BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Andersson U, Ottestad W, Tracey KJ. Extracellular HMGB1: a therapeutic target in severe pulmonary inflammation including COVID-19? Mol Med. 2020;26:42. [PMID: 32380958 DOI: 10.1186/s10020-020-00172-4] [Cited by in Crossref: 84] [Cited by in F6Publishing: 87] [Article Influence: 42.0] [Reference Citation Analysis]
Number Citing Articles
1 Islam MT, Bardaweel SK, Mubarak MS, Koch W, Gaweł-Beben K, Antosiewicz B, Sharifi-Rad J. Immunomodulatory Effects of Diterpenes and Their Derivatives Through NLRP3 Inflammasome Pathway: A Review. Front Immunol 2020;11:572136. [PMID: 33101293 DOI: 10.3389/fimmu.2020.572136] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
2 Zhu Y, Zhang Z, Song J, Qian W, Gu X, Yang C, Shen N, Xue F, Tang Y. SARS-CoV-2-Encoded MiRNAs Inhibit Host Type I Interferon Pathway and Mediate Allelic Differential Expression of Susceptible Gene. Front Immunol 2021;12:767726. [PMID: 35003084 DOI: 10.3389/fimmu.2021.767726] [Reference Citation Analysis]
3 Wei J, Alfajaro MM, DeWeirdt PC, Hanna RE, Lu-Culligan WJ, Cai WL, Strine MS, Zhang SM, Graziano VR, Schmitz CO, Chen JS, Mankowski MC, Filler RB, Ravindra NG, Gasque V, de Miguel FJ, Patil A, Chen H, Oguntuyo KY, Abriola L, Surovtseva YV, Orchard RC, Lee B, Lindenbach BD, Politi K, van Dijk D, Kadoch C, Simon MD, Yan Q, Doench JG, Wilen CB. Genome-wide CRISPR Screens Reveal Host Factors Critical for SARS-CoV-2 Infection. Cell 2021;184:76-91.e13. [PMID: 33147444 DOI: 10.1016/j.cell.2020.10.028] [Cited by in Crossref: 105] [Cited by in F6Publishing: 105] [Article Influence: 52.5] [Reference Citation Analysis]
4 Limanaqi F, Busceti CL, Biagioni F, Lazzeri G, Forte M, Schiavon S, Sciarretta S, Frati G, Fornai F. Cell Clearing Systems as Targets of Polyphenols in Viral Infections: Potential Implications for COVID-19 Pathogenesis.Antioxidants (Basel). 2020;9:1105. [PMID: 33182802 DOI: 10.3390/antiox9111105] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
5 Sivakorn C, Dechsanga J, Jamjumrus L, Boonnak K, Schultz MJ, Dorndorp AM, Phumratanaprapin W, Ratanarat R, Naorungroj T, Wattanawinitchai P, Siripoon T, Duangdee C, Techarang T. High Mobility Group Box 1 and Interleukin 6 at Intensive Care Unit Admission as Biomarkers in Critically Ill COVID-19 Patients. Am J Trop Med Hyg 2021:tpmd210165. [PMID: 33939645 DOI: 10.4269/ajtmh.21-0165] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
6 Zeidan AM, Komrokji RS, Brunner AM. TIM-3 pathway dysregulation and targeting in cancer. Expert Rev Anticancer Ther 2021;21:523-34. [PMID: 33334180 DOI: 10.1080/14737140.2021.1865814] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Aboudounya MM, Heads RJ. COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation. Mediators Inflamm 2021;2021:8874339. [PMID: 33505220 DOI: 10.1155/2021/8874339] [Cited by in Crossref: 15] [Cited by in F6Publishing: 22] [Article Influence: 15.0] [Reference Citation Analysis]
8 Adil MS, Verma A, Rudraraju M, Narayanan SP, Somanath PR. Akt-independent effects of triciribine on ACE2 expression in human lung epithelial cells: Potential benefits in restricting SARS-CoV2 infection. J Cell Physiol 2021;236:6597-606. [PMID: 33624300 DOI: 10.1002/jcp.30343] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Son M, Diamond B, Shin JS. Editorial: The Role of HMGB1 in Immunity. Front Immunol 2020;11:594253. [PMID: 33013940 DOI: 10.3389/fimmu.2020.594253] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Talotta R, Robertson E. Autoimmunity as the comet tail of COVID-19 pandemic. World J Clin Cases 2020; 8(17): 3621-3644 [PMID: 32953841 DOI: 10.12998/wjcc.v8.i17.3621] [Cited by in CrossRef: 25] [Cited by in F6Publishing: 13] [Article Influence: 12.5] [Reference Citation Analysis]
11 Chen Z, Xu SL, Ge LY, Zhu J, Zheng T, Zhu Z, Zhou L. Sialic acid-binding immunoglobulin-like lectin 9 as a potential therapeutic target for chronic obstructive pulmonary disease. Chin Med J (Engl) 2021;134:757-64. [PMID: 33595976 DOI: 10.1097/CM9.0000000000001381] [Reference Citation Analysis]
12 Lunin SM, Novoselova EG, Glushkova OV, Parfenyuk SB, Novoselova TV, Khrenov MO. Cell Senescence and Central Regulators of Immune Response. Int J Mol Sci 2022;23:4109. [PMID: 35456927 DOI: 10.3390/ijms23084109] [Reference Citation Analysis]
13 Thimmulappa RK, Mudnakudu-Nagaraju KK, Shivamallu C, Subramaniam KJT, Radhakrishnan A, Bhojraj S, Kuppusamy G. Antiviral and immunomodulatory activity of curcumin: A case for prophylactic therapy for COVID-19. Heliyon 2021;7:e06350. [PMID: 33655086 DOI: 10.1016/j.heliyon.2021.e06350] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 14.0] [Reference Citation Analysis]
14 Ma Z, Yang KY, Huang Y, Lui KO. Endothelial contribution to COVID-19: an update on mechanisms and therapeutic implications. J Mol Cell Cardiol 2021;164:69-82. [PMID: 34838588 DOI: 10.1016/j.yjmcc.2021.11.010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
15 Zhou T, Su TT, Mudianto T, Wang J. Immune asynchrony in COVID-19 pathogenesis and potential immunotherapies. J Exp Med 2020;217:e20200674. [PMID: 32910820 DOI: 10.1084/jem.20200674] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 13.5] [Reference Citation Analysis]
16 Zhao N, Di B, Xu LL. The NLRP3 inflammasome and COVID-19: Activation, pathogenesis and therapeutic strategies. Cytokine Growth Factor Rev 2021:S1359-6101(21)00054-X. [PMID: 34183243 DOI: 10.1016/j.cytogfr.2021.06.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Gomez Marti JL, Brufsky AM. Considerations of the effects of commonly investigated drugs for COVID-19 in the cholesterol synthesis pathway. Expert Opin Pharmacother 2021;22:947-52. [PMID: 33703986 DOI: 10.1080/14656566.2021.1897104] [Reference Citation Analysis]
18 Andersson U. The cholinergic anti-inflammatory pathway alleviates acute lung injury. Mol Med 2020;26:64. [PMID: 32600316 DOI: 10.1186/s10020-020-00184-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
19 Fernández-Martínez NF, Ortiz-González-Serna R, Serrano-Ortiz Á, Rivera-Izquierdo M, Ruiz-Montero R, Pérez-Contreras M, Guerrero-Fernández de Alba I, Romero-Duarte Á, Salcedo-Leal I. Sex Differences and Predictors of In-Hospital Mortality among Patients with COVID-19: Results from the ANCOHVID Multicentre Study. Int J Environ Res Public Health 2021;18:9018. [PMID: 34501608 DOI: 10.3390/ijerph18179018] [Reference Citation Analysis]
20 Deigin VI, Poluektova EA, Beniashvili AG, Kozin SA, Poluektov YM. Development of Peptide Biopharmaceuticals in Russia. Pharmaceutics 2022;14:716. [DOI: 10.3390/pharmaceutics14040716] [Reference Citation Analysis]
21 Del Turco S, Vianello A, Ragusa R, Caselli C, Basta G. COVID-19 and cardiovascular consequences: Is the endothelial dysfunction the hardest challenge? Thromb Res 2020;196:143-51. [PMID: 32871306 DOI: 10.1016/j.thromres.2020.08.039] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 14.0] [Reference Citation Analysis]
22 Aziz M, Brenner M, Wang P. Therapeutic Potential of B-1a Cells in COVID-19. Shock 2020;54:586-94. [PMID: 32604223 DOI: 10.1097/SHK.0000000000001610] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
23 Preissner KT, Fischer S, Deindl E. Extracellular RNA as a Versatile DAMP and Alarm Signal That Influences Leukocyte Recruitment in Inflammation and Infection. Front Cell Dev Biol 2020;8:619221. [PMID: 33392206 DOI: 10.3389/fcell.2020.619221] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
24 Zeng HL, Chen D, Yan J, Yang Q, Han QQ, Li SS, Cheng L. Proteomic characteristics of bronchoalveolar lavage fluid in critical COVID-19 patients. FEBS J 2021;288:5190-200. [PMID: 33098359 DOI: 10.1111/febs.15609] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
25 Chiappalupi S, Salvadori L, Vukasinovic A, Donato R, Sorci G, Riuzzi F. Targeting RAGE to prevent SARS-CoV-2-mediated multiple organ failure: Hypotheses and perspectives. Life Sci 2021;272:119251. [PMID: 33636175 DOI: 10.1016/j.lfs.2021.119251] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
26 Nishibori M, Wang D, Ousaka D, Wake H. High Mobility Group Box-1 and Blood-Brain Barrier Disruption. Cells 2020;9:E2650. [PMID: 33321691 DOI: 10.3390/cells9122650] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
27 Chiappalupi S, Salvadori L, Donato R, Riuzzi F, Sorci G. Hyperactivated RAGE in Comorbidities as a Risk Factor for Severe COVID-19-The Role of RAGE-RAS Crosstalk. Biomolecules 2021;11:876. [PMID: 34204735 DOI: 10.3390/biom11060876] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Torres-Ruiz J, Absalón-Aguilar A, Nuñez-Aguirre M, Pérez-Fragoso A, Carrillo-Vázquez DA, Maravillas-Montero JL, Mejía-Domínguez NR, Llorente L, Alcalá-Carmona B, Lira-Luna J, Núñez-Álvarez C, Juárez-Vega G, Meza-Sánchez D, Hernández-Gilsoul T, Tapia-Rodríguez M, Gómez-Martín D. Neutrophil Extracellular Traps Contribute to COVID-19 Hyperinflammation and Humoral Autoimmunity. Cells 2021;10:2545. [PMID: 34685525 DOI: 10.3390/cells10102545] [Reference Citation Analysis]
29 Petrarca L, Manganelli V, Nenna R, Frassanito A, Ben David S, Mancino E, Garofalo T, Sorice M, Misasi R, Midulla F. HMGB1 in Pediatric COVID-19 Infection and MIS-C: A Pilot Study. Front Pediatr 2022;10:868269. [DOI: 10.3389/fped.2022.868269] [Reference Citation Analysis]
30 Gaboriaud C, Lorvellec M, Rossi V, Dumestre-Pérard C, Thielens NM. Complement System and Alarmin HMGB1 Crosstalk: For Better or Worse. Front Immunol 2022;13:869720. [PMID: 35572583 DOI: 10.3389/fimmu.2022.869720] [Reference Citation Analysis]
31 Rhoades R, Solomon S, Johnson C, Teng S. Impact of SARS-CoV-2 on Host Factors Involved in Mental Disorders. Front Microbiol 2022;13:845559. [PMID: 35444632 DOI: 10.3389/fmicb.2022.845559] [Reference Citation Analysis]
32 Gowda P, Patrick S, Joshi SD, Kumawat RK, Sen E. Glycyrrhizin prevents SARS-CoV-2 S1 and Orf3a induced high mobility group box 1 (HMGB1) release and inhibits viral replication. Cytokine 2021;142:155496. [PMID: 33773396 DOI: 10.1016/j.cyto.2021.155496] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
33 Wang M, Gauthier AG, Kennedy TP, Wang H, Velagapudi UK, Talele TT, Lin M, Wu J, Daley L, Yang X, Patel V, Mun SS, Ashby CR Jr, Mantell LL. 2-O, 3-O desulfated heparin (ODSH) increases bacterial clearance and attenuates lung injury in cystic fibrosis by restoring HMGB1-compromised macrophage function. Mol Med 2021;27:79. [PMID: 34271850 DOI: 10.1186/s10020-021-00334-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Tan LY, Komarasamy TV, Rmt Balasubramaniam V. Hyperinflammatory Immune Response and COVID-19: A Double Edged Sword. Front Immunol 2021;12:742941. [PMID: 34659238 DOI: 10.3389/fimmu.2021.742941] [Reference Citation Analysis]
35 Vadakedath S, Kandi V, Mohapatra RK, Pinnelli VBK, Yegurla RR, Shahapur PR, Godishala V, Natesan S, Vora KS, Sharun K, Tiwari R, Bilal M, Dhama K. Immunological aspects and gender bias during respiratory viral infections including novel Coronavirus disease-19 (COVID-19): A scoping review. J Med Virol 2021;93:5295-309. [PMID: 33990972 DOI: 10.1002/jmv.27081] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 DiNicolantonio JJ, Barroso J, McCarty M. Ivermectin may be a clinically useful anti-inflammatory agent for late-stage COVID-19. Open Heart 2020;7:e001350. [PMID: 32895293 DOI: 10.1136/openhrt-2020-001350] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
37 Bondy SC, Wu M, Prasad KN. Attenuation of acute and chronic inflammation using compounds derived from plants. Exp Biol Med (Maywood) 2021;246:406-13. [PMID: 33023332 DOI: 10.1177/1535370220960690] [Reference Citation Analysis]
38 Rajaiah R, Abhilasha KV, Shekar MA, Vogel SN, Vishwanath BS. Evaluation of mechanisms of action of re-purposed drugs for treatment of COVID-19. Cell Immunol 2020;358:104240. [PMID: 33137649 DOI: 10.1016/j.cellimm.2020.104240] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
39 Colavita L, Ciprandi G, Salpietro A, Cuppari C. HMGB1: A pleiotropic activity. Pediatr Allergy Immunol 2020;31 Suppl 26:63-5. [PMID: 33236418 DOI: 10.1111/pai.13358] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
40 de Rivero Vaccari JC, Dietrich WD, Keane RW, de Rivero Vaccari JP. The Inflammasome in Times of COVID-19. Front Immunol 2020;11:583373. [PMID: 33149733 DOI: 10.3389/fimmu.2020.583373] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 11.5] [Reference Citation Analysis]
41 Ahmad T, Chaudhuri R, Joshi MC, Almatroudi A, Rahmani AH, Ali SM. COVID-19: The Emerging Immunopathological Determinants for Recovery or Death. Front Microbiol 2020;11:588409. [PMID: 33335518 DOI: 10.3389/fmicb.2020.588409] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
42 Land WG. Role of DAMPs in respiratory virus-induced acute respiratory distress syndrome-with a preliminary reference to SARS-CoV-2 pneumonia. Genes Immun 2021;22:141-60. [PMID: 34140652 DOI: 10.1038/s41435-021-00140-w] [Reference Citation Analysis]
43 Zhang BF, Song W, Wang J, Wen PF, Zhang YM. Anti-high-mobility group box-1 (HMGB1) mediates the apoptosis of alveolar epithelial cells (AEC) by receptor of advanced glycation end-products (RAGE)/c-Jun N-terminal kinase (JNK) pathway in the rats of crush injuries. J Orthop Surg Res 2022;17:20. [PMID: 35033142 DOI: 10.1186/s13018-021-02903-7] [Reference Citation Analysis]
44 Leis AA, Montesi AP, Khan SM, Montesi M. Case Report: Malignant Melanoma Associated With COVID-19: A Coincidence or a Clue? Front Med (Lausanne) 2022;9:845558. [PMID: 35721065 DOI: 10.3389/fmed.2022.845558] [Reference Citation Analysis]
45 Cazzato G, Colagrande A, Cimmino A, Cicco G, Scarcella VS, Tarantino P, Lospalluti L, Romita P, Foti C, Demarco A, Sablone S, Candance PMV, Cicco S, Lettini T, Ingravallo G, Resta L. HMGB1-TIM3-HO1: A New Pathway of Inflammation in Skin of SARS-CoV-2 Patients? A Retrospective Pilot Study. Biomolecules 2021;11:1219. [PMID: 34439887 DOI: 10.3390/biom11081219] [Reference Citation Analysis]
46 Richard K, Piepenbrink KH, Shirey KA, Gopalakrishnan A, Nallar S, Prantner DJ, Perkins DJ, Lai W, Vlk A, Toshchakov VY, Feng C, Fanaroff R, Medvedev AE, Blanco JCG, Vogel SN. A mouse model of human TLR4 D299G/T399I SNPs reveals mechanisms of altered LPS and pathogen responses. J Exp Med 2021;218:e20200675. [PMID: 33216117 DOI: 10.1084/jem.20200675] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
47 Zubieta-Calleja GR, Zubieta-DeUrioste N. High Altitude Pulmonary Edema, High Altitude Cerebral Edema, and Acute Mountain Sickness: an enhanced opinion from the High Andes - La Paz, Bolivia 3,500 m. Rev Environ Health 2022. [PMID: 35487499 DOI: 10.1515/reveh-2021-0172] [Reference Citation Analysis]
48 Zaidi AK, Dehgani-Mobaraki P. The mechanisms of action of ivermectin against SARS-CoV-2-an extensive review. J Antibiot (Tokyo) 2021. [PMID: 34931048 DOI: 10.1038/s41429-021-00491-6] [Reference Citation Analysis]
49 Fehrenbach H, Kasper M, Tschernig T, Shearman MS, Schuh D, Müller M. Receptor for advanced glycation endproducts (RAGE) exhibits highly differential cellular and subcellular localisation in rat and human lung. Cell Mol Biol (Noisy-le-grand) 1998;44:1147-57. [PMID: 9846897 [PMID: 9846897 DOI: 10.1161/atvbaha.120.315527] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.1] [Reference Citation Analysis]
50 Menegazzi M, Campagnari R, Bertoldi M, Crupi R, Di Paola R, Cuzzocrea S. Protective Effect of Epigallocatechin-3-Gallate (EGCG) in Diseases with Uncontrolled Immune Activation: Could Such a Scenario Be Helpful to Counteract COVID-19? Int J Mol Sci 2020;21:E5171. [PMID: 32708322 DOI: 10.3390/ijms21145171] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 9.0] [Reference Citation Analysis]
51 Jankauskaite L, Malinauskas M, Mickeviciute G. HMGB1: A Potential Target of Nervus Vagus Stimulation in Pediatric SARS-CoV-2-Induced ALI/ARDS. Front Pediatr 2022;10:884539. [DOI: 10.3389/fped.2022.884539] [Reference Citation Analysis]
52 Pradhan A, Olsson PE. Sex differences in severity and mortality from COVID-19: are males more vulnerable? Biol Sex Differ 2020;11:53. [PMID: 32948238 DOI: 10.1186/s13293-020-00330-7] [Cited by in Crossref: 55] [Cited by in F6Publishing: 50] [Article Influence: 27.5] [Reference Citation Analysis]
53 Stoy N. Involvement of Interleukin-1 Receptor-Associated Kinase 4 and Interferon Regulatory Factor 5 in the Immunopathogenesis of SARS-CoV-2 Infection: Implications for the Treatment of COVID-19. Front Immunol 2021;12:638446. [PMID: 33936053 DOI: 10.3389/fimmu.2021.638446] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Bime C, Casanova NG, Nikolich-Zugich J, Knox KS, Camp SM, Garcia JGN. Strategies to DAMPen COVID-19-mediated lung and systemic inflammation and vascular injury. Transl Res 2021;232:37-48. [PMID: 33358868 DOI: 10.1016/j.trsl.2020.12.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
55 Wu Q, Coumoul X, Grandjean P, Barouki R, Audouze K. Endocrine disrupting chemicals and COVID-19 relationships: a computational systems biology approach. medRxiv 2020:2020. [PMID: 32699854 DOI: 10.1101/2020.07.10.20150714] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
56 Kaklamanos A, Belogiannis K, Skendros P, Gorgoulis VG, Vlachoyiannopoulos PG, Tzioufas AG. COVID-19 Immunobiology: Lessons Learned, New Questions Arise. Front Immunol 2021;12:719023. [PMID: 34512643 DOI: 10.3389/fimmu.2021.719023] [Reference Citation Analysis]
57 Root-Bernstein R. Innate Receptor Activation Patterns Involving TLR and NLR Synergisms in COVID-19, ALI/ARDS and Sepsis Cytokine Storms: A Review and Model Making Novel Predictions and Therapeutic Suggestions. Int J Mol Sci 2021;22:2108. [PMID: 33672738 DOI: 10.3390/ijms22042108] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
58 Del Fresno C, Sancho D. Myeloid cells in sensing of tissue damage. Curr Opin Immunol 2021;68:34-40. [PMID: 33035713 DOI: 10.1016/j.coi.2020.08.006] [Reference Citation Analysis]
59 Chen Y, Guo TL. Dietary advanced glycation end-products elicit toxicological effects by disrupting gut microbiome and immune homeostasis. J Immunotoxicol 2021;18:93-104. [PMID: 34436982 DOI: 10.1080/1547691X.2021.1959677] [Reference Citation Analysis]
60 Hudson J, Farkas L. Epigenetic Regulation of Endothelial Dysfunction and Inflammation in Pulmonary Arterial Hypertension. Int J Mol Sci 2021;22:12098. [PMID: 34829978 DOI: 10.3390/ijms222212098] [Reference Citation Analysis]
61 Ogawa N, Nakajima S, Tamada K, Yokoue N, Tachibana H, Okazawa M, Oyama T, Abe H, Yamazaki H, Yoshimori A, Sato A, Kamiya T, Yokomizo T, Uchiumi F, Abe T, Tanuma SI. Trimebutine suppresses Toll-like receptor 2/4/7/8/9 signaling pathways in macrophages. Arch Biochem Biophys 2021;711:109029. [PMID: 34517011 DOI: 10.1016/j.abb.2021.109029] [Reference Citation Analysis]
62 Birts CN, Wilton DC. Age, obesity and hyperglycaemia: Activation of innate immunity initiates a series of molecular interactions involving anionic surfaces leading to COVID-19 morbidity and mortality. Med Hypotheses 2021;155:110646. [PMID: 34392108 DOI: 10.1016/j.mehy.2021.110646] [Reference Citation Analysis]
63 DiNicolantonio JJ, McCarty M, Barroso-Aranda J. Melatonin may decrease risk for and aid treatment of COVID-19 and other RNA viral infections. Open Heart 2021;8:e001568. [PMID: 33741691 DOI: 10.1136/openhrt-2020-001568] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
64 Gauthier AG, Lin M, Wu J, Kennedy TP, Daley LA, Ashby CR Jr, Mantell LL. From nicotine to the cholinergic anti-inflammatory reflex - Can nicotine alleviate the dysregulated inflammation in COVID-19? J Immunotoxicol 2021;18:23-9. [PMID: 33860730 DOI: 10.1080/1547691X.2021.1875085] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
65 Okazawa M, Oyama T, Abe H, Yamazaki H, Yoshimori A, Tsukimoto M, Yoshizawa K, Takao K, Sugita Y, Kamiya T, Uchiumi F, Sakagami H, Abe T, Tanuma SI. A 3-styrylchromone converted from trimebutine 3D pharmacophore possesses dual suppressive effects on RAGE and TLR4 signaling pathways. Biochem Biophys Res Commun 2021;566:1-8. [PMID: 34111666 DOI: 10.1016/j.bbrc.2021.05.096] [Reference Citation Analysis]
66 Bozorgmehr N, Mashhouri S, Perez Rosero E, Xu L, Shahbaz S, Sligl W, Osman M, Kutsogiannis DJ, MacIntyre E, O'Neil CR, Elahi S. Galectin-9, a Player in Cytokine Release Syndrome and a Surrogate Diagnostic Biomarker in SARS-CoV-2 Infection. mBio 2021;12:e00384-21. [PMID: 33947753 DOI: 10.1128/mBio.00384-21] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
67 Zhang Z, Zhang X, Bi K, He Y, Yan W, Yang CS, Zhang J. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19. Trends Food Sci Technol 2021;114:11-24. [PMID: 34054222 DOI: 10.1016/j.tifs.2021.05.023] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
68 Štros M, Polanská EV, Hlaváčová T, Skládal P. Progress in Assays of HMGB1 Levels in Human Plasma—The Potential Prognostic Value in COVID-19. Biomolecules 2022;12:544. [DOI: 10.3390/biom12040544] [Reference Citation Analysis]
69 Gedefaw L, Ullah S, Lee TMH, Yip SP, Huang CL. Targeting Inflammasome Activation in COVID-19: Delivery of RNA Interference-Based Therapeutic Molecules. Biomedicines 2021;9:1823. [PMID: 34944639 DOI: 10.3390/biomedicines9121823] [Reference Citation Analysis]
70 Pei X, Jiang H, Liu X, Li L, Li C, Xiao X, Li D, Tang S. Targeting HMGB1 inhibits T-2 toxin-induced neurotoxicity via regulation of oxidative stress, neuroinflammation and neuronal apoptosis. Food Chem Toxicol 2021;151:112134. [PMID: 33762183 DOI: 10.1016/j.fct.2021.112134] [Reference Citation Analysis]
71 Søvik S, Bådstøløkken PM, Sørensen V, Myhre PL, Prebensen C, Omland T, Berdal JE. A single-centre, prospective cohort study of COVID-19 patients admitted to ICU for mechanical ventilatory support. Acta Anaesthesiol Scand 2021;65:351-9. [PMID: 33128800 DOI: 10.1111/aas.13726] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
72 Ding X, Li S, Zhu L. Potential effects of HMGB1 on viral replication and virus infection-induced inflammatory responses: A promising therapeutic target for virus infection-induced inflammatory diseases. Cytokine Growth Factor Rev 2021:S1359-6101(21)00065-4. [PMID: 34503914 DOI: 10.1016/j.cytogfr.2021.08.003] [Reference Citation Analysis]
73 De Francesco EM, Vella V, Belfiore A. COVID-19 and Diabetes: The Importance of Controlling RAGE. Front Endocrinol (Lausanne) 2020;11:526. [PMID: 32760352 DOI: 10.3389/fendo.2020.00526] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
74 Lupu L, Palmer A, Huber-Lang M. Inflammation, Thrombosis, and Destruction: The Three-Headed Cerberus of Trauma- and SARS-CoV-2-Induced ARDS. Front Immunol. 2020;11:584514. [PMID: 33101314 DOI: 10.3389/fimmu.2020.584514] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
75 Day JD, Park S, Ranard BL, Singh H, Chow CC, Vodovotz Y. Divergent COVID-19 Disease Trajectories Predicted by a DAMP-Centered Immune Network Model. Front Immunol 2021;12:754127. [PMID: 34777366 DOI: 10.3389/fimmu.2021.754127] [Reference Citation Analysis]
76 Wang S, Zhang Y. HMGB1 in inflammation and cancer. J Hematol Oncol 2020;13:116. [PMID: 32831115 DOI: 10.1186/s13045-020-00950-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
77 Amor S, Fernández Blanco L, Baker D. Innate immunity during SARS-CoV-2: evasion strategies and activation trigger hypoxia and vascular damage. Clin Exp Immunol 2020;202:193-209. [PMID: 32978971 DOI: 10.1111/cei.13523] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 12.5] [Reference Citation Analysis]
78 Gauthier AG, Wu J, Lin M, Sitapara R, Kulkarni A, Thakur GA, Schmidt EE, Perron JC, Ashby CR Jr, Mantell LL. The Positive Allosteric Modulation of alpha7-Nicotinic Cholinergic Receptors by GAT107 Increases Bacterial Lung Clearance in Hyperoxic Mice by Decreasing Oxidative Stress in Macrophages. Antioxidants (Basel) 2021;10:135. [PMID: 33477969 DOI: 10.3390/antiox10010135] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
79 van den Berg DF, Te Velde AA. Severe COVID-19: NLRP3 Inflammasome Dysregulated. Front Immunol 2020;11:1580. [PMID: 32670297 DOI: 10.3389/fimmu.2020.01580] [Cited by in Crossref: 57] [Cited by in F6Publishing: 58] [Article Influence: 28.5] [Reference Citation Analysis]
80 Infante M, Ricordi C, Alejandro R, Caprio M, Fabbri A. Hydroxychloroquine in the COVID-19 pandemic era: in pursuit of a rational use for prophylaxis of SARS-CoV-2 infection. Expert Rev Anti Infect Ther 2021;19:5-16. [PMID: 32693652 DOI: 10.1080/14787210.2020.1799785] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
81 Cartin-Ceba R, Khatua B, El-Kurdi B, Trivedi S, Kostenko S, Imam Z, Smith R, Snozek C, Navina S, Sharma V, McFayden B, Ionescu F, Stolow E, Keiser S, Tejani A, Harrington A, Acosta P, Kuwelker S, Echavarria J, Nair GB, Bataineh A, Singh VP. Evidence showing lipotoxicity worsens outcomes in covid-19 patients and insights about the underlying mechanisms. iScience 2022;25:104322. [PMID: 35502320 DOI: 10.1016/j.isci.2022.104322] [Reference Citation Analysis]
82 Clark IA. Chronic cerebral aspects of long COVID, post-stroke syndromes and similar states share their pathogenesis and perispinal etanercept treatment logic. Pharmacol Res Perspect 2022;10:e00926. [PMID: 35174650 DOI: 10.1002/prp2.926] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Kanoi BN, Egwang TG. Sex differences in concentrations of HMGB1 and numbers of pigmented monocytes in infants and young children with malaria. Parasitol Int 2021;84:102387. [PMID: 34022424 DOI: 10.1016/j.parint.2021.102387] [Reference Citation Analysis]
84 Mittal N, Mittal R. Inhaled route and anti-inflammatory action of ivermectin: Do they hold promise in fighting against COVID-19? Med Hypotheses 2021;146:110364. [PMID: 33246694 DOI: 10.1016/j.mehy.2020.110364] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
85 Wu Q, Coumoul X, Grandjean P, Barouki R, Audouze K. Endocrine disrupting chemicals and COVID-19 relationships: A computational systems biology approach. Environ Int 2020;157:106232. [PMID: 33223326 DOI: 10.1016/j.envint.2020.106232] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
86 Zheng W, Huang X, Lai Y, Liu X, Jiang Y, Zhan S. Glycyrrhizic Acid for COVID-19: Findings of Targeting Pivotal Inflammatory Pathways Triggered by SARS-CoV-2. Front Pharmacol 2021;12:631206. [PMID: 34177566 DOI: 10.3389/fphar.2021.631206] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
87 Suzuki A, Efird JT, Redding TS 4th, Thompson AD Jr, Press AM, Williams CD, Hostler CJ, Hunt CM. COVID-19-Associated Mortality in US Veterans with and without SARS-CoV-2 Infection. Int J Environ Res Public Health 2021;18:8486. [PMID: 34444232 DOI: 10.3390/ijerph18168486] [Reference Citation Analysis]
88 Lv L, Zhang L. Host proviral and antiviral factors for SARS-CoV-2. Virus Genes 2021. [PMID: 34510331 DOI: 10.1007/s11262-021-01869-2] [Reference Citation Analysis]
89 Mahler M, Meroni PL, Infantino M, Buhler KA, Fritzler MJ. Circulating Calprotectin as a Biomarker of COVID-19 Severity. Expert Rev Clin Immunol 2021;17:431-43. [PMID: 33750254 DOI: 10.1080/1744666X.2021.1905526] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
90 Fan W, Yuan W, Ding X, Zhu L. β-catenin has potential effects on the expression, subcellular localization, and release of high mobility group box 1 during bovine herpesvirus 1 productive infection in MDBK cell culture. Virulence 2021;12:1345-61. [PMID: 34008469 DOI: 10.1080/21505594.2021.1926409] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
91 Kumar V. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol 2020;89:107087. [PMID: 33075714 DOI: 10.1016/j.intimp.2020.107087] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
92 Diamond B, Volpe BT, VanPatten S, Al Abed Y. SARS-CoV-2 and interferon blockade. Mol Med 2020;26:103. [PMID: 33167852 DOI: 10.1186/s10020-020-00231-w] [Reference Citation Analysis]
93 Yamada H, Okamoto M, Nagasaki Y, Yoshio S, Nouno T, Yano C, Tanaka T, Watanabe F, Shibata N, Arimizu Y, Fukamachi Y, Zaizen Y, Hamada N, Kawaguchi A, Hoshino T, Morita S. Analysis of Early Biomarkers Associated with the Development of Critical Respiratory Failure in Coronavirus Disease 2019 (COVID-19). Diagnostics 2022;12:339. [DOI: 10.3390/diagnostics12020339] [Reference Citation Analysis]
94 Azoulay E, Fartoukh M, Darmon M, Géri G, Voiriot G, Dupont T, Zafrani L, Girodias L, Labbé V, Dres M, Beurton A, Vieillard-Baron A, Demoule A. Increased mortality in patients with severe SARS-CoV-2 infection admitted within seven days of disease onset. Intensive Care Med 2020;46:1714-22. [PMID: 32780165 DOI: 10.1007/s00134-020-06202-3] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 13.0] [Reference Citation Analysis]
95 Bi X, Jiang B, Zhou J, Fan X, Yan X, Liang J, Luo L, Yin Z. CBP Bromodomain Inhibition Rescues Mice From Lethal Sepsis Through Blocking HMGB1-Mediated Inflammatory Responses. Front Immunol 2020;11:625542. [PMID: 33603756 DOI: 10.3389/fimmu.2020.625542] [Reference Citation Analysis]
96 Jin Y, Ji W, Yang H, Chen S, Zhang W, Duan G. Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches.Signal Transduct Target Ther. 2020;5:293. [PMID: 33361764 DOI: 10.1038/s41392-020-00454-7] [Cited by in Crossref: 55] [Cited by in F6Publishing: 50] [Article Influence: 27.5] [Reference Citation Analysis]
97 Chen R, Huang Y, Quan J, Liu J, Wang H, Billiar TR, Lotze MT, Zeh HJ, Kang R, Tang D. HMGB1 as a potential biomarker and therapeutic target for severe COVID-19. Heliyon 2020;6:e05672. [PMID: 33313438 DOI: 10.1016/j.heliyon.2020.e05672] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
98 Karkischenko VN, Skvortsova VI, Gasanov MT, Fokin YV, Nesterov MS, Petrova NV, Alimkina OV, Pomytkin IA. Inhaled [D-Ala2]-Dynorphin 1-6 Prevents Hyperacetylation and Release of High Mobility Group Box 1 in a Mouse Model of Acute Lung Injury. J Immunol Res 2021;2021:4414544. [PMID: 34616852 DOI: 10.1155/2021/4414544] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
99 Bailey KL, Samuelson DR, Wyatt TA. Alcohol use disorder: A pre-existing condition for COVID-19? Alcohol 2021;90:11-7. [PMID: 33080339 DOI: 10.1016/j.alcohol.2020.10.003] [Cited by in Crossref: 26] [Cited by in F6Publishing: 15] [Article Influence: 26.0] [Reference Citation Analysis]
100 Camps J, Castañé H, Rodríguez-Tomàs E, Baiges-Gaya G, Hernández-Aguilera A, Arenas M, Iftimie S, Joven J. On the Role of Paraoxonase-1 and Chemokine Ligand 2 (C-C motif) in Metabolic Alterations Linked to Inflammation and Disease. A 2021 Update. Biomolecules 2021;11:971. [PMID: 34356595 DOI: 10.3390/biom11070971] [Reference Citation Analysis]
101 Wei J, Alfajaro MM, Hanna RE, DeWeirdt PC, Strine MS, Lu-Culligan WJ, Zhang SM, Graziano VR, Schmitz CO, Chen JS, Mankowski MC, Filler RB, Gasque V, de Miguel F, Chen H, Oguntuyo K, Abriola L, Surovtseva YV, Orchard RC, Lee B, Lindenbach B, Politi K, van Dijk D, Simon MD, Yan Q, Doench JG, Wilen CB. Genome-wide CRISPR screen reveals host genes that regulate SARS-CoV-2 infection. bioRxiv 2020:2020. [PMID: 32869025 DOI: 10.1101/2020.06.16.155101] [Cited by in Crossref: 29] [Cited by in F6Publishing: 8] [Article Influence: 14.5] [Reference Citation Analysis]
102 Limanaqi F, Zecchini S, Dino B, Strizzi S, Cappelletti G, Utyro O, Vanetti C, Garziano M, Saulle I, Clerici M, Biasin M. Dopamine Reduces SARS-CoV-2 Replication In Vitro through Downregulation of D2 Receptors and Upregulation of Type-I Interferons. Cells 2022;11:1691. [DOI: 10.3390/cells11101691] [Reference Citation Analysis]
103 Tanwar O, Soni A, Prajapat P, Shivhare T, Pandey P, Samaiya PK, Pandey SP, Kar P. Ethyl Pyruvate as a Potential Defense Intervention against Cytokine Storm in COVID-19? ACS Omega 2021;6:7754-60. [PMID: 33778286 DOI: 10.1021/acsomega.1c00157] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
104 Jessop F, Schwarz B, Scott D, Roberts LM, Bohrnsen E, Hoidal JR, Bosio CM. Impairing RAGE signaling promotes survival and limits disease pathogenesis following SARS-CoV-2 infection in mice. JCI Insight 2022;7:e155896. [DOI: 10.1172/jci.insight.155896] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
105 Pavlov VA. The evolving obesity challenge: targeting the vagus nerve and the inflammatory reflex in the response. Pharmacol Ther. 2021;222:107794. [PMID: 33310156 DOI: 10.1016/j.pharmthera.2020.107794] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
106 Dhar C, Sasmal A, Diaz S, Verhagen A, Yu H, Li W, Chen X, Varki A. Are sialic acids involved in COVID-19 pathogenesis? Glycobiology 2021:cwab063. [PMID: 34192318 DOI: 10.1093/glycob/cwab063] [Reference Citation Analysis]
107 Bricher Choque PN, Vieira RP, Ulloa L, Grabulosa C, Irigoyen MC, De Angelis K, Ligeiro De Oliveira AP, Tracey KJ, Pavlov VA, Consolim-Colombo FM. The Cholinergic Drug Pyridostigmine Alleviates Inflammation During LPS-Induced Acute Respiratory Distress Syndrome. Front Pharmacol 2021;12:624895. [PMID: 34017249 DOI: 10.3389/fphar.2021.624895] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
108 Aslani M, Mortazavi-Jahromi SS, Mirshafiey A. Cytokine storm in the pathophysiology of COVID-19: Possible functional disturbances of miRNAs. Int Immunopharmacol 2021;101:108172. [PMID: 34601331 DOI: 10.1016/j.intimp.2021.108172] [Reference Citation Analysis]
109 Kang SK, Kang YH, Yoo SM, Park C, Kim HS, Lee MS. HMGB1 Knockout Decreases Kaposi's Sarcoma-Associated Herpesvirus Virion Production in iSLK BAC16 Cells by Attenuating Viral Gene Expression. J Virol 2021;95:e0079921. [PMID: 34105998 DOI: 10.1128/JVI.00799-21] [Reference Citation Analysis]
110 Siddiqui SS, Dhar C, Sundaramurthy V, Sasmal A, Yu H, Bandala-Sanchez E, Li M, Zhang X, Chen X, Harrison LC, Xu D, Varki A. Sialoglycan recognition is a common connection linking acidosis, zinc, and HMGB1 in sepsis. Proc Natl Acad Sci U S A 2021;118:e2018090118. [PMID: 33658363 DOI: 10.1073/pnas.2018090118] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
111 Mui L, Martin CM, Tschirhart BJ, Feng Q. Therapeutic Potential of Annexins in Sepsis and COVID-19. Front Pharmacol 2021;12:735472. [PMID: 34566657 DOI: 10.3389/fphar.2021.735472] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]