BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hassan HFH, Mansour AM, Abo-youssef AMH, Elsadek BEM, Messiha BAS. Zinc oxide nanoparticles as a novel anticancer approach; in vitro and in vivo evidence. Clin Exp Pharmacol Physiol 2017;44:235-43. [DOI: 10.1111/1440-1681.12681] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Wang J, Gao S, Wang S, Xu Z, Wei L. Zinc oxide nanoparticles induce toxicity in CAL 27 oral cancer cell lines by activating PINK1/Parkin-mediated mitophagy. Int J Nanomedicine 2018;13:3441-50. [PMID: 29950828 DOI: 10.2147/IJN.S165699] [Cited by in Crossref: 46] [Cited by in F6Publishing: 19] [Article Influence: 11.5] [Reference Citation Analysis]
2 Boey A, Ho HK. All Roads Lead to the Liver: Metal Nanoparticles and Their Implications for Liver Health. Small 2020;16:2000153. [DOI: 10.1002/smll.202000153] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 10.0] [Reference Citation Analysis]
3 Kannan K, Radhika D, Kasai RD, Gnanasangeetha D, Palani G, Gurushankar K, Koutavarapu R, Lee D, Shim J. Facile fabrication of novel ceria-based nanocomposite (CYO-CSO) via co-precipitation: Electrochemical, photocatalytic and antibacterial performances. Journal of Molecular Structure 2022;1256:132519. [DOI: 10.1016/j.molstruc.2022.132519] [Reference Citation Analysis]
4 Wang Z, Que B, Gan J, Guo H, Chen Q, Zheng L, Marraiki N, Elgorban AM, Zhang Y. Zinc oxide nanoparticles synthesized from Fraxinus rhynchophylla extract by green route method attenuates the chemical and heat induced neurogenic and inflammatory pain models in mice. J Photochem Photobiol B 2020;202:111668. [PMID: 31734435 DOI: 10.1016/j.jphotobiol.2019.111668] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Kannan K, Radhika D, Gnanasangeetha D, Krishna LS, Gurushankar K. Y3+ and Sm3+ co-doped mixed metal oxide nanocomposite: Structural, electrochemical, photocatalytic, and antibacterial properties. Applied Surface Science Advances 2021;4:100085. [DOI: 10.1016/j.apsadv.2021.100085] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B. Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discovery Today 2017;22:1825-34. [DOI: 10.1016/j.drudis.2017.08.006] [Cited by in Crossref: 244] [Cited by in F6Publishing: 151] [Article Influence: 48.8] [Reference Citation Analysis]
7 El-Shorbagy HM, Eissa SM, Sabet S, El-Ghor AA. Apoptosis and oxidative stress as relevant mechanisms of antitumor activity and genotoxicity of ZnO-NPs alone and in combination with N-acetyl cysteine in tumor-bearing mice. Int J Nanomedicine 2019;14:3911-28. [PMID: 31213808 DOI: 10.2147/IJN.S204757] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 4.3] [Reference Citation Analysis]
8 Kannan K, Radhika D, Nesaraj A, Kumar Sadasivuni K, Sivarama Krishna L. Facile synthesis of NiO-CYSO nanocomposite for photocatalytic and antibacterial applications. Inorganic Chemistry Communications 2020;122:108307. [DOI: 10.1016/j.inoche.2020.108307] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
9 L SW, Lee CH, Lin MS, Chi CW, Chen YJ, Wang GS, Liao KW, Chiu LP, Wu SH, Huang DM, Chen L, Shen YS. ZnO Nanoparticles Induced Caspase-Dependent Apoptosis in Gingival Squamous Cell Carcinoma through Mitochondrial Dysfunction and p70S6K Signaling Pathway. Int J Mol Sci 2020;21:E1612. [PMID: 32111101 DOI: 10.3390/ijms21051612] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
10 Wiesmann N, Kluenker M, Demuth P, Brenner W, Tremel W, Brieger J. Zinc overload mediated by zinc oxide nanoparticles as innovative anti-tumor agent. J Trace Elem Med Biol 2019;51:226-34. [PMID: 30115501 DOI: 10.1016/j.jtemb.2018.08.002] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
11 Wiesmann N, Tremel W, Brieger J. Zinc oxide nanoparticles for therapeutic purposes in cancer medicine. J Mater Chem B 2020;8:4973-89. [DOI: 10.1039/d0tb00739k] [Cited by in Crossref: 20] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
12 Marques LM, Alves MM, Eugénio S, Salazar SB, Pedro N, Grenho L, Mira NP, Fernandes MH, Montemor MF. Potential anti-cancer and anti-Candida activity of Zn-derived foams. J Mater Chem B 2018;6:2821-30. [PMID: 32254235 DOI: 10.1039/c7tb02726e] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
13 Keerthana S, Kumar A. Potential risks and benefits of zinc oxide nanoparticles: a systematic review. Critical Reviews in Toxicology 2020;50:47-71. [DOI: 10.1080/10408444.2020.1726282] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
14 Jarkov V, Allan SJ, Bowen C, Khanbareh H. Piezoelectric materials and systems for tissue engineering and implantable energy harvesting devices for biomedical applications. International Materials Reviews. [DOI: 10.1080/09506608.2021.1988194] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Bobrowska-Korczak B, Gątarek P, Skrajnowska D, Bielecki W, Wyrebiak R, Kovalczuk T, Wrzesień R, Kałużna-Czaplińska J. Effect of Zinc Supplementation on the Serum Metabolites Profile at the Early Stage of Breast Cancer in Rats. Nutrients 2020;12:E3457. [PMID: 33187201 DOI: 10.3390/nu12113457] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Justiniano R, Perer J, Hua A, Fazel M, Krajisnik A, Cabello CM, Wondrak GT. A Topical Zinc Ionophore Blocks Tumorigenic Progression in UV-exposed SKH-1 High-risk Mouse Skin. Photochem Photobiol 2017;93:1472-82. [PMID: 28503778 DOI: 10.1111/php.12794] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
17 Nabil A, Elshemy MM, Asem M, Abdel-Motaal M, Gomaa HF, Zahran F, Uto K, Ebara M. Zinc Oxide Nanoparticle Synergizes Sorafenib Anticancer Efficacy with Minimizing Its Cytotoxicity. Oxid Med Cell Longev 2020;2020:1362104. [PMID: 32566073 DOI: 10.1155/2020/1362104] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
18 Abbasi BA, Iqbal J, Ahmad R, Zia L, Kanwal S, Mahmood T, Wang C, Chen JT. Bioactivities of Geranium wallichianum Leaf Extracts Conjugated with Zinc Oxide Nanoparticles. Biomolecules 2019;10:E38. [PMID: 31888037 DOI: 10.3390/biom10010038] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 8.0] [Reference Citation Analysis]
19 Jana TK, Jana SK, Kumar A, De K, Maiti R, Mandal AK, Chatterjee T, Chatterjee BK, Chakrabarti P, Chatterjee K. The antibacterial and anticancer properties of zinc oxide coated iron oxide nanotextured composites. Colloids Surf B Biointerfaces 2019;177:512-9. [PMID: 30818244 DOI: 10.1016/j.colsurfb.2019.02.041] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 5.7] [Reference Citation Analysis]
20 Iqbal J, Abbasi BA, Mahmood T, Kanwal S, Ahmad R, Ashraf M. Plant-extract mediated green approach for the synthesis of ZnONPs: Characterization and evaluation of cytotoxic, antimicrobial and antioxidant potentials. Journal of Molecular Structure 2019;1189:315-27. [DOI: 10.1016/j.molstruc.2019.04.060] [Cited by in Crossref: 46] [Cited by in F6Publishing: 20] [Article Influence: 15.3] [Reference Citation Analysis]
21 Ran J, Wang C, Zhang J, Wang W, Xiao L, Jia S, Wang Z, Wu W, Xiao J, Wu X. New Insight into Polydopamine@ZIF-8 Nanohybrids: A Zinc-Releasing Container for Potential Anticancer Activity. Polymers (Basel) 2018;10:E476. [PMID: 30966510 DOI: 10.3390/polym10050476] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
22 Iqbal J, Abbasi BA, Ahmad R, Shahbaz A, Zahra SA, Kanwal S, Munir A, Rabbani A, Mahmood T. Biogenic synthesis of green and cost effective iron nanoparticles and evaluation of their potential biomedical properties. Journal of Molecular Structure 2020;1199:126979. [DOI: 10.1016/j.molstruc.2019.126979] [Cited by in Crossref: 28] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
23 Li Z, Guo D, Yin X, Ding S, Shen M, Zhang R, Wang Y, Xu R. Zinc oxide nanoparticles induce human multiple myeloma cell death via reactive oxygen species and Cyt-C/Apaf-1/Caspase-9/Caspase-3 signaling pathway in vitro. Biomed Pharmacother. 2020;122:109712. [PMID: 31918281 DOI: 10.1016/j.biopha.2019.109712] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
24 Ghaffari SB, Sarrafzadeh MH, Salami M, Khorramizadeh MR. A pH-sensitive delivery system based on N-succinyl chitosan-ZnO nanoparticles for improving antibacterial and anticancer activities of curcumin. Int J Biol Macromol 2020;151:428-40. [PMID: 32068061 DOI: 10.1016/j.ijbiomac.2020.02.141] [Cited by in Crossref: 23] [Cited by in F6Publishing: 12] [Article Influence: 11.5] [Reference Citation Analysis]
25 Kannan K, Radhika D, Sadasivuni KK, Reddy KR, Raghu AV. Nanostructured metal oxides and its hybrids for photocatalytic and biomedical applications. Adv Colloid Interface Sci 2020;281:102178. [PMID: 32470668 DOI: 10.1016/j.cis.2020.102178] [Cited by in Crossref: 64] [Cited by in F6Publishing: 15] [Article Influence: 32.0] [Reference Citation Analysis]
26 Baghbani-arani F, Sadat Shandiz SA. Combination of Cytochalasin H and zinc oxide nanoparticles in human breast cancer: an insight into apoptosis study. Biologia 2021;76:763-72. [DOI: 10.2478/s11756-020-00611-x] [Reference Citation Analysis]
27 Hossain Z, Yasmeen F, Komatsu S. Nanoparticles: Synthesis, Morphophysiological Effects, and Proteomic Responses of Crop Plants. Int J Mol Sci 2020;21:E3056. [PMID: 32357514 DOI: 10.3390/ijms21093056] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
28 Ghanem HB. Impact of zinc oxide nanoparticles and thymoquinone in Ehrlich ascites carcinoma induced in mice. J Biochem Mol Toxicol 2021;35:e22736. [PMID: 33512746 DOI: 10.1002/jbt.22736] [Reference Citation Analysis]
29 Gulla S, Lomada D, Srikanth VV, Shankar MV, Reddy KR, Soni S, Reddy MC. Recent advances in nanoparticles-based strategies for cancer therapeutics and antibacterial applications. Nanotechnology. Elsevier; 2019. pp. 255-93. [DOI: 10.1016/bs.mim.2019.03.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
30 Fan P, Yang C, Wang L, Wang Q, Zhang Y, Zhou J, Weng J, Feng B. ZnO nanoparticles stimulate oxidative stress to induce apoptosis of B16F10 melanoma cells:In vitroandin vivostudies. Biomed Phys Eng Express 2021;7. [PMID: 34500439 DOI: 10.1088/2057-1976/ac251f] [Reference Citation Analysis]
31 Kannan K, Radhika D, Nikolova MP, Sadasivuni KK, R N. Structural and functional properties of rare earth-based (NiO-CGO) nanocomposite produced by effective multiple doping approach via co-precipitation. Materials Technology 2021;36:296-307. [DOI: 10.1080/10667857.2020.1755555] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
32 Pehlivanoglu S, Acar CA, Donmez S. Characterization of green synthesized flaxseed zinc oxide nanoparticles and their cytotoxic, apoptotic and antimigratory activities on aggressive human cancer cells. Inorganic and Nano-Metal Chemistry. [DOI: 10.1080/24701556.2021.1980034] [Reference Citation Analysis]
33 Umar H, Kavaz D, Rizaner N. Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int J Nanomedicine 2019;14:87-100. [PMID: 30587987 DOI: 10.2147/IJN.S186888] [Cited by in Crossref: 77] [Cited by in F6Publishing: 18] [Article Influence: 19.3] [Reference Citation Analysis]
34 Yang JY, Bae J, Jung A, Park S, Chung S, Seok J, Roh H, Han Y, Oh JM, Sohn S, Jeong J, Cho WS. Surface functionalization-specific binding of coagulation factors by zinc oxide nanoparticles delays coagulation time and reduces thrombin generation potential in vitro. PLoS One 2017;12:e0181634. [PMID: 28723962 DOI: 10.1371/journal.pone.0181634] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
35 Chandran S, Patgiri B, Bedarkar P, Mathat D. Anticancer activity of Yashada Bhasma (bioactive nanoparticles of zinc): A human pancreatic cancer cell line study. Ayu 2019;40:58-63. [PMID: 31831971 DOI: 10.4103/ayu.AYU_239_17] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 R MA, B G, M S MJ, G A, N S. Anticancer potential of zinc oxide nanoparticles against cervical carcinoma cells synthesized via biogenic route using aqueous extract of Gracilaria edulis. Mater Sci Eng C Mater Biol Appl 2019;103:109840. [PMID: 31349511 DOI: 10.1016/j.msec.2019.109840] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
37 Abbasi BA, Iqbal J, Zahra SA, Shahbaz A, Kanwal S, Rabbani A, Mahmood T. Bioinspired synthesis and activity characterization of iron oxide nanoparticles made using Rhamnus Triquetra leaf extract. Mater Res Express 2019;6:1250e7. [DOI: 10.1088/2053-1591/ab664d] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 7.5] [Reference Citation Analysis]
38 Kim S, Lee SY, Cho HJ. Berberine and zinc oxide-based nanoparticles for the chemo-photothermal therapy of lung adenocarcinoma. Biochem Biophys Res Commun 2018;501:765-70. [PMID: 29758197 DOI: 10.1016/j.bbrc.2018.05.063] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 5.8] [Reference Citation Analysis]
39 Mo'men YS, Hussein RM, Kandeil MA. A novel chemoprotective effect of tiopronin against diethylnitrosamine-induced hepatocellular carcinoma in rats: Role of ASK1/P38 MAPK-P53 signalling cascade. Clin Exp Pharmacol Physiol 2020;47:322-32. [PMID: 31663622 DOI: 10.1111/1440-1681.13204] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
40 Wang L, Chen C, Guo L, Li Q, Ding H, Bi H, Guo D. Zinc oxide nanoparticles induce murine photoreceptor cell death via mitochondria-related signaling pathway. Artif Cells Nanomed Biotechnol 2018;46:1102-13. [PMID: 29488395 DOI: 10.1080/21691401.2018.1446018] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
41 Maksoudian C, Saffarzadeh N, Hesemans E, Dekoning N, Buttiens K, Soenen SJ. Role of inorganic nanoparticle degradation in cancer therapy. Nanoscale Adv 2020;2:3734-63. [DOI: 10.1039/d0na00286k] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
42 Ghaffari M, Moztarzadeh F, Safavi M. A comparative study on the shape-dependent biological activity of nanostructured zinc oxide. Ceramics International 2019;45:1179-88. [DOI: 10.1016/j.ceramint.2018.09.302] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]