BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gien J, Seedorf GJ, Balasubramaniam V, Tseng N, Markham N, Abman SH. Chronic intrauterine pulmonary hypertension increases endothelial cell Rho kinase activity and impairs angiogenesis in vitro. Am J Physiol Lung Cell Mol Physiol 2008;295:L680-7. [PMID: 18621906 DOI: 10.1152/ajplung.00516.2007] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Jankov RP, Daniel KL, Iny S, Kantores C, Ivanovska J, Ben Fadel N, Jain A. Sodium nitrite augments lung S -nitrosylation and reverses chronic hypoxic pulmonary hypertension in juvenile rats. American Journal of Physiology-Lung Cellular and Molecular Physiology 2018;315:L742-51. [DOI: 10.1152/ajplung.00184.2018] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
2 Gien J, Tseng N, Seedorf G, Roe G, Abman SH. Endothelin-1 impairs angiogenesis in vitro through Rho-kinase activation after chronic intrauterine pulmonary hypertension in fetal sheep. Pediatr Res 2013;73:252-62. [PMID: 23202724 DOI: 10.1038/pr.2012.177] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
3 Delaney C, Gien J, Grover TR, Roe G, Abman SH. Pulmonary vascular effects of serotonin and selective serotonin reuptake inhibitors in the late-gestation ovine fetus. Am J Physiol Lung Cell Mol Physiol 2011;301:L937-44. [PMID: 21908589 DOI: 10.1152/ajplung.00198.2011] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 3.4] [Reference Citation Analysis]
4 Chan CK, Mak JC, Man RY, Vanhoutte PM. Rho kinase inhibitors prevent endothelium-dependent contractions in the rat aorta. J Pharmacol Exp Ther. 2009;329:820-826. [PMID: 19193928 DOI: 10.1124/jpet.108.148247] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 2.3] [Reference Citation Analysis]
5 Duong-quy S, Bei Y, Liu Z, Dinh-xuan AT. Role of Rho-kinase and its inhibitors in pulmonary hypertension. Pharmacology & Therapeutics 2013;137:352-64. [DOI: 10.1016/j.pharmthera.2012.12.003] [Cited by in Crossref: 48] [Cited by in F6Publishing: 46] [Article Influence: 6.0] [Reference Citation Analysis]
6 Gupta J, Gaikwad AB, Tikoo K. Hepatic expression profiling shows involvement of PKC epsilon, DGK eta, Tnfaip, and Rho kinase in type 2 diabetic nephropathy rats. J Cell Biochem 2010;111:944-54. [DOI: 10.1002/jcb.22783] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
7 Resta TC, Broughton BR, Jernigan NL. Reactive oxygen species and RhoA signaling in vascular smooth muscle: role in chronic hypoxia-induced pulmonary hypertension. Adv Exp Med Biol 2010;661:355-73. [PMID: 20204742 DOI: 10.1007/978-1-60761-500-2_23] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 2.2] [Reference Citation Analysis]
8 Rana U, Callan E, Entringer B, Michalkiewicz T, Joshi A, Parchur AK, Teng RJ, Konduri GG. AMP-Kinase Dysfunction Alters Notch Ligands to Impair Angiogenesis in Neonatal Pulmonary Hypertension. Am J Respir Cell Mol Biol 2020;62:719-31. [PMID: 32048878 DOI: 10.1165/rcmb.2019-0275OC] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
9 Delaney C, Gien J, Roe G, Isenberg N, Kailey J, Abman SH. Serotonin contributes to high pulmonary vascular tone in a sheep model of persistent pulmonary hypertension of the newborn. Am J Physiol Lung Cell Mol Physiol 2013;304:L894-901. [PMID: 23605003 DOI: 10.1152/ajplung.00043.2013] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 3.3] [Reference Citation Analysis]
10 Pedersen J, Hedegaard ER, Simonsen U, Krüger M, Infanger M, Grimm D. Current and Future Treatments for Persistent Pulmonary Hypertension in the Newborn. Basic Clin Pharmacol Toxicol 2018;123:392-406. [PMID: 29855164 DOI: 10.1111/bcpt.13051] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
11 Acker SN, Seedorf GJ, Abman SH, Nozik-Grayck E, Partrick DA, Gien J. Pulmonary artery endothelial cell dysfunction and decreased populations of highly proliferative endothelial cells in experimental congenital diaphragmatic hernia. Am J Physiol Lung Cell Mol Physiol 2013;305:L943-52. [PMID: 24124189 DOI: 10.1152/ajplung.00226.2013] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 2.6] [Reference Citation Analysis]
12 Maron BA, Abman SH. Translational Advances in the Field of Pulmonary Hypertension. Focusing on Developmental Origins and Disease Inception for the Prevention of Pulmonary Hypertension. Am J Respir Crit Care Med 2017;195:292-301. [PMID: 27854133 DOI: 10.1164/rccm.201604-0882PP] [Cited by in F6Publishing: 25] [Reference Citation Analysis]
13 Gien J, Tseng N, Seedorf G, Kuhn K, Abman SH. Endothelin-1-Rho kinase interactions impair lung structure and cause pulmonary hypertension after bleomycin exposure in neonatal rat pups. Am J Physiol Lung Cell Mol Physiol 2016;311:L1090-100. [PMID: 27760762 DOI: 10.1152/ajplung.00066.2016] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
14 Lakshminrusimha S, Steinhorn RH. Pathophysiology of Persistent Pulmonary Hypertension of the Newborn. Fetal and Neonatal Physiology. Elsevier; 2017. pp. 1576-1588.e4. [DOI: 10.1016/b978-0-323-35214-7.00155-4] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
15 Wedgwood S, Steinhorn RH. Role of reactive oxygen species in neonatal pulmonary vascular disease. Antioxid Redox Signal 2014;21:1926-42. [PMID: 24350610 DOI: 10.1089/ars.2013.5785] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 3.7] [Reference Citation Analysis]
16 Dai ZK, Hsieh CC, Chai CY, Wu JR, Jeng AY, Chou SH, Wu BN, Yeh JL, Chen IJ, Tan MS. Protective effects of a dual endothelin converting enzyme/neutral endopeptidase inhibitor on the development of pulmonary hypertension secondary to cardiac dysfunction in the rat. Pediatr Pulmonol 2010;45:1076-85. [PMID: 20658482 DOI: 10.1002/ppul.21290] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
17 Hirsch K, Taglauer E, Seedorf G, Callahan C, Mandell E, White CW, Kourembanas S, Abman SH. Perinatal Hypoxia-Inducible Factor Stabilization Preserves Lung Alveolar and Vascular Growth in Experimental Bronchopulmonary Dysplasia. Am J Respir Crit Care Med 2020;202:1146-58. [PMID: 32551816 DOI: 10.1164/rccm.202003-0601OC] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
18 Gien J, Tseng N, Seedorf G, Roe G, Abman SH. Peroxisome proliferator activated receptor-γ-Rho-kinase interactions contribute to vascular remodeling after chronic intrauterine pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2014;306:L299-308. [PMID: 24375792 DOI: 10.1152/ajplung.00271.2013] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
19 Abman SH, Baker C, Gien J, Mourani P, Galambos C. The Robyn Barst Memorial Lecture: Differences between the fetal, newborn, and adult pulmonary circulations: relevance for age-specific therapies (2013 Grover Conference series). Pulm Circ 2014;4:424-40. [PMID: 25621156 DOI: 10.1086/677371] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
20 Papamatheakis DG, Chundu M, Blood AB, Wilson SM. Prenatal programming of pulmonary hypertension induced by chronic hypoxia or ductal ligation in sheep. Pulm Circ 2013;3:757-80. [PMID: 25006393 DOI: 10.1086/674767] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
21 Park JW, Park CH, Kim IJ, Bae EH, Ma SK, Lee JU, Kim SW. Rho kinase inhibition by fasudil attenuates cyclosporine-induced kidney injury. J Pharmacol Exp Ther. 2011;338:271-279. [PMID: 21474569 DOI: 10.1124/jpet.111.179457] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 1.9] [Reference Citation Analysis]
22 Lakshminrusimha S, Mathew B, Leach CL. Pharmacologic strategies in neonatal pulmonary hypertension other than nitric oxide. Semin Perinatol 2016;40:160-73. [PMID: 26778236 DOI: 10.1053/j.semperi.2015.12.004] [Cited by in Crossref: 52] [Cited by in F6Publishing: 37] [Article Influence: 10.4] [Reference Citation Analysis]