BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mo Y, Jiang M, Zhang Y, Wan R, Li J, Zhong CJ, Li H, Tang S, Zhang Q. Comparative mouse lung injury by nickel nanoparticles with differential surface modification. J Nanobiotechnology 2019;17:2. [PMID: 30616599 DOI: 10.1186/s12951-018-0436-0] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Yin B, Chan CKW, Liu S, Hong H, Wong SHD, Lee LKC, Ho LWC, Zhang L, Leung KC, Choi PC, Bian L, Tian XY, Chan MN, Choi CHJ. Intrapulmonary Cellular-Level Distribution of Inhaled Nanoparticles with Defined Functional Groups and Its Correlations with Protein Corona and Inflammatory Response. ACS Nano 2019;13:14048-69. [DOI: 10.1021/acsnano.9b06424] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
2 Roach KA, Anderson SE, Stefaniak AB, Shane HL, Kodali V, Kashon M, Roberts JR. Surface area- and mass-based comparison of fine and ultrafine nickel oxide lung toxicity and augmentation of allergic response in an ovalbumin asthma model. Inhalation Toxicology 2019;31:299-324. [DOI: 10.1080/08958378.2019.1680775] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
3 Adusei-Mensah F, Tikkanen-Kaukanen C, Kauhanen J, Henneh IT, Owusu Agyei PE, Akakpo PK, Ekor M. Sub-chronic toxicity evaluation of top three commercial herbal antimalarial preparations in the Kumasi metropolis, Ghana. Biosci Rep 2020;40:BSR20192536. [PMID: 32420605 DOI: 10.1042/BSR20192536] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Wu Y, Kong L. Advance on toxicity of metal nickel nanoparticles. Environ Geochem Health 2020;42:2277-86. [PMID: 31894452 DOI: 10.1007/s10653-019-00491-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
5 You DJ, Lee HY, Taylor-Just AJ, Linder KE, Bonner JC. Sex differences in the acute and subchronic lung inflammatory responses of mice to nickel nanoparticles. Nanotoxicology 2020;14:1058-81. [PMID: 32813574 DOI: 10.1080/17435390.2020.1808105] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
6 Köktürk M, Altindag F, Nas MS, Calimli MH. Ecotoxicological Effects of Bimetallic PdNi/MWCNT and PdCu/MWCNT Nanoparticles onto DNA Damage and Oxidative Stress in Earthworms. Biol Trace Elem Res 2021. [PMID: 34313947 DOI: 10.1007/s12011-021-02821-z] [Reference Citation Analysis]
7 Yuan J, Zhang Y, Zhang Y, Mo Y, Zhang Q. Effects of metal nanoparticles on tight junction-associated proteins via HIF-1α/miR-29b/MMPs pathway in human epidermal keratinocytes. Part Fibre Toxicol 2021;18:13. [PMID: 33740985 DOI: 10.1186/s12989-021-00405-2] [Reference Citation Analysis]
8 McDaniel DK, Ringel-Scaia VM, Morrison HA, Coutermarsh-Ott S, Council-Troche M, Angle JW, Perry JB, Davis G, Leng W, Minarchick V, Yang Y, Chen B, Reece SW, Brown DA, Cecere TE, Brown JM, Gowdy KM, Hochella MF Jr, Allen IC. Pulmonary Exposure to Magnéli Phase Titanium Suboxides Results in Significant Macrophage Abnormalities and Decreased Lung Function. Front Immunol 2019;10:2714. [PMID: 31849940 DOI: 10.3389/fimmu.2019.02714] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
9 Solano R, Patiño-Ruiz D, Tejeda-Benitez L, Herrera A. Metal- and metal/oxide-based engineered nanoparticles and nanostructures: a review on the applications, nanotoxicological effects, and risk control strategies. Environ Sci Pollut Res Int 2021;28:16962-81. [PMID: 33638785 DOI: 10.1007/s11356-021-12996-6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Wang R, Wang SY, Wang Y, Xin R, Xia B, Xin Y, Zhang T, Wu YH. The Warburg effect promoted the activation of the NLRP3 inflammasome induced by Ni-refining fumes in BEAS-2B cells. Toxicol Ind Health 2020;36:580-90. [PMID: 33064063 DOI: 10.1177/0748233720937197] [Reference Citation Analysis]
11 Guo H, Liu H, Wu H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Nickel Carcinogenesis Mechanism: DNA Damage. Int J Mol Sci 2019;20:E4690. [PMID: 31546657 DOI: 10.3390/ijms20194690] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
12 Wu CL, Yin R, Wang SN, Ying R. A Review of CXCL1 in Cardiac Fibrosis. Front Cardiovasc Med 2021;8:674498. [PMID: 33996954 DOI: 10.3389/fcvm.2021.674498] [Reference Citation Analysis]
13 Fowles J, Barreau T, Wu N. Cancer and Non-Cancer Risk Concerns from Metals in Electronic Cigarette Liquids and Aerosols. Int J Environ Res Public Health 2020;17:E2146. [PMID: 32213824 DOI: 10.3390/ijerph17062146] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
14 Lee HW, Jose CC, Cuddapah S. Epithelial-mesenchymal transition: Insights into nickel-induced lung diseases. Semin Cancer Biol 2021:S1044-579X(21)00150-4. [PMID: 34058338 DOI: 10.1016/j.semcancer.2021.05.020] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Mitarotonda R, Giorgi E, Desimone MF, De Marzi MC. Nanoparticles and Immune Cells. CPD 2019;25:3960-82. [DOI: 10.2174/1381612825666190926161209] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
16 Mo Y, Zhang Y, Mo L, Wan R, Jiang M, Zhang Q. The role of miR-21 in nickel nanoparticle-induced MMP-2 and MMP-9 production in mouse primary monocytes: In vitro and in vivo studies. Environ Pollut 2020;267:115597. [PMID: 33254626 DOI: 10.1016/j.envpol.2020.115597] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Gliga AR, Di Bucchianico S, Åkerlund E, Karlsson HL. Transcriptome Profiling and Toxicity Following Long-Term, Low Dose Exposure of Human Lung Cells to Ni and NiO Nanoparticles-Comparison with NiCl2. Nanomaterials (Basel) 2020;10:E649. [PMID: 32244462 DOI: 10.3390/nano10040649] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Mo Y, Zhang Y, Wan R, Jiang M, Xu Y, Zhang Q. miR-21 mediates nickel nanoparticle-induced pulmonary injury and fibrosis. Nanotoxicology 2020;14:1175-97. [PMID: 32924694 DOI: 10.1080/17435390.2020.1808727] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
19 Liu L, Kong L. Research progress on the carcinogenicity of metal nanomaterials. J Appl Toxicol 2021;41:1334-44. [PMID: 33527484 DOI: 10.1002/jat.4145] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Shi J, Du SH, Yu JB, Zhang YF, He SM, Dong SA, Zhang Y, Wu LL, Li C, Li HB. Hydromorphone Protects against CO2 Pneumoperitoneum-Induced Lung Injury via Heme Oxygenase-1-Regulated Mitochondrial Dynamics. Oxid Med Cell Longev 2021;2021:9034376. [PMID: 33927798 DOI: 10.1155/2021/9034376] [Reference Citation Analysis]
21 Zhang L, Jing J, Han L, Wang J, Zhang W, Liu Z, Gao A. Characterization of gut microbiota, metabolism and cytokines in benzene-induced hematopoietic damage. Ecotoxicol Environ Saf 2021;228:112956. [PMID: 34781132 DOI: 10.1016/j.ecoenv.2021.112956] [Reference Citation Analysis]
22 Mo Y, Zhang Y, Zhang Y, Yuan J, Mo L, Zhang Q. Nickel nanoparticle-induced cell transformation: involvement of DNA damage and DNA repair defect through HIF-1α/miR-210/Rad52 pathway. J Nanobiotechnology 2021;19:370. [PMID: 34789290 DOI: 10.1186/s12951-021-01117-7] [Reference Citation Analysis]
23 Kong L, Wu Y, Hu W, Liu L, Xue Y, Liang G. Mechanisms underlying reproductive toxicity induced by nickel nanoparticles identified by comprehensive gene expression analysis in GC-1 spg cells. Environ Pollut 2021;275:116556. [PMID: 33588191 DOI: 10.1016/j.envpol.2021.116556] [Reference Citation Analysis]