolina DS, Armugam A, Tavintharan S, Wong MT, Lim SC, Sum CF, Jeyaseelan K. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One. 2011;6:e22839. [PMID: 21829658 DOI: 10.1371/journal.pone.0022839] [Cited by in Crossref: 217] [Cited by in F6Publishing: 234] [Article Influence: 21.7] [Reference Citation Analysis]
86 Massaro JD, Polli CD, Costa E Silva M, Alves CC, Passos GA, Sakamoto-Hojo ET, Rodrigues de Holanda Miranda W, Bispo Cezar NJ, Rassi DM, Crispim F, Dib SA, Foss-Freitas MC, Pinheiro DG, Donadi EA. Post-transcriptional markers associated with clinical complications in Type 1 and Type 2 diabetes mellitus. Mol Cell Endocrinol 2019;490:1-14. [PMID: 30926524 DOI: 10.1016/j.mce.2019.03.008] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 10.5] [Reference Citation Analysis]
87 Ling H, Li X, Yao CH, Hu B, Liao D, Feng S, Wen G, Zhang L. The physiological and pathophysiological roles of adipocyte miRNAs. Biochem Cell Biol 2013;91:195-202. [DOI: 10.1139/bcb-2012-0053] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
88 Jin W, Dodson MV, Moore SS, Basarab JA, Guan LL. Characterization of microRNA expression in bovine adipose tissues: a potential regulatory mechanism of subcutaneous adipose tissue development. BMC Mol Biol 2010;11:29. [PMID: 20423511 DOI: 10.1186/1471-2199-11-29] [Cited by in Crossref: 69] [Cited by in F6Publishing: 72] [Article Influence: 6.3] [Reference Citation Analysis]
89 Moreno-navarrete JM, Fernández-real JM. Adipocyte Differentiation. In: Symonds ME, editor. Adipose Tissue Biology. Cham: Springer International Publishing; 2017. pp. 69-90. [DOI: 10.1007/978-3-319-52031-5_3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
90 Assmann TS, Milagro FI, Martínez JA. Crosstalk between microRNAs, the putative target genes and the lncRNA network in metabolic diseases. Mol Med Rep 2019;20:3543-54. [PMID: 31485667 DOI: 10.3892/mmr.2019.10595] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
91 López P, Castro A, Flórez M, Miranda K, Aranda P, Sánchez-González C, Llopis J, Arredondo M. miR-155 and miR-122 Expression of Spermatozoa in Obese Subjects. Front Genet 2018;9:175. [PMID: 29896216 DOI: 10.3389/fgene.2018.00175] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
92 Dervishi E, Blanco M, Rodríguez-Sánchez JA, Sanz A, Calvo JH, Casasús I. Milk yield and genomewide expression profiling in the mammary gland of beef primiparous cows in response to the dietary management during the pre- and postweaning periods. J Anim Sci 2017;95:4274-87. [PMID: 29108071 DOI: 10.2527/jas2017.1736] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
93 Lin X, Jia J, Du T, Li W, Wang X, Wei J, Lin X, Zeng H, Yao L, Chen X. Overexpression of miR-155 in the liver of transgenic mice alters the expression profiling of hepatic genes associated with lipid metabolism. PLoS One. 2015;10:e0118417. [PMID: 25799309 DOI: 10.1371/journal.pone.0118417] [Cited by in Crossref: 34] [Cited by in F6Publishing: 40] [Article Influence: 5.7] [Reference Citation Analysis]
94 Xu G, Ji C, Shi C, Fu H, Zhu L, Zhu L, Xu L, Chen L, Feng Y, Zhao Y, Guo X. Modulation of hsa-miR-26b levels following adipokine stimulation. Mol Biol Rep 2013;40:3577-82. [PMID: 23275201 DOI: 10.1007/s11033-012-2431-0] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
95 Fain JN. Release of inflammatory mediators by human adipose tissue is enhanced in obesity and primarily by the nonfat cells: a review. Mediators Inflamm. 2010;2010:513948. [PMID: 20508843 DOI: 10.1155/2010/513948] [Cited by in Crossref: 132] [Cited by in F6Publishing: 142] [Article Influence: 12.0] [Reference Citation Analysis]
96 Cruz KJC, de Oliveira ARS, Morais JBS, Severo JS, Marreiro, Phd DDN. Role of microRNAs on adipogenesis, chronic low-grade inflammation, and insulin resistance in obesity. Nutrition 2017;35:28-35. [DOI: 10.1016/j.nut.2016.10.003] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 6.5] [Reference Citation Analysis]
97 Miller AM, Gilchrist DS, Nijjar J, Araldi E, Ramirez CM, Lavery CA, Fernández-Hernando C, McInnes IB, Kurowska-Stolarska M. MiR-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice. PLoS One. 2013;8:e72324. [PMID: 23991091 DOI: 10.1371/journal.pone.0072324] [Cited by in Crossref: 83] [Cited by in F6Publishing: 84] [Article Influence: 10.4] [Reference Citation Analysis]
98 Wu Y, Zhou S, Smas CM. Downregulated expression of the secreted glycoprotein follistatin-like 1 (Fstl1) is a robust hallmark of preadipocyte to adipocyte conversion. Mech Dev 2010;127:183-202. [PMID: 20043993 DOI: 10.1016/j.mod.2009.12.003] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 2.8] [Reference Citation Analysis]
99 Chen Y, Siegel F, Kipschull S, Haas B, Fröhlich H, Meister G, Pfeifer A. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat Commun 2013;4:1769. [PMID: 23612310 DOI: 10.1038/ncomms2742] [Cited by in Crossref: 179] [Cited by in F6Publishing: 179] [Article Influence: 22.4] [Reference Citation Analysis]
100 Zhou JY, Li L. MicroRNAs are key regulators of brown adipogenesis. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2014;1841:1590-5. [DOI: 10.1016/j.bbalip.2014.08.009] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
101 Wang H, Zheng Y, Wang G, Li H. Identification of microRNA and bioinformatics target gene analysis in beef cattle intramuscular fat and subcutaneous fat. Mol Biosyst 2013;9:2154-62. [PMID: 23728155 DOI: 10.1039/c3mb70084d] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 4.6] [Reference Citation Analysis]
102 Musri MM, Gomis R, Párrizas M. A chromatin perspective of adipogenesis. Organogenesis 2010;6:15-23. [PMID: 20592861 DOI: 10.4161/org.6.1.10226] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 2.8] [Reference Citation Analysis]
103 Gaffo E, Zambonelli P, Bisognin A, Bortoluzzi S, Davoli R. miRNome of Italian Large White pig subcutaneous fat tissue: new miRNAs, isomiRs and moRNAs. Anim Genet 2014;45:685-98. [PMID: 25039998 DOI: 10.1111/age.12192] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
104 Li G, Li Y, Li X, Ning X, Li M, Yang G. MicroRNA identity and abundance in developing swine adipose tissue as determined by Solexa sequencing. J Cell Biochem 2011;112:1318-28. [PMID: 21312241 DOI: 10.1002/jcb.23045] [Cited by in Crossref: 93] [Cited by in F6Publishing: 92] [Article Influence: 9.3] [Reference Citation Analysis]
105 Pan Y, Hui X, Hoo RLC, Ye D, Chan CYC, Feng T, Wang Y, Lam KSL, Xu A. Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J Clin Invest 2019;129:834-49. [PMID: 30667374 DOI: 10.1172/JCI123069] [Cited by in Crossref: 94] [Cited by in F6Publishing: 71] [Article Influence: 47.0] [Reference Citation Analysis]
106 Kristensen MM, Davidsen PK, Vigelsø A, Hansen CN, Jensen LJ, Jessen N, Bruun JM, Dela F, Helge JW. miRNAs in human subcutaneous adipose tissue: Effects of weight loss induced by hypocaloric diet and exercise. Obesity (Silver Spring) 2017;25:572-80. [PMID: 28158925 DOI: 10.1002/oby.21765] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
107 Ouni M, Schürmann A. Epigenetic contribution to obesity. Mamm Genome 2020;31:134-45. [PMID: 32279091 DOI: 10.1007/s00335-020-09835-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
108 Shantikumar S, Caporali A, Emanueli C. Role of microRNAs in diabetes and its cardiovascular complications. Cardiovasc Res. 2012;93:583-593. [PMID: 22065734 DOI: 10.1093/cvr/cvr300] [Cited by in Crossref: 164] [Cited by in F6Publishing: 156] [Article Influence: 16.4] [Reference Citation Analysis]
109 Rantalainen M, Herrera BM, Nicholson G, Bowden R, Wills QF, Min JL, Neville MJ, Barrett A, Allen M, Rayner NW, Fleckner J, McCarthy MI, Zondervan KT, Karpe F, Holmes CC, Lindgren CM. MicroRNA expression in abdominal and gluteal adipose tissue is associated with mRNA expression levels and partly genetically driven. PLoS One 2011;6:e27338. [PMID: 22102887 DOI: 10.1371/journal.pone.0027338] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 3.8] [Reference Citation Analysis]
110 Khalilpourfarshbafi M, Gholami K, Murugan DD, Abdul Sattar MZ, Abdullah NA. Differential effects of dietary flavonoids on adipogenesis. Eur J Nutr 2019;58:5-25. [PMID: 29541908 DOI: 10.1007/s00394-018-1663-8] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 11.3] [Reference Citation Analysis]
111 Zhang YP, Zhang YY, Duan DD. From Genome-Wide Association Study to Phenome-Wide Association Study: New Paradigms in Obesity Research. Prog Mol Biol Transl Sci 2016;140:185-231. [PMID: 27288830 DOI: 10.1016/bs.pmbts.2016.02.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
112 Engin AB. MicroRNA and Adipogenesis. In: Engin AB, Engin A, editors. Obesity and Lipotoxicity. Cham: Springer International Publishing; 2017. pp. 489-509. [DOI: 10.1007/978-3-319-48382-5_21] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 7.8] [Reference Citation Analysis]
113 Viesti A Collares R, Salgado W Jr, Pretti da Cunha Tirapelli D, dos Santos JS. The expression of LEP, LEPR, IGF1 and IL10 in obesity and the relationship with microRNAs. PLoS One 2014;9:e93512. [PMID: 24690978 DOI: 10.1371/journal.pone.0093512] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 2.3] [Reference Citation Analysis]
114 Miranda K, Yang X, Bam M, Murphy EA, Nagarkatti PS, Nagarkatti M. MicroRNA-30 modulates metabolic inflammation by regulating Notch signaling in adipose tissue macrophages. Int J Obes (Lond) 2018;42:1140-50. [PMID: 29899524 DOI: 10.1038/s41366-018-0114-1] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 14.3] [Reference Citation Analysis]
115 Estep M, Armistead D, Hossain N, Elarainy H, Goodman Z, Baranova A, Chandhoke V, Younossi ZM. Differential expression of miRNAs in the visceral adipose tissue of patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2010;32:487-497. [PMID: 20497147 DOI: 10.1111/j.1365-2036.2010.04366.x] [Cited by in Crossref: 92] [Cited by in F6Publishing: 88] [Article Influence: 8.4] [Reference Citation Analysis]
116 Lorente-Cebrián S, González-Muniesa P, Milagro FI, Martínez JA. MicroRNAs and other non-coding RNAs in adipose tissue and obesity: emerging roles as biomarkers and therapeutic targets. Clin Sci (Lond) 2019;133:23-40. [PMID: 30606812 DOI: 10.1042/CS20180890] [Cited by in Crossref: 45] [Cited by in F6Publishing: 33] [Article Influence: 22.5] [Reference Citation Analysis]
117 Gholami M, Larijani B, Zahedi Z, Mahmoudian F, Bahrami S, Omran SP, Saadatian Z, Hasani-Ranjbar S, Taslimi R, Bastami M, Amoli MM. Inflammation related miRNAs as an important player between obesity and cancers. J Diabetes Metab Disord 2019;18:675-92. [PMID: 31890692 DOI: 10.1007/s40200-019-00459-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
118 Song G, Xu G, Ji C, Shi C, Shen Y, Chen L, Zhu L, Yang L, Zhao Y, Guo X. The role of microRNA-26b in human adipocyte differentiation and proliferation. Gene 2014;533:481-7. [PMID: 24140453 DOI: 10.1016/j.gene.2013.10.011] [Cited by in Crossref: 63] [Cited by in F6Publishing: 60] [Article Influence: 7.9] [Reference Citation Analysis]
119 Wróblewski A, Strycharz J, Świderska E, Drewniak K, Drzewoski J, Szemraj J, Kasznicki J, Śliwińska A. Molecular Insight into the Interaction between Epigenetics and Leptin in Metabolic Disorders. Nutrients 2019;11:E1872. [PMID: 31408957 DOI: 10.3390/nu11081872] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
120 Teoh SL, Das S. Tumour biology of obesity-related cancers: understanding the molecular concept for better diagnosis and treatment. Tumour Biol 2016;37:14363-80. [PMID: 27623943 DOI: 10.1007/s13277-016-5357-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
121 Zhao X, Ye Q, Xu K, Cheng J, Gao Y, Li Q, Du J, Shi H, Zhou L. Single-nucleotide polymorphisms inside microRNA target sites influence the susceptibility to type 2 diabetes. J Hum Genet 2013;58:135-41. [DOI: 10.1038/jhg.2012.146] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 2.9] [Reference Citation Analysis]
122 Li G, Ning C, Ma Y, Jin L, Tang Q, Li X, Li M, Liu H. miR-26b Promotes 3T3-L1 Adipocyte Differentiation Through Targeting PTEN. DNA Cell Biol 2017;36:672-81. [PMID: 28570839 DOI: 10.1089/dna.2017.3712] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
123 Coucha M, Mohamed IN, Elshaer SL, Mbata O, Bartasis ML, El-Remessy AB. High fat diet dysregulates microRNA-17-5p and triggers retinal inflammation: Role of endoplasmic-reticulum-stress. World J Diabetes 2017; 8(2): 56-65 [PMID: 28265343 DOI: 10.4239/wjd.v8.i2.56] [Cited by in CrossRef: 21] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
124 Oosting A, van Vlies N, Kegler D, Schipper L, Abrahamse-Berkeveld M, Ringler S, Verkade HJ, van der Beek EM. Effect of dietary lipid structure in early postnatal life on mouse adipose tissue development and function in adulthood. Br J Nutr 2014;111:215-26. [PMID: 23845308 DOI: 10.1017/S0007114513002201] [Cited by in Crossref: 55] [Cited by in F6Publishing: 14] [Article Influence: 6.9] [Reference Citation Analysis]
125 Formichi C, Nigi L, Grieco GE, Maccora C, Fignani D, Brusco N, Licata G, Sebastiani G, Dotta F. Non-Coding RNAs: Novel Players in Insulin Resistance and Related Diseases. Int J Mol Sci 2021;22:7716. [PMID: 34299336 DOI: 10.3390/ijms22147716] [Reference Citation Analysis]
126 Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, Dani C, Amri E, Scheideler M. microRNA miR-27b impairs human adipocyte differentiation and targets PPARγ. Biochemical and Biophysical Research Communications 2009;390:247-51. [DOI: 10.1016/j.bbrc.2009.09.098] [Cited by in Crossref: 296] [Cited by in F6Publishing: 284] [Article Influence: 24.7] [Reference Citation Analysis]
127 Wang H, Xiao S, Wang M, Kim NH, Li H, Wang G. In silico identification of conserved microRNAs and their targets in bovine fat tissue. Gene 2015;559:119-28. [PMID: 25626178 DOI: 10.1016/j.gene.2015.01.021] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
128 Lozano-bartolomé J, Llauradó G, Portero-otin M, Altuna-coy A, Rojo-martínez G, Vendrell J, Jorba R, Rodríguez-gallego E, Chacón MR. Altered Expression of miR-181a-5p and miR-23a-3p Is Associated With Obesity and TNFα-Induced Insulin Resistance. The Journal of Clinical Endocrinology & Metabolism 2018;103:1447-58. [DOI: 10.1210/jc.2017-01909] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 12.0] [Reference Citation Analysis]
129 Nabih ES, Andrawes NG. The Association Between Circulating Levels of miRNA-181a and Pancreatic Beta Cells Dysfunction via SMAD7 in Type 1 Diabetic Children and Adolescents. J Clin Lab Anal 2016;30:727-31. [PMID: 26892629 DOI: 10.1002/jcla.21928] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
130 Williams A, Dougal DM, Jenkins W, Greene N, Williams-DeVane C, Kimbro KS. Serum miR-17 levels are downregulated in obese, African American women with elevated HbA1c. J Diabetes Metab Disord 2019;18:173-9. [PMID: 31275888 DOI: 10.1007/s40200-019-00404-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
131 Meydan C, Shenhar-tsarfaty S, Soreq H. MicroRNA Regulators of Anxiety and Metabolic Disorders. Trends in Molecular Medicine 2016;22:798-812. [DOI: 10.1016/j.molmed.2016.07.001] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 6.8] [Reference Citation Analysis]
132 Gori M, Arciello M, Balsano C. MicroRNAs in nonalcoholic fatty liver disease: novel biomarkers and prognostic tools during the transition from steatosis to hepatocarcinoma. Biomed Res Int. 2014;2014:741465. [PMID: 24745023 DOI: 10.1155/2014/741465] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 5.9] [Reference Citation Analysis]
133 Peshdary V, Styles G, Gagné R, Yauk CL, Sorisky A, Atlas E. Depot-Specific Analysis of Human Adipose Cells and Their Responses to Bisphenol S. Endocrinology 2020;161:bqaa044. [PMID: 32170302 DOI: 10.1210/endocr/bqaa044] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
134 Mysore R, Zhou Y, Sädevirta S, Savolainen-Peltonen H, Nidhina Haridas PA, Soronen J, Leivonen M, Sarin AP, Fischer-Posovszky P, Wabitsch M, Yki-Järvinen H, Olkkonen VM. MicroRNA-192* impairs adipocyte triglyceride storage. Biochim Biophys Acta 2016;1861:342-51. [PMID: 26747651 DOI: 10.1016/j.bbalip.2015.12.019] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
135 Martinelli R, Nardelli C, Pilone V, Buonomo T, Liguori R, Castanò I, Buono P, Masone S, Persico G, Forestieri P, Pastore L, Sacchetti L. miR-519d overexpression is associated with human obesity. Obesity (Silver Spring) 2010;18:2170-6. [PMID: 20057369 DOI: 10.1038/oby.2009.474] [Cited by in Crossref: 112] [Cited by in F6Publishing: 112] [Article Influence: 10.2] [Reference Citation Analysis]
136 Yao J, Wang Y, Wang W, Wang N, Li H. Solexa sequencing analysis of chicken pre-adipocyte microRNAs. Biosci Biotechnol Biochem 2011;75:54-61. [PMID: 21228487 DOI: 10.1271/bbb.100530] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 3.5] [Reference Citation Analysis]
137 Zanoaga O, Braicu C, Chiroi P, Andreea N, Hajjar NA, Mărgărit S, Korban SS, Berindan-Neagoe I. The Role of miR-155 in Nutrition: Modulating Cancer-Associated Inflammation. Nutrients 2021;13:2245. [PMID: 34210046 DOI: 10.3390/nu13072245] [Reference Citation Analysis]
138 Arner E, Mejhert N, Kulyté A, Balwierz PJ, Pachkov M, Cormont M, Lorente-Cebrián S, Ehrlund A, Laurencikiene J, Hedén P, Dahlman-Wright K, Tanti JF, Hayashizaki Y, Rydén M, Dahlman I, van Nimwegen E, Daub CO, Arner P. Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes 2012;61:1986-93. [PMID: 22688341 DOI: 10.2337/db11-1508] [Cited by in Crossref: 189] [Cited by in F6Publishing: 182] [Article Influence: 21.0] [Reference Citation Analysis]
139 Pang L, You L, Ji C, Shi C, Chen L, Yang L, Huang F, Zhou Y, Zhang J, Chen X, Guo X. miR-1275 inhibits adipogenesis via ELK1 and its expression decreases in obese subjects. Journal of Molecular Endocrinology 2016;57:33-43. [DOI: 10.1530/jme-16-0007] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
140 Ayers D, Boughanem H, Macías-González M. Epigenetic Influences in the Obesity/Colorectal Cancer Axis: A Novel Theragnostic Avenue. J Oncol 2019;2019:7406078. [PMID: 31007685 DOI: 10.1155/2019/7406078] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
141 Seyhan AA. microRNAs with different functions and roles in disease development and as potential biomarkers of diabetes: progress and challenges. Mol Biosyst 2015;11:1217-34. [PMID: 25765998 DOI: 10.1039/c5mb00064e] [Cited by in Crossref: 24] [Cited by in F6Publishing: 13] [Article Influence: 4.8] [Reference Citation Analysis]
142 Barros L, Eichwald T, Solano AF, Scheffer D, da Silva RA, Gaspar JM, Latini A. Epigenetic modifications induced by exercise: Drug-free intervention to improve cognitive deficits associated with obesity. Physiol Behav 2019;204:309-23. [PMID: 30876771 DOI: 10.1016/j.physbeh.2019.03.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
143 Wang G, Guo G, Tian X, Hu S, Du K, Zhang Q, Mao J, Jia X, Chen S, Wang J, Lai S. Screening and identification of MicroRNAs expressed in perirenal adipose tissue during rabbit growth. Lipids Health Dis 2020;19:35. [PMID: 32145738 DOI: 10.1186/s12944-020-01219-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
144 Cerda A, Amaral AA, de Oliveira R, Moraes TI, Braga AA, Graciano-Saldarriaga ME, Fajardo CM, Hirata TDC, Bonezi V, Campos-Salazar AB, Dorea EL, Bernik MMS, Hirata MH, Hirata RDC. Peripheral Blood miRome Identified miR-155 as Potential Biomarker of MetS and Cardiometabolic Risk in Obese Patients. Int J Mol Sci 2021;22:1468. [PMID: 33540559 DOI: 10.3390/ijms22031468] [Reference Citation Analysis]
145 Yu Y, Du H, Wei S, Feng L, Li J, Yao F, Zhang M, Hatch GM, Chen L. Adipocyte-Derived Exosomal MiR-27a Induces Insulin Resistance in Skeletal Muscle Through Repression of PPARγ. Theranostics 2018;8:2171-88. [PMID: 29721071 DOI: 10.7150/thno.22565] [Cited by in Crossref: 63] [Cited by in F6Publishing: 75] [Article Influence: 21.0] [Reference Citation Analysis]
146 Roos J, Enlund E, Funcke JB, Tews D, Holzmann K, Debatin KM, Wabitsch M, Fischer-Posovszky P. miR-146a-mediated suppression of the inflammatory response in human adipocytes. Sci Rep 2016;6:38339. [PMID: 27922090 DOI: 10.1038/srep38339] [Cited by in Crossref: 52] [Cited by in F6Publishing: 51] [Article Influence: 10.4] [Reference Citation Analysis]
147 Mentzel CM, Anthon C, Jacobsen MJ, Karlskov-Mortensen P, Bruun CS, Jørgensen CB, Gorodkin J, Cirera S, Fredholm M. Gender and Obesity Specific MicroRNA Expression in Adipose Tissue from Lean and Obese Pigs. PLoS One 2015;10:e0131650. [PMID: 26222688 DOI: 10.1371/journal.pone.0131650] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 5.5] [Reference Citation Analysis]
148 Hiller B, Angulo J, Olivera M, Nuernberg G, Nuernberg K. How selected tissues of lactating holstein cows respond to dietary polyunsaturated fatty acid supplementation. Lipids 2013;48:357-67. [PMID: 23129256 DOI: 10.1007/s11745-012-3737-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
149 Zhu L, Chen L, Shi C, Xu G, Xu L, Zhu L, Guo X, Ni Y, Cui Y, Ji C. MiR-335, an Adipogenesis-Related MicroRNA, is Involved in Adipose Tissue Inflammation. Cell Biochem Biophys 2014;68:283-90. [DOI: 10.1007/s12013-013-9708-3] [Cited by in Crossref: 56] [Cited by in F6Publishing: 56] [Article Influence: 7.0] [Reference Citation Analysis]
150 Mathers JC, Strathdee G, Relton CL. Induction of epigenetic alterations by dietary and other environmental factors. Adv Genet 2010;71:3-39. [PMID: 20933124 DOI: 10.1016/B978-0-12-380864-6.00001-8] [Cited by in Crossref: 178] [Cited by in F6Publishing: 90] [Article Influence: 16.2] [Reference Citation Analysis]
151 Wang Z, Yang B. Detection, Profiling, and Quantification of miRNA Expression. MicroRNA Expression Detection Methods. Berlin: Springer Berlin Heidelberg; 2010. pp. 3-64. [DOI: 10.1007/978-3-642-04928-6_1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
152 Ge Q, Gérard J, Noël L, Scroyen I, Brichard SM. MicroRNAs regulated by adiponectin as novel targets for controlling adipose tissue inflammation. Endocrinology 2012;153:5285-96. [PMID: 23015294 DOI: 10.1210/en.2012-1623] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 3.8] [Reference Citation Analysis]
153 Williams MD, Mitchell GM. MicroRNAs in insulin resistance and obesity. Exp Diabetes Res. 2012;2012:484696. [PMID: 22851965 DOI: 10.1155/2012/484696] [Cited by in Crossref: 85] [Cited by in F6Publishing: 86] [Article Influence: 9.4] [Reference Citation Analysis]
154 Ye Q, Zhao X, Xu K, Li Q, Cheng J, Gao Y, Du J, Shi H, Zhou L. Polymorphisms in lipid metabolism related miRNA binding sites and risk of metabolic syndrome. Gene 2013;528:132-8. [DOI: 10.1016/j.gene.2013.07.036] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
155 List EO, Sackmann-Sala L, Berryman DE, Funk K, Kelder B, Gosney ES, Okada S, Ding J, Cruz-Topete D, Kopchick JJ. Endocrine parameters and phenotypes of the growth hormone receptor gene disrupted (GHR-/-) mouse. Endocr Rev 2011;32:356-86. [PMID: 21123740 DOI: 10.1210/er.2010-0009] [Cited by in Crossref: 115] [Cited by in F6Publishing: 114] [Article Influence: 10.5] [Reference Citation Analysis]
156 Mehrpouya-Bahrami P, Miranda K, Singh NP, Zumbrun EE, Nagarkatti M, Nagarkatti PS. Role of microRNA in CB1 antagonist-mediated regulation of adipose tissue macrophage polarization and chemotaxis during diet-induced obesity. J Biol Chem 2019;294:7669-81. [PMID: 30910812 DOI: 10.1074/jbc.RA118.005094] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
157 Brandão BB, Guerra BA, Mori MA. Shortcuts to a functional adipose tissue: The role of small non-coding RNAs. Redox Biol 2017;12:82-102. [PMID: 28214707 DOI: 10.1016/j.redox.2017.01.020] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 10.3] [Reference Citation Analysis]
158 Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 2012;13:239-250. [PMID: 22436747 DOI: 10.1038/nrm3313] [Cited by in Crossref: 728] [Cited by in F6Publishing: 684] [Article Influence: 80.9] [Reference Citation Analysis]
159 Basu J, Genheimer CW, Sangha N, Quinlan SF, Guthrie KI, Kelley R, Ilagan RM, Jain D, Bertram T, Ludlow JW. Organ specific regenerative markers in peri-organ adipose: kidney. Lipids Health Dis 2011;10:171. [PMID: 21957910 DOI: 10.1186/1476-511X-10-171] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
160 Giardina S, Hernández-Alonso P, Salas-Salvadó J, Rabassa-Soler A, Bulló M. Modulation of Human Subcutaneous Adipose Tissue MicroRNA Profile Associated with Changes in Adiposity-Related Parameters. Mol Nutr Food Res 2018;62. [PMID: 29024341 DOI: 10.1002/mnfr.201700594] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
161 Lavery CA, Kurowska-Stolarska M, Holmes WM, Donnelly I, Caslake M, Collier A, Baker AH, Miller AM. miR-34a(-/-) mice are susceptible to diet-induced obesity. Obesity (Silver Spring) 2016;24:1741-51. [PMID: 27377585 DOI: 10.1002/oby.21561] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 6.2] [Reference Citation Analysis]
162 Maurizi G, Babini L, Della Guardia L. Potential role of microRNAs in the regulation of adipocytes liposecretion and adipose tissue physiology. J Cell Physiol 2018;233:9077-86. [PMID: 29932216 DOI: 10.1002/jcp.26523] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
163 Ebner A, Poitz DM, Alexiou K, Deussen A. Secretion of adiponectin from mouse aorta and its role in cold storage-induced vascular dysfunction. Basic Res Cardiol 2013;108:390. [PMID: 24121466 DOI: 10.1007/s00395-013-0390-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
164 Kilic ID, Dodurga Y, Uludag B, Alihanoglu YI, Yildiz BS, Enli Y, Secme M, Bostancı HE. MicroRNA -143 and -223 in obesity. Gene 2015;560:140-2. [PMID: 25637573 DOI: 10.1016/j.gene.2015.01.048] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 6.5] [Reference Citation Analysis]
165 Meadows S, Seidler A, Wall M, Page J, Taylor C, Flinn B, Turner R, Santanam N. Altered Regulation of adipomiR Editing with Aging. Int J Mol Sci 2020;21:E6899. [PMID: 32962255 DOI: 10.3390/ijms21186899] [Reference Citation Analysis]
166 Perri R, Nares S, Zhang S, Barros SP, Offenbacher S. MicroRNA modulation in obesity and periodontitis. J Dent Res 2012;91:33-8. [PMID: 22043006 DOI: 10.1177/0022034511425045] [Cited by in Crossref: 94] [Cited by in F6Publishing: 85] [Article Influence: 9.4] [Reference Citation Analysis]
167 Knelangen JM, van der Hoek MB, Kong WC, Owens JA, Fischer B, Santos AN. MicroRNA expression profile during adipogenic differentiation in mouse embryonic stem cells. Physiol Genomics. 2011;43:611-620. [PMID: 21245416 DOI: 10.1152/physiolgenomics.00116.2010] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.4] [Reference Citation Analysis]
168 Gentile AM, Lhamyani S, Coín-Aragüez L, Clemente-Postigo M, Oliva Olivera W, Romero-Zerbo SY, García-Serrano S, García-Escobar E, Zayed H, Doblado E, Bermúdez-Silva FJ, Murri M, Tinahones FJ, El Bekay R. miR-20b, miR-296, and Let-7f Expression in Human Adipose Tissue is Related to Obesity and Type 2 Diabetes. Obesity (Silver Spring) 2019;27:245-54. [PMID: 30597763 DOI: 10.1002/oby.22363] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
169 Sun B, Li J, Shao D, Pan Y, Chen Y, Li S, Yao X, Li H, Liu W, Zhang M, Zhang X, Chen L. Adipose tissue-secreted miR-27a promotes liver cancer by targeting FOXO1 in obese individuals. Onco Targets Ther 2015;8:735-44. [PMID: 25897249 DOI: 10.2147/OTT.S80945] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
170 Macartney-Coxson D, Danielson K, Clapham J, Benton MC, Johnston A, Jones A, Shaw O, Hagan RD, Hoffman EP, Hayes M, Harper J, Langston MA, Stubbs RS. MicroRNA Profiling in Adipose Before and After Weight Loss Highlights the Role of miR-223-3p and the NLRP3 Inflammasome. Obesity (Silver Spring) 2020;28:570-80. [PMID: 32090515 DOI: 10.1002/oby.22722] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
171 Padmanaban V, Prakash SS. Strain, Diet, and Gender Influence the Role of miR155 in Diabetes Mellitus. Indian J Endocrinol Metab 2018;22:570-2. [PMID: 30148111 DOI: 10.4103/ijem.IJEM_125_18] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
172 Wu W, Hu Z, Qin Y, Dong J, Dai J, Lu C, Zhang W, Shen H, Xia Y, Wang X. Seminal plasma microRNAs: potential biomarkers for spermatogenesis status. Mol Hum Reprod 2012;18:489-97. [PMID: 22675043 DOI: 10.1093/molehr/gas022] [Cited by in Crossref: 77] [Cited by in F6Publishing: 78] [Article Influence: 8.6] [Reference Citation Analysis]
173 Ye ZQ, Niu S, Yu Y, Yu H, Liu BH, Li RX, Xiao HS, Zeng R, Li YX, Wu JR, Li YY. Analyses of copy number variation of GK rat reveal new putative type 2 diabetes susceptibility loci. PLoS One 2010;5:e14077. [PMID: 21124896 DOI: 10.1371/journal.pone.0014077] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
174 Zhang L, Miller D, Yang Q, Wu B. MicroRNA Regulatory Networks as Biomarkers in Obesity: The Emerging Role. In: Huang J, Borchert GM, Dou D, Huan J, Lan W, Tan M, Wu B, editors. Bioinformatics in MicroRNA Research. New York: Springer; 2017. pp. 241-60. [DOI: 10.1007/978-1-4939-7046-9_18] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
175 He Y, Ding Y, Liang B, Lin J, Kim TK, Yu H, Hang H, Wang K. A Systematic Study of Dysregulated MicroRNA in Type 2 Diabetes Mellitus. Int J Mol Sci. 2017;18:pii: E456. [PMID: 28264477 DOI: 10.3390/ijms18030456] [Cited by in Crossref: 60] [Cited by in F6Publishing: 56] [Article Influence: 15.0] [Reference Citation Analysis]
176 Zhu H, Leung SW. Identification of microRNA biomarkers in type 2 diabetes: a meta-analysis of controlled profiling studies. Diabetologia. 2015;58:900-911. [PMID: 25677225 DOI: 10.1007/s00125-015-3510-2] [Cited by in Crossref: 125] [Cited by in F6Publishing: 125] [Article Influence: 20.8] [Reference Citation Analysis]
177 McGregor RA, Choi MS. microRNAs in the regulation of adipogenesis and obesity. Curr Mol Med 2011;11:304-16. [PMID: 21506921 DOI: 10.2174/156652411795677990] [Cited by in Crossref: 180] [Cited by in F6Publishing: 165] [Article Influence: 18.0] [Reference Citation Analysis]
178 Mazaki-Tovi S, Vaisbuch E, Tarca AL, Kusanovic JP, Than NG, Chaiworapongsa T, Dong Z, Hassan SS, Romero R. Characterization of Visceral and Subcutaneous Adipose Tissue Transcriptome and Biological Pathways in Pregnant and Non-Pregnant Women: Evidence for Pregnancy-Related Regional-Specific Differences in Adipose Tissue. PLoS One 2015;10:e0143779. [PMID: 26636677 DOI: 10.1371/journal.pone.0143779] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
179 Kim NH, Ahn J, Choi YM, Son HJ, Choi WH, Cho HJ, Yu JH, Seo JA, Jang YJ, Jung CH, Ha TY. Differential circulating and visceral fat microRNA expression of non-obese and obese subjects. Clin Nutr 2020;39:910-6. [PMID: 31003790 DOI: 10.1016/j.clnu.2019.03.033] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
180 Villota SD, Toledo-Rodriguez M, Leach L. Compromised barrier integrity of human feto-placental vessels from gestational diabetic pregnancies is related to downregulation of occludin expression. Diabetologia 2021;64:195-210. [PMID: 33001231 DOI: 10.1007/s00125-020-05290-6] [Reference Citation Analysis]
181 Sliwinska A, Kasinska MA, Drzewoski J. MicroRNAs and metabolic disorders - where are we heading? Arch Med Sci 2017;13:885-96. [PMID: 28721157 DOI: 10.5114/aoms.2017.65229] [Cited by in Crossref: 14] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
182 Pheiffer C, Willmer T, Dias S, Abrahams Y, Louw J, Goedecke JH. Ethnic and Adipose Depot Specific Associations Between DNA Methylation and Metabolic Risk. Front Genet 2020;11:967. [PMID: 33133129 DOI: 10.3389/fgene.2020.00967] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
183 Collares CV, Evangelista AF, Xavier DJ, Rassi DM, Arns T, Foss-Freitas MC, Foss MC, Puthier D, Sakamoto-Hojo ET, Passos GA, Donadi EA. Identifying common and specific microRNAs expressed in peripheral blood mononuclear cell of type 1, type 2, and gestational diabetes mellitus patients. BMC Res Notes 2013;6:491. [PMID: 24279768 DOI: 10.1186/1756-0500-6-491] [Cited by in Crossref: 93] [Cited by in F6Publishing: 87] [Article Influence: 11.6] [Reference Citation Analysis]
184 Amri E, Scheideler M. Small non coding RNAs in adipocyte biology and obesity. Molecular and Cellular Endocrinology 2017;456:87-94. [DOI: 10.1016/j.mce.2017.04.009] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
185 Li Y, Mouche S, Sajic T, Veyrat-Durebex C, Supale R, Pierroz D, Ferrari S, Negro F, Hasler U, Feraille E, Moll S, Meda P, Deffert C, Montet X, Krause KH, Szanto I. Deficiency in the NADPH oxidase 4 predisposes towards diet-induced obesity. Int J Obes (Lond) 2012;36:1503-13. [PMID: 22430302 DOI: 10.1038/ijo.2011.279] [Cited by in Crossref: 56] [Cited by in F6Publishing: 54] [Article Influence: 6.2] [Reference Citation Analysis]
186 Dehwah MA, Xu A, Huang Q. MicroRNAs and type 2 diabetes/obesity. J Genet Genomics. 2012;39:11-18. [PMID: 22293113 DOI: 10.1016/j.jgg.2011.11.007] [Cited by in Crossref: 71] [Cited by in F6Publishing: 65] [Article Influence: 7.1] [Reference Citation Analysis]
187 Bai J, Zhu Y, Dong Y. Response of gut microbiota and inflammatory status to bitter melon (Momordica charantia L.) in high fat diet induced obese rats. J Ethnopharmacol 2016;194:717-26. [PMID: 27751827 DOI: 10.1016/j.jep.2016.10.043] [Cited by in Crossref: 51] [Cited by in F6Publishing: 40] [Article Influence: 10.2] [Reference Citation Analysis]
188 Kim K, Kang JK, Jung YH, Lee SB, Rametta R, Dongiovanni P, Valenti L, Pajvani UB. Adipocyte PHLPP2 inhibition prevents obesity-induced fatty liver. Nat Commun 2021;12:1822. [PMID: 33758172 DOI: 10.1038/s41467-021-22106-2] [Reference Citation Analysis]
189 Arner P, Kulyté A. MicroRNA regulatory networks in human adipose tissue and obesity. Nat Rev Endocrinol 2015;11:276-88. [PMID: 25732520 DOI: 10.1038/nrendo.2015.25] [Cited by in Crossref: 255] [Cited by in F6Publishing: 247] [Article Influence: 42.5] [Reference Citation Analysis]
190 Price NL, Fernández-Hernando C. miRNA regulation of white and brown adipose tissue differentiation and function. Biochim Biophys Acta 2016;1861:2104-10. [PMID: 26898181 DOI: 10.1016/j.bbalip.2016.02.010] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 8.0] [Reference Citation Analysis]
191 Srinivasan S, Selvan ST, Archunan G, Gulyas B, Padmanabhan P. MicroRNAs -the next generation therapeutic targets in human diseases. Theranostics 2013;3:930-42. [PMID: 24396504 DOI: 10.7150/thno.7026] [Cited by in Crossref: 44] [Cited by in F6Publishing: 55] [Article Influence: 5.5] [Reference Citation Analysis]
192 Agarwal N, Balasubramanyam A. Viral mechanisms of adipose dysfunction: lessons from HIV-1 Vpr. Adipocyte 2015;4:55-9. [PMID: 26167403 DOI: 10.4161/adip.29852] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
193 Mori MA, Ludwig RG, Garcia-Martin R, Brandão BB, Kahn CR. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. Cell Metab 2019;30:656-73. [PMID: 31447320 DOI: 10.1016/j.cmet.2019.07.011] [Cited by in Crossref: 111] [Cited by in F6Publishing: 114] [Article Influence: 55.5] [Reference Citation Analysis]
194 Marcondes JPC, Andrade PFB, Sávio ALV, Silveira MAD, Rudge MVC, Salvadori DMF. BCL2 and miR-181a transcriptional alterations in umbilical-cord blood cells can be putative biomarkers for obesity. Mutat Res Genet Toxicol Environ Mutagen 2018;836:90-6. [PMID: 30442352 DOI: 10.1016/j.mrgentox.2018.06.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
195 Wang X, Hunter D, Xu J, Ding C. Metabolic triggered inflammation in osteoarthritis. Osteoarthritis Cartilage 2015;23:22-30. [PMID: 25452156 DOI: 10.1016/j.joca.2014.10.002] [Cited by in Crossref: 143] [Cited by in F6Publishing: 115] [Article Influence: 20.4] [Reference Citation Analysis]
196 Luong Q, Lee KY. The Heterogeneity of White Adipose Tissue. In: Szablewski L, editor. Adipose Tissue. InTech; 2018. [DOI: 10.5772/intechopen.76898] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
197 Ge Q, Brichard S, Yi X, Li Q. microRNAs as a new mechanism regulating adipose tissue inflammation in obesity and as a novel therapeutic strategy in the metabolic syndrome. J Immunol Res 2014;2014:987285. [PMID: 24741638 DOI: 10.1155/2014/987285] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 7.1] [Reference Citation Analysis]
198 Moreno-navarrete JM, Fernández-real JM. Adipocyte Differentiation. In: Symonds ME, editor. Adipose Tissue Biology. New York: Springer; 2012. pp. 17-38. [DOI: 10.1007/978-1-4614-0965-6_2] [Cited by in Crossref: 37] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
199 Price NL, Ramírez CM, Fernández-Hernando C. Relevance of microRNA in metabolic diseases. Crit Rev Clin Lab Sci 2014;51:305-20. [PMID: 25034902 DOI: 10.3109/10408363.2014.937522] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
200 Hinault C, Dumortier O, Van Obberghen E. MicroARN et diabète: Petites structures - grands effets. Med Sci (Paris) 2013;29:785-90. [DOI: 10.1051/medsci/2013298019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
201 Karbiener M, Glantschnig C, Scheideler M. Hunting the needle in the haystack: a guide to obtain biologically meaningful microRNA targets. Int J Mol Sci 2014;15:20266-89. [PMID: 25383673 DOI: 10.3390/ijms151120266] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
202 Marques-Rocha JL, Samblas M, Milagro FI, Bressan J, Martínez JA, Marti A. Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J 2015;29:3595-611. [PMID: 26065857 DOI: 10.1096/fj.14-260323] [Cited by in Crossref: 224] [Cited by in F6Publishing: 217] [Article Influence: 37.3] [Reference Citation Analysis]
203 Kuryłowicz A, Wicik Z, Owczarz M, Jonas MI, Kotlarek M, Świerniak M, Lisik W, Jonas M, Noszczyk B, Puzianowska-Kuźnicka M. NGS Reveals Molecular Pathways Affected by Obesity and Weight Loss-Related Changes in miRNA Levels in Adipose Tissue. Int J Mol Sci 2017;19:E66. [PMID: 29280944 DOI: 10.3390/ijms19010066] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
204 Lee P, Mori A, Takemitsu H, Yamamoto I, Arai T. Lipogenic gene expression in abdominal adipose and liver tissues of diet-induced overweight cats. The Veterinary Journal 2011;190:e150-3. [DOI: 10.1016/j.tvjl.2011.04.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
205 Vailati-Riboni M, Kanwal M, Bulgari O, Meier S, Priest NV, Burke CR, Kay JK, McDougall S, Mitchell MD, Walker CG, Crookenden M, Heiser A, Roche JR, Loor JJ. Body condition score and plane of nutrition prepartum affect adipose tissue transcriptome regulators of metabolism and inflammation in grazing dairy cows during the transition period. J Dairy Sci 2016;99:758-70. [PMID: 26601585 DOI: 10.3168/jds.2015-10046] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 5.5] [Reference Citation Analysis]
206 Dumortier O, Hinault C, Van Obberghen E. MicroRNAs and metabolism crosstalk in energy homeostasis. Cell Metab. 2013;18:312-324. [PMID: 23850315 DOI: 10.1016/j.cmet.2013.06.004] [Cited by in Crossref: 144] [Cited by in F6Publishing: 138] [Article Influence: 18.0] [Reference Citation Analysis]
207 Flowers E, Froelicher ES, Aouizerat BE. Measurement of MicroRNA: a regulator of gene expression. Biol Res Nurs 2013;15:167-78. [PMID: 22204760 DOI: 10.1177/1099800411430380] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
208 Celikbilek M, Baskol M, Taheri S, Deniz K, Dogan S, Zararsiz G, Gursoy S, Guven K, Ozbakır O, Dundar M, Yucesoy M. Circulating microRNAs in patients with non-alcoholic fatty liver disease. World J Hepatol 2014; 6(8): 613-620 [PMID: 25232454 DOI: 10.4254/wjh.v6.i8.613] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 6.7] [Reference Citation Analysis]
209 Strycharz J, Świderska E, Wróblewski A, Podolska M, Czarny P, Szemraj J, Balcerczyk A, Drzewoski J, Kasznicki J, Śliwińska A. Hyperglycemia Affects miRNAs Expression Pattern during Adipogenesis of Human Visceral Adipocytes-Is Memorization Involved? Nutrients 2018;10:E1774. [PMID: 30445791 DOI: 10.3390/nu10111774] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
210 Cheng CK, Bakar HA, Gollasch M, Huang Y. Perivascular Adipose Tissue: the Sixth Man of the Cardiovascular System. Cardiovasc Drugs Ther 2018;32:481-502. [PMID: 30171461 DOI: 10.1007/s10557-018-6820-z] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]
211 Lou W, Liu J, Gao Y, Zhong G, Chen D, Shen J, Bao C, Xu L, Pan J, Cheng J, Ding B, Fan W. MicroRNAs in cancer metastasis and angiogenesis. Oncotarget 2017;8:115787-802. [PMID: 29383201 DOI: 10.18632/oncotarget.23115] [Cited by in Crossref: 63] [Cited by in F6Publishing: 58] [Article Influence: 15.8] [Reference Citation Analysis]
212 Singhal A, Agrawal A, Ling J. Regulation of insulin resistance and type II diabetes by hepatitis C virus infection: A driver function of circulating miRNAs. J Cell Mol Med 2018;22:2071-85. [PMID: 29411512 DOI: 10.1111/jcmm.13553] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
213 Chen Y, Zhang F, Zhao Y, He K, Zheng X, Pan Y, Shao D, Shang P, Yang Y, Zhang D, Xie Y, Yao X, Chen L, Li J, Zhang X. Obesity-associated miR-27a upregulation promotes hepatocellular carcinoma metastasis through suppressing SFRP1. Onco Targets Ther 2018;11:3281-92. [PMID: 29910623 DOI: 10.2147/OTT.S162978] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
214 Liao CH, Wang CY, Liu KH, Liu YY, Wen MS, Yeh TS. MiR-122 marks the differences between subcutaneous and visceral adipose tissues and associates with the outcome of bariatric surgery. Obes Res Clin Pract 2018;12:570-7. [PMID: 29960868 DOI: 10.1016/j.orcp.2018.06.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]