BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Beltrán-gracia E, López-camacho A, Higuera-ciapara I, Velázquez-fernández JB, Vallejo-cardona AA. Nanomedicine review: clinical developments in liposomal applications. Cancer Nano 2019;10. [DOI: 10.1186/s12645-019-0055-y] [Cited by in Crossref: 77] [Cited by in F6Publishing: 23] [Article Influence: 25.7] [Reference Citation Analysis]
Number Citing Articles
1 Prakash G, Shokr A, Willemen N, Bashir SM, Shin SR, Hassan S. Microfluidic fabrication of lipid nanoparticles for the delivery of nucleic acids. Adv Drug Deliv Rev 2022;184:114197. [PMID: 35288219 DOI: 10.1016/j.addr.2022.114197] [Reference Citation Analysis]
2 Ghosh S, Lalani R, Maiti K, Banerjee S, Bhatt H, Bobde YS, Patel V, Biswas S, Bhowmick S, Misra A. Synergistic co-loading of vincristine improved chemotherapeutic potential of pegylated liposomal doxorubicin against triple negative breast cancer and non-small cell lung cancer. Nanomedicine 2021;31:102320. [PMID: 33075540 DOI: 10.1016/j.nano.2020.102320] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
3 Gorantla S, Rapalli VK, Waghule T, Singh PP, Dubey SK, Saha RN, Singhvi G. Nanocarriers for ocular drug delivery: current status and translational opportunity. RSC Adv 2020;10:27835-55. [DOI: 10.1039/d0ra04971a] [Cited by in Crossref: 26] [Article Influence: 13.0] [Reference Citation Analysis]
4 Kesavan A, Chandrasekhar Reddy U, Kurian J, Muraleedharan KM. Cancer cell uptake and distribution of oxanorbornane-based synthetic lipids and their prospects as novel drug delivery systems. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103439] [Reference Citation Analysis]
5 Richardson JJ, Caruso F. Nanomedicine toward 2040. Nano Lett 2020;20:1481-2. [DOI: 10.1021/acs.nanolett.0c00620] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
6 Kang Y, Flores L, Ngai HW, Cornejo YR, Haber T, McDonald M, Moreira DF, Gonzaga JM, Abidi W, Zhang Y, Hammad M, Kortylewski M, Aboody KS, Berlin JM. Large, Anionic Liposomes Enable Targeted Intraperitoneal Delivery of a TLR 7/8 Agonist To Repolarize Ovarian Tumors' Microenvironment. Bioconjug Chem 2021. [PMID: 34289694 DOI: 10.1021/acs.bioconjchem.1c00139] [Reference Citation Analysis]
7 Bhangu SK, Fernandes S, Beretta GL, Tinelli S, Cassani M, Radziwon A, Wojnilowicz M, Sarpaki S, Pilatis I, Zaffaroni N, Forte G, Caruso F, Ashokkumar M, Cavalieri F. Transforming the Chemical Structure and Bio-Nano Activity of Doxorubicin by Ultrasound for Selective Killing of Cancer Cells. Adv Mater 2022;34:e2107964. [PMID: 35100658 DOI: 10.1002/adma.202107964] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Darvishi B, Dinarvand R, Mohammadpour H, Kamarul T, Sharifi AM. Dual l-Carnosine/Aloe vera Nanophytosomes with Synergistically Enhanced Protective Effects against Methylglyoxal-Induced Angiogenesis Impairment. Mol Pharm 2021. [PMID: 34297586 DOI: 10.1021/acs.molpharmaceut.1c00248] [Reference Citation Analysis]
9 Patil-Sen Y. Advances in nano-biomaterials and their applications in biomedicine. Emerg Top Life Sci 2021;5:169-76. [PMID: 33825835 DOI: 10.1042/ETLS20200333] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Paliwal H, Parihar A, Prajapati BG. Current State-of-the-Art and New Trends in Self-Assembled Nanocarriers as Drug Delivery Systems. Front Nanotechnol 2022;4:836674. [DOI: 10.3389/fnano.2022.836674] [Reference Citation Analysis]
11 Jin K, Lu Z, Chen J, Liu Y, Lan H, Dong H, Yang F, Zhao Y, Chen X. Recent Trends in Nanocarrier-Based Targeted Chemotherapy: Selective Delivery of Anticancer Drugs for Effective Lung, Colon, Cervical, and Breast Cancer Treatment. Journal of Nanomaterials 2020;2020:1-14. [DOI: 10.1155/2020/9184284] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 6.5] [Reference Citation Analysis]
12 Pavlov RV, Gaynanova GA, Kuznetsova DA, Vasileva LA, Zueva IV, Sapunova AS, Buzyurova DN, Babaev VM, Voloshina AD, Lukashenko SS, Rizvanov IK, Petrov KA, Zakharova LY, Sinyashin OG. Biomedical potentialities of cationic geminis as modulating agents of liposome in drug delivery across biological barriers and cellular uptake. Int J Pharm 2020;587:119640. [PMID: 32673770 DOI: 10.1016/j.ijpharm.2020.119640] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
13 Liu X, Meng H. Consideration for the scale‐up manufacture of nanotherapeutics—A critical step for technology transfer. VIEW 2021;2:20200190. [DOI: 10.1002/viw.20200190] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
14 Sambamoorthy U, Manjappa AS, Eswara BRM, Sanapala AK, Nagadeepthi N. Vitamin E Oil Incorporated Liposomal Melphalan and Simvastatin: Approach to Obtain Improved Physicochemical Characteristics of Hydrolysable Melphalan and Anticancer Activity in Combination with Simvastatin Against Multiple Myeloma. AAPS PharmSciTech 2021;23:23. [PMID: 34907484 DOI: 10.1208/s12249-021-02177-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
15 García MC, Calderón-Montaño JM, Rueda M, Longhi M, Rabasco AM, López-Lázaro M, Prieto-Dapena F, González-Rodríguez ML. pH-temperature dual-sensitive nucleolipid-containing stealth liposomes anchored with PEGylated AuNPs for triggering delivery of doxorubicin. Int J Pharm 2022;:121691. [PMID: 35331830 DOI: 10.1016/j.ijpharm.2022.121691] [Reference Citation Analysis]
16 Fitzmaurice O, Bartkowski M, Giordani S. Molecular Switches—Tools for Imparting Control in Drug Delivery Systems. Front Chem 2022;10:859450. [DOI: 10.3389/fchem.2022.859450] [Reference Citation Analysis]
17 Bardoliwala D, Javia A, Ghosh S, Misra A, Sawant K. Formulation and clinical perspectives of inhalation-based nanocarrier delivery: a new archetype in lung cancer treatment. Ther Deliv 2021;12:397-418. [PMID: 33902294 DOI: 10.4155/tde-2020-0101] [Reference Citation Analysis]
18 Ali N, Srivastava N. Recent Advancements for the Management of Pancreatic Cancer: Current Insights. CCTR 2021;17:267-82. [DOI: 10.2174/1573394717666210625153256] [Reference Citation Analysis]
19 Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm 2021;601:120571. [PMID: 33812967 DOI: 10.1016/j.ijpharm.2021.120571] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
20 Eriyagama DN, Yin Y, Fang S. Automated stepwise PEG synthesis using a base-labile protecting group. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132861] [Reference Citation Analysis]
21 Padayachee J, Daniels A, Balgobind A, Ariatti M, Singh M. HER-2/neu and MYC gene silencing in breast cancer: therapeutic potential and advancement in nonviral nanocarrier systems. Nanomedicine (Lond) 2020;15:1437-52. [PMID: 32515263 DOI: 10.2217/nnm-2019-0459] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
22 Ghosh S, Javia A, Shetty S, Bardoliwala D, Maiti K, Banerjee S, Khopade A, Misra A, Sawant K, Bhowmick S. Triple negative breast cancer and non-small cell lung cancer: Clinical challenges and nano-formulation approaches. J Control Release 2021;337:27-58. [PMID: 34273417 DOI: 10.1016/j.jconrel.2021.07.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Philippe GJB, Craik DJ, Henriques ST. Converting peptides into drugs targeting intracellular protein-protein interactions. Drug Discov Today 2021;26:1521-31. [PMID: 33524603 DOI: 10.1016/j.drudis.2021.01.022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
24 Kozminsky M, Carey TR, Sohn LL. DNA-Directed Patterning for Versatile Validation and Characterization of a Lipid-Based Nanoparticle Model of SARS-CoV-2. Adv Sci (Weinh) 2021;8:e2101166. [PMID: 34672117 DOI: 10.1002/advs.202101166] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Foroughi-Nia B, Barar J, Memar MY, Aghanejad A, Davaran S. Progresses in polymeric nanoparticles for delivery of tyrosine kinase inhibitors. Life Sci 2021;278:119642. [PMID: 34033837 DOI: 10.1016/j.lfs.2021.119642] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 An H, Mamuti M, Wang X, Yao H, Wang M, Zhao L, Li L. Rationally designed modular drug delivery platform based on intracellular peptide self‐assembly. Exploration 2021;1:20210153. [DOI: 10.1002/exp.20210153] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 12.0] [Reference Citation Analysis]
27 Yilmaz D, Sharp PS, Main MJ, Simpson PB. Advanced molecular imaging for the characterisation of complex medicines. Drug Discovery Today 2022. [DOI: 10.1016/j.drudis.2022.03.001] [Reference Citation Analysis]
28 Bhattacharjee A, Purkait MK, Sastri CV, Gumma S. CeO2 nanoparticles incorporated MIL-100(Fe) composites for loading of an anticancer drug: Effects of HF in composite synthesis and drug loading capacity. Inorganica Chimica Acta 2022;533:120784. [DOI: 10.1016/j.ica.2021.120784] [Reference Citation Analysis]
29 Despotopoulou D, Lagopati N, Pispas S, Gazouli M, Demetzos C, Pippa N. The technology of transdermal delivery nanosystems: from design and development to preclinical studies. Int J Pharm 2021;:121290. [PMID: 34788674 DOI: 10.1016/j.ijpharm.2021.121290] [Reference Citation Analysis]
30 Ermilova I, Swenson J. DOPC versus DOPE as a helper lipid for gene-therapies: molecular dynamics simulations with DLin-MC3-DMA. Phys Chem Chem Phys 2020;22:28256-68. [PMID: 33295352 DOI: 10.1039/d0cp05111j] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Liu Y, Zhu S, Gu Z, Chen C, Zhao Y. Toxicity of manufactured nanomaterials. Particuology 2022;69:31-48. [DOI: 10.1016/j.partic.2021.11.007] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Bariwal J, Ma H, Altenberg GA, Liang H. Nanodiscs: a versatile nanocarrier platform for cancer diagnosis and treatment. Chem Soc Rev 2022. [PMID: 35156110 DOI: 10.1039/d1cs01074c] [Reference Citation Analysis]
33 Fatima SW, Khare SK. Benefits and challenges of antibody drug conjugates as novel form of chemotherapy. J Control Release 2021;341:555-65. [PMID: 34906604 DOI: 10.1016/j.jconrel.2021.12.013] [Reference Citation Analysis]
34 Gavilán H, Avugadda SK, Fernández-Cabada T, Soni N, Cassani M, Mai BT, Chantrell R, Pellegrino T. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem Soc Rev 2021;50:11614-67. [PMID: 34661212 DOI: 10.1039/d1cs00427a] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Huang R, Gyanani V, Zhao S, Lu Y, Guo X. Imidazole-Based pH-Sensitive Convertible Liposomes for Anticancer Drug Delivery. Pharmaceuticals 2022;15:306. [DOI: 10.3390/ph15030306] [Reference Citation Analysis]
36 Liao Z, Wong SW, Yeo HL, Zhao Y. Smart nanocarriers for cancer treatment: Clinical impact and safety. NanoImpact 2020;20:100253. [DOI: 10.1016/j.impact.2020.100253] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
37 Sousa Ribeiro IR, Galdino FE, Silveira CP, Cardoso MB. Precision medicine based on nanoparticles: the paradigm between targeting and colloidal stability. Nanomedicine (Lond) 2021;16:1451-6. [PMID: 34080440 DOI: 10.2217/nnm-2021-0112] [Reference Citation Analysis]
38 Mikesell L, Eriyagama DNAM, Yin Y, Lu B, Fang S. Stepwise PEG synthesis featuring deprotection and coupling in one pot. Beilstein J Org Chem 2021;17:2976-82. [DOI: 10.3762/bjoc.17.207] [Reference Citation Analysis]
39 Madani SZM, Safaee MM, Gravely M, Silva C, Kennedy S, Bothun GD, Roxbury D. Carbon Nanotube–Liposome Complexes in Hydrogels for Controlled Drug Delivery via Near-Infrared Laser Stimulation. ACS Appl Nano Mater 2021;4:331-42. [DOI: 10.1021/acsanm.0c02700] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
40 Tang M, Lin K, Ramachandran M, Li L, Zou H, Zheng H, Ma Z, Li Y. A mitochondria-targeting lipid–small molecule hybrid nanoparticle for imaging and therapy in an orthotopic glioma model. Acta Pharmaceutica Sinica B 2022;12:2672-82. [DOI: 10.1016/j.apsb.2022.04.005] [Reference Citation Analysis]
41 Monck C, Elani Y, Ceroni F. Cell-free protein synthesis: biomedical applications and future perspectives. Chemical Engineering Research and Design 2022;177:653-8. [DOI: 10.1016/j.cherd.2021.11.025] [Reference Citation Analysis]
42 Di Francesco M, Celia C, Cristiano MC, d'Avanzo N, Ruozi B, Mircioiu C, Cosco D, Di Marzio L, Fresta M. Doxorubicin Hydrochloride-Loaded Nonionic Surfactant Vesicles to Treat Metastatic and Non-Metastatic Breast Cancer. ACS Omega 2021;6:2973-89. [PMID: 33553916 DOI: 10.1021/acsomega.0c05350] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
43 Ghosh S, Mishra P, Banerjee S, Maiti K, Khopade A, Misra A, Sawant K, Bhowmick S. Exploration of the cardinal formulation parameters influencing the encapsulation and physicochemical properties of co-loaded anticancer dual drug nanoliposomes. Journal of Drug Delivery Science and Technology 2022;71:103295. [DOI: 10.1016/j.jddst.2022.103295] [Reference Citation Analysis]
44 Chen SH, Bell DR, Luan B. Understanding interactions between biomolecules and two-dimensional nanomaterials using in silico microscopes. Adv Drug Deliv Rev 2022;186:114336. [PMID: 35597306 DOI: 10.1016/j.addr.2022.114336] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Modi S, Prajapati R, Inwati GK, Deepa N, Tirth V, Yadav VK, Yadav KK, Islam S, Gupta P, Kim D, Jeon B. Recent Trends in Fascinating Applications of Nanotechnology in Allied Health Sciences. Crystals 2022;12:39. [DOI: 10.3390/cryst12010039] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Bertuzzi DL, Braga CB, Perli G, Ornelas C. Water‐Soluble Well‐Defined Bifunctional Ferrocenyl Dendrimer with Anti‐Cancer Activity. Euro J of Inorganic Chem. [DOI: 10.1002/ejic.202101084] [Reference Citation Analysis]
47 Eslami M, Zeglio E, Alosaimi G, Yan Y, Ruprai H, Macmillan A, Seidel J, Lauto A, Joukhdar H, Rnjak-Kovacina J, Mawad D. A One Step Procedure toward Conductive Suspensions of Liposome-Polyaniline Complexes. Macromol Biosci 2020;20:e2000103. [PMID: 32537900 DOI: 10.1002/mabi.202000103] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
48 Mukherjee A, Bisht B, Dutta S, Paul MK. Current advances in the use of exosomes, liposomes, and bioengineered hybrid nanovesicles in cancer detection and therapy. Acta Pharmacol Sin 2022. [PMID: 35379933 DOI: 10.1038/s41401-022-00902-w] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
49 Kudruk S, Pottanam Chali S, Linard Matos AL, Bourque C, Dunker C, Gatsogiannis C, Ravoo BJ, Gerke V. Biodegradable and Dual-Responsive Polypeptide-Shelled Cyclodextrin-Containers for Intracellular Delivery of Membrane-Impermeable Cargo. Adv Sci (Weinh) 2021;8:e2100694. [PMID: 34278745 DOI: 10.1002/advs.202100694] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
50 Zhou X, Jiang X, Qu M, Aninwene GE 2nd, Jucaud V, Moon JJ, Gu Z, Sun W, Khademhosseini A. Engineering Antiviral Vaccines. ACS Nano 2020;14:12370-89. [PMID: 33001626 DOI: 10.1021/acsnano.0c06109] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
51 Pandian SRK, Panneerselvam T, Pavadai P, Govindaraj S, Ravishankar V, Palanisamy P, Sampath M, Sankaranarayanan M, Kunjiappan S. Nano Based Approach for the Treatment of Neglected Tropical Diseases. Front Nanotechnol 2021;3:665274. [DOI: 10.3389/fnano.2021.665274] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Hoogevest P, Tiemessen H, Metselaar JM, Drescher S, Fahr A. The Use of Phospholipids to Make Pharmaceutical Form Line Extensions. Eur J Lipid Sci Technol 2021;123:2000297. [DOI: 10.1002/ejlt.202000297] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
53 Cao Y, Dong X, Chen X. Polymer-Modified Liposomes for Drug Delivery: From Fundamentals to Applications. Pharmaceutics 2022;14:778. [DOI: 10.3390/pharmaceutics14040778] [Reference Citation Analysis]
54 Van Hoeck J, Braeckmans K, De Smedt SC, Raemdonck K. Non-viral siRNA delivery to T cells: Challenges and opportunities in cancer immunotherapy. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121510] [Reference Citation Analysis]
55 Wölk C, Nawaz HA, Maqsood I, Strati F, Brezesinski G, Hause G, Schulz‐siegmund M, Hacker MC. Amphiphilic Functionalized Oligomers: A Promising Strategy for the Postfabrication Functionalization of Liposomes. Adv Mater Interfaces 2020;7:2001168. [DOI: 10.1002/admi.202001168] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
56 Mehrizi TZ, Kafiabad SA, Eshghi P. Effects and treatment applications of polymeric nanoparticles on improving platelets' storage time: a review of the literature from 2010 to 2020. Blood Res 2021;56:215-28. [PMID: 34880140 DOI: 10.5045/br.2021.2021094] [Reference Citation Analysis]
57 Mehrizi TZ. Hemocompatibility and Hemolytic Effects of Functionalized Nanoparticles on Red Blood Cells: A Recent Review Study. NANO 2021;16:2130007. [DOI: 10.1142/s1793292021300073] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
58 Porrang S, Davaran S, Rahemi N, Allahyari S, Mostafavi E. How Advancing are Mesoporous Silica Nanoparticles? A Comprehensive Review of the Literature. IJN 2022;Volume 17:1803-27. [DOI: 10.2147/ijn.s353349] [Reference Citation Analysis]
59 Brouillard A, Deshpande N, Kulkarni AA. Engineered Multifunctional Nano- and Biological Materials for Cancer Immunotherapy. Adv Healthc Mater 2021;10:e2001680. [PMID: 33448159 DOI: 10.1002/adhm.202001680] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
60 Zahednezhad F, Shahbazi Mojarrad J, Zakeri-Milani P, Baradaran B, Mahmoudian M, Sarfraz M, Valizadeh H. Surface modification with cholesteryl acetyl carnitine, a novel cationic agent, elevates cancer cell uptake of the PEGylated liposomes. Int J Pharm 2021;609:121148. [PMID: 34600054 DOI: 10.1016/j.ijpharm.2021.121148] [Reference Citation Analysis]
61 Anand U, Carpena M, Kowalska-Góralska M, Garcia-Perez P, Sunita K, Bontempi E, Dey A, Prieto MA, Proćków J, Simal-Gandara J. Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: A comprehensive review on its potential applications, recent advances, and future perspective. Sci Total Environ 2022;821:153472. [PMID: 35093375 DOI: 10.1016/j.scitotenv.2022.153472] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
62 Mat Rani NNI, Mustafa Hussein Z, Mustapa F, Azhari H, Sekar M, Chen XY, Mohd Amin MCI. Exploring the possible targeting strategies of liposomes against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Pharm Biopharm 2021;165:84-105. [PMID: 33974973 DOI: 10.1016/j.ejpb.2021.04.021] [Reference Citation Analysis]
63 Muthiah G, Jaiswal A. Can the Union of Prodrug Therapy and Nanomedicine Lead to Better Cancer Management? Advanced NanoBiomed Research 2022;2:2100074. [DOI: 10.1002/anbr.202100074] [Reference Citation Analysis]
64 Liang W, Dong Y, Shao R, Zhang S, Wu X, Huang X, Sun B, Zeng B, Zhao J. Application of Nanoparticles in Drug Delivery for the Treatment of Osteosarcoma: Focusing on the Liposomes. J Drug Target 2021;:1-39. [PMID: 34962448 DOI: 10.1080/1061186X.2021.2023160] [Reference Citation Analysis]
65 Zadeh Mehrizi T, Eshghi P. Investigation of the effect of nanoparticles on platelet storage duration 2010–2020. Int Nano Lett 2022;12:15-45. [DOI: 10.1007/s40089-021-00340-2] [Reference Citation Analysis]
66 Ozcelik A, Aslan Z. A simple acoustofluidic device for on-chip fabrication of PLGA nanoparticles. Biomicrofluidics 2022;16:014103. [DOI: 10.1063/5.0081769] [Reference Citation Analysis]
67 Perinelli DR, Cespi M, Palmieri GF, Aluigi A, Bonacucina G. High-Resolution Ultrasound Spectroscopy for the Determination of Phospholipid Transitions in Liposomal Dispersions. Pharmaceutics 2022;14:668. [DOI: 10.3390/pharmaceutics14030668] [Reference Citation Analysis]
68 Callmann CE, Kusmierz CD, Dittmar JW, Broger L, Mirkin CA. Impact of Liposomal Spherical Nucleic Acid Structure on Immunotherapeutic Function. ACS Cent Sci 2021;7:892-9. [PMID: 34079904 DOI: 10.1021/acscentsci.1c00181] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 10.0] [Reference Citation Analysis]
69 Escudé Martinez de Castilla P, Tong L, Huang C, Sofias AM, Pastorin G, Chen X, Storm G, Schiffelers RM, Wang JW. Extracellular vesicles as a drug delivery system: A systematic review of preclinical studies. Adv Drug Deliv Rev 2021;175:113801. [PMID: 34015418 DOI: 10.1016/j.addr.2021.05.011] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 22.0] [Reference Citation Analysis]
70 Carvalho PM, Makowski M, Domingues MM, Martins IC, Santos NC. Lipid membrane-based therapeutics and diagnostics. Arch Biochem Biophys 2021;704:108858. [PMID: 33798534 DOI: 10.1016/j.abb.2021.108858] [Reference Citation Analysis]