BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Batinic-Haberle I, Tovmasyan A, Spasojevic I. Mn Porphyrin-Based Redox-Active Drugs: Differential Effects as Cancer Therapeutics and Protectors of Normal Tissue Against Oxidative Injury. Antioxid Redox Signal 2018;29:1691-724. [PMID: 29926755 DOI: 10.1089/ars.2017.7453] [Cited by in Crossref: 55] [Cited by in F6Publishing: 44] [Article Influence: 13.8] [Reference Citation Analysis]
Number Citing Articles
1 Schanne G, Zoumpoulaki M, Gazzah G, Vincent A, Preud’homme H, Lobinski R, Demignot S, Seksik P, Delsuc N, Policar C, Benov L. Inertness of Superoxide Dismutase Mimics Mn(II) Complexes Based on an Open-Chain Ligand, Bioactivity, and Detection in Intestinal Epithelial Cells. Oxidative Medicine and Cellular Longevity 2022;2022:1-16. [DOI: 10.1155/2022/3858122] [Reference Citation Analysis]
2 Policar C, Bouvet J, Bertrand HC, Delsuc N. SOD mimics: From the tool box of the chemists to cellular studies. Current Opinion in Chemical Biology 2022;67:102109. [DOI: 10.1016/j.cbpa.2021.102109] [Reference Citation Analysis]
3 Shrishrimal S, Chatterjee A, Kosmacek EA, Davis PJ, McDonald JT, Oberley-Deegan RE. Manganese porphyrin, MnTE-2-PyP, treatment protects the prostate from radiation-induced fibrosis (RIF) by activating the NRF2 signaling pathway and enhancing SOD2 and sirtuin activity. Free Radic Biol Med 2020;152:255-70. [PMID: 32222469 DOI: 10.1016/j.freeradbiomed.2020.03.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
4 Zhu Y, Kosmacek EA, Chatterjee A, Oberley-Deegan RE. MnTE-2-PyP Suppresses Prostate Cancer Cell Growth via H2O2 Production. Antioxidants (Basel) 2020;9:E490. [PMID: 32512786 DOI: 10.3390/antiox9060490] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Lu Z, Lightcap IV, Tennyson AG. An organometallic catalase mimic with exceptional activity, H2O2 stability, and catalase/peroxidase selectivity. Dalton Trans 2021;50:15493-501. [PMID: 34473153 DOI: 10.1039/d1dt02002a] [Reference Citation Analysis]
6 Bélanger V, Benmoussa A, Napartuk M, Warin A, Laverdière C, Marcoux S, Levy E, Marcil V. The Role of Oxidative Stress and Inflammation in Cardiometabolic Health of Children During Cancer Treatment and Potential Impact of Key Nutrients. Antioxid Redox Signal 2021;35:293-318. [PMID: 33386063 DOI: 10.1089/ars.2020.8143] [Reference Citation Analysis]
7 Boss MK, Oberley-Deegan RE, Batinic-Haberle I, Talmon GA, Somarelli JA, Xu S, Kosmacek EA, Griess B, Mir S, Shrishrimal S, Teoh-Fitzgerald M, Spasojevic I, Dewhirst MW. Manganese Porphyrin and Radiotherapy Improves Local Tumor Response and Overall Survival in Orthotopic Murine Mammary Carcinoma Models. Radiat Res 2021;195:128-39. [PMID: 33264413 DOI: 10.1667/RADE-20-00109.1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Checker R, Pal D, Patwardhan RS, Basu B, Sharma D, Sandur SK. Modulation of Caspase-3 activity using a redox active vitamin K3 analogue, plumbagin, as a novel strategy for radioprotection. Free Radical Biology and Medicine 2019;143:560-72. [DOI: 10.1016/j.freeradbiomed.2019.09.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
9 Tovmasyan A, Bueno-Janice JC, Jaramillo MC, Sampaio RS, Reboucas JS, Kyui N, Benov L, Deng B, Huang TT, Tome ME, Spasojevic I, Batinic-Haberle I. Radiation-Mediated Tumor Growth Inhibition Is Significantly Enhanced with Redox-Active Compounds That Cycle with Ascorbate. Antioxid Redox Signal 2018;29:1196-214. [PMID: 29390861 DOI: 10.1089/ars.2017.7218] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
10 Olson KR. Are Reactive Sulfur Species the New Reactive Oxygen Species? Antioxid Redox Signal 2020;33:1125-42. [PMID: 32586118 DOI: 10.1089/ars.2020.8132] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
11 Shin SW, Choi C, Kim H, Kim Y, Park S, Kim SY, Batinic-Haberle I, Park W. MnTnHex-2-PyP5+, Coupled to Radiation, Suppresses Metastasis of 4T1 and MDA-MB-231 Breast Cancer via AKT/Snail/EMT Pathways. Antioxidants (Basel) 2021;10:1769. [PMID: 34829640 DOI: 10.3390/antiox10111769] [Reference Citation Analysis]
12 Li L, Tovmasyan A, Sheng H, Xu B, Sampaio RS, Reboucas JS, Warner DS, Batinic-Haberle I, Spasojevic I. Fe Porphyrin-Based SOD Mimic and Redox-Active Compound, (OH)FeTnHex-2-PyP4+, in a Rodent Ischemic Stroke (MCAO) Model: Efficacy and Pharmacokinetics as Compared to Its Mn Analogue, (H2O)MnTnHex-2-PyP5+. Antioxidants (Basel) 2020;9:E467. [PMID: 32492872 DOI: 10.3390/antiox9060467] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
13 Kolyada MN, Osipova VP, Berberova NT, Shpakovsky DB, Milaeva ER. Porphyrins with Phenolic Fragments at the Periphery of the Macrocycle as Perspective Antioxidants, Cytoprotectors and Heavy Metal Scavengers. Chem Heterocycl Comp 2021;57:875-88. [DOI: 10.1007/s10593-021-02995-3] [Reference Citation Analysis]
14 Hong YA, Park CW. Catalytic Antioxidants in the Kidney. Antioxidants (Basel) 2021;10:130. [PMID: 33477607 DOI: 10.3390/antiox10010130] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Wang Q, Zennadi R. The Role of RBC Oxidative Stress in Sickle Cell Disease: From the Molecular Basis to Pathologic Implications. Antioxidants (Basel) 2021;10:1608. [PMID: 34679742 DOI: 10.3390/antiox10101608] [Reference Citation Analysis]
16 Yang Y, Wang Q, Luo J, Jiang Y, Zhou R, Tong S, Wang Z, Tong Q. Superoxide Dismutase Mimic, MnTE-2-PyP Enhances Rectal Anastomotic Strength in Rats after Preoperative Chemoradiotherapy. Oxid Med Cell Longev 2020;2020:3509859. [PMID: 32351671 DOI: 10.1155/2020/3509859] [Reference Citation Analysis]
17 Luo H, Yu W, Chen S, Wang Z, Tian Z, He J, Liu Y. Application of metalloporphyrin sensitizers for the treatment or diagnosis of tumors. Journal of Chemical Research 2022;46:174751982210909. [DOI: 10.1177/17475198221090914] [Reference Citation Analysis]
18 Valachová K, Rapta P, Moura NMM, Batinic-Haberle I, Šoltés L. Ortho Isomeric Mn(III) N-Alkyl- and Alkoxyalkylpyridylporphyrins-Enhancers of Hyaluronan Degradation Induced by Ascorbate and Cupric Ions. Int J Mol Sci 2021;22:8608. [PMID: 34445313 DOI: 10.3390/ijms22168608] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Glorieux C, Buc Calderon P. Vitamin C (Ascorbate) and Redox Topics in Cancer. Antioxid Redox Signal 2021. [PMID: 34254829 DOI: 10.1089/ars.2020.8233] [Reference Citation Analysis]
20 Habib A, Serniabad S, Khan MS, Islam R, Chakraborty M, Nargis A, Quayum ME, Alam MA, Rapozzi V, Tabata M. Kinetics and mechanism of formation of nickel(II)porphyrin and its interaction with DNA in aqueous medium. J Chem Sci (Bangalore) 2021;133:83. [PMID: 34366601 DOI: 10.1007/s12039-021-01945-y] [Reference Citation Analysis]
21 Olson KR, Gao Y, Steiger AK, Pluth MD, Tessier CR, Markel TA, Boone D, Stahelin RV, Batinic-Haberle I, Straubg KD. Effects of Manganese Porphyrins on Cellular Sulfur Metabolism. Molecules 2020;25:E980. [PMID: 32098303 DOI: 10.3390/molecules25040980] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
22 Batinic-Haberle I, Tome ME. Thiol regulation by Mn porphyrins, commonly known as SOD mimics. Redox Biol 2019;25:101139. [PMID: 31126869 DOI: 10.1016/j.redox.2019.101139] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 10.0] [Reference Citation Analysis]
23 Costa JG, Saraiva N, Batinic-Haberle I, Castro M, Oliveira NG, Fernandes AS. The SOD Mimic MnTnHex-2-PyP5+ Reduces the Viability and Migration of 786-O Human Renal Cancer Cells. Antioxidants (Basel) 2019;8:E490. [PMID: 31627290 DOI: 10.3390/antiox8100490] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
24 Brewster JT 2nd, Thiabaud GD, Harvey P, Zafar H, Reuther JF, Dell'Acqua S, Johnson RM, Root HD, Metola P, Jasanoff A, Casella L, Sessler JL. Metallotexaphyrins as MRI-Active Catalytic Antioxidants for Neurodegenerative Disease: A Study on Alzheimer's Disease. Chem 2020;6:703-24. [PMID: 32201749 DOI: 10.1016/j.chempr.2019.12.016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
25 Griess B, Mir S, Datta K, Teoh-fitzgerald M. Scavenging reactive oxygen species selectively inhibits M2 macrophage polarization and their pro-tumorigenic function in part, via Stat3 suppression. Free Radical Biology and Medicine 2020;147:48-60. [DOI: 10.1016/j.freeradbiomed.2019.12.018] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 14.5] [Reference Citation Analysis]
26 Zhang C, Yang R, Hao X, Geng Z, Wang Z. Mn-TAT PTD-Ngb ameliorates inflammation through the elimination of damaged mitochondria and the activation of Nrf2-antioxidant signaling pathway. Biochem Pharmacol 2020;178:114055. [PMID: 32470548 DOI: 10.1016/j.bcp.2020.114055] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
27 Dmitrieva OA, Chizhova NV, Tesakova MV, Parfenyuk VI, Mamardashvili NZ. Meso-nitro substitution as a means of Mn-octaethylporphyrin redox state controlling. Journal of Organometallic Chemistry 2021;940:121790. [DOI: 10.1016/j.jorganchem.2021.121790] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Olson KR. Reactive oxygen species or reactive sulfur species: why we should consider the latter. J Exp Biol 2020;223:jeb196352. [PMID: 32102833 DOI: 10.1242/jeb.196352] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
29 Flórido A, Saraiva N, Cerqueira S, Almeida N, Parsons M, Batinic-Haberle I, Miranda JP, Costa JG, Carrara G, Castro M, Oliveira NG, Fernandes AS. The manganese(III) porphyrin MnTnHex-2-PyP5+ modulates intracellular ROS and breast cancer cell migration: Impact on doxorubicin-treated cells. Redox Biol 2019;20:367-78. [PMID: 30408752 DOI: 10.1016/j.redox.2018.10.016] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
30 Mathieu E, Tolbert AE, Koebke KJ, Tard C, Iranzo O, Penner-Hahn JE, Policar C, Pecoraro V. Rational De Novo Design of a Cu Metalloenzyme for Superoxide Dismutation. Chemistry 2020;26:249-58. [PMID: 31710732 DOI: 10.1002/chem.201903808] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
31 Dhar SK, Batinic-Haberle I, St Clair DK. UVB-induced inactivation of manganese-containing superoxide dismutase promotes mitophagy via ROS-mediated mTORC2 pathway activation. J Biol Chem 2019;294:6831-42. [PMID: 30858178 DOI: 10.1074/jbc.RA118.006595] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
32 Schlichte SL, Romanova S, Katsurada K, Kosmacek EA, Bronich TK, Patel KP, Oberley-Deegan RE, Zimmerman MC. Nanoformulation of the superoxide dismutase mimic, MnTnBuOE-2-PyP5+, prevents its acute hypotensive response. Redox Biol 2020;36:101610. [PMID: 32863236 DOI: 10.1016/j.redox.2020.101610] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Becatti M, Bencini A, Nistri S, Conti L, Fabbrini MG, Lucarini L, Ghini V, Severi M, Fiorillo C, Giorgi C, Sorace L, Valtancoli B, Bani D. Different Antioxidant Efficacy of Two MnII-Containing Superoxide Anion Scavengers on Hypoxia/Reoxygenation-Exposed Cardiac Muscle Cells. Sci Rep 2019;9:10320. [PMID: 31311943 DOI: 10.1038/s41598-019-46476-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
34 Lan W, Chen S, Nong G. An Efficient Synthesis of Novel Dextran-Arsenite Nanoparticles intended for Potential Antitumor Drug Material. An Acad Bras Cienc 2021;93:e20190551. [PMID: 33729378 DOI: 10.1590/0001-3765202120190551] [Reference Citation Analysis]
35 Obrador E, Salvador R, Villaescusa JI, Soriano JM, Estrela JM, Montoro A. Radioprotection and Radiomitigation: From the Bench to Clinical Practice. Biomedicines 2020;8:E461. [PMID: 33142986 DOI: 10.3390/biomedicines8110461] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
36 Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020;55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
37 Mathieu E, Bernard A, Quévrain E, Zoumpoulaki M, Iriart S, Lung-soong C, Lai B, Medjoubi K, Henry L, Nagarajan S, Poyer F, Scheitler A, Ivanović-burmazović I, Marco S, Somogyi A, Seksik P, Delsuc N, Policar C. Intracellular location matters: rationalization of the anti-inflammatory activity of a manganese( ii ) superoxide dismutase mimic complex. Chem Commun 2020;56:7885-8. [DOI: 10.1039/d0cc03398g] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
38 Chaiswing L, Yarana C, St. Clair W, Tovmasyan A, Batinic-haberle I, Spasojevic I, St. Clair D, Pal D. A Redoxable Mn Porphyrin, MnTnBuOE-2-PyP5+, Synergizes with Carboplatin in Treatment of Chemoresistant Ovarian Cell Line. Oxidative Medicine and Cellular Longevity 2022;2022:1-16. [DOI: 10.1155/2022/9664636] [Reference Citation Analysis]
39 Yang Y, Zhang P, Yan R, Wang Q, Fang E, Wu H, Li S, Tan H, Zhou X, Ma X, Tang Y, Huang Y, Deng R, Liu Y, Tong S, Wang Z, Oberley-Deegan RE, Tong Q. MnTE-2-PyP Attenuates TGF-β-Induced Epithelial-Mesenchymal Transition of Colorectal Cancer Cells by Inhibiting the Smad2/3 Signaling Pathway. Oxid Med Cell Longev 2019;2019:8639791. [PMID: 30931081 DOI: 10.1155/2019/8639791] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
40 Franke A, Scheitler A, Kenkel I, Lippert R, Zahl A, Balbinot D, Jux N, Ivanović-burmazović I. Positive Charge on Porphyrin Ligand and Nature of Metal Center Define Basic Physicochemical Properties of Cationic Manganese and Iron Porphyrins in Aqueous Solution. Inorg Chem 2019;58:9618-30. [DOI: 10.1021/acs.inorgchem.8b03381] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
41 Huang G, Pan ST. ROS-Mediated Therapeutic Strategy in Chemo-/Radiotherapy of Head and Neck Cancer. Oxid Med Cell Longev 2020;2020:5047987. [PMID: 32774675 DOI: 10.1155/2020/5047987] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
42 Kubota R, Asayama S, Kawakami H. Catalytic antioxidants for therapeutic medicine. J Mater Chem B 2019;7:3165-91. [DOI: 10.1039/c8tb03365j] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
43 Thamilarasan M, Estupinan R, Batinic-Haberle I, Zennadi R. Mn porphyrins as a novel treatment targeting sickle cell NOXs to reverse and prevent acute vaso-occlusion in vivo. Blood Adv 2020;4:2372-86. [PMID: 32479589 DOI: 10.1182/bloodadvances.2020001642] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
44 Szarka A, Kapuy O, Lőrincz T, Bánhegyi G. Vitamin C and Cell Death. Antioxid Redox Signal 2021;34:831-44. [PMID: 32586104 DOI: 10.1089/ars.2019.7897] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
45 Batinic-Haberle I, Tovmasyan A, Huang Z, Duan W, Du L, Siamakpour-Reihani S, Cao Z, Sheng H, Spasojevic I, Alvarez Secord A. H2O2-Driven Anticancer Activity of Mn Porphyrins and the Underlying Molecular Pathways. Oxid Med Cell Longev 2021;2021:6653790. [PMID: 33815656 DOI: 10.1155/2021/6653790] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
46 Vincent A, Thauvin M, Quévrain E, Mathieu E, Layani S, Seksik P, Batinic-Haberle I, Vriz S, Policar C, Delsuc N. Evaluation of the compounds commonly known as superoxide dismutase and catalase mimics in cellular models. J Inorg Biochem 2021;219:111431. [PMID: 33798828 DOI: 10.1016/j.jinorgbio.2021.111431] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
47 Batinic-haberle I, Spasojevic I. 25 years of development of Mn porphyrins — from mimics of superoxide dismutase enzymes to thiol signaling to clinical trials: The story of our life in the USA. J Porphyrins Phthalocyanines 2019;23:1326-35. [DOI: 10.1142/s1088424619300283] [Cited by in Crossref: 12] [Article Influence: 6.0] [Reference Citation Analysis]
48 Sishc BJ, Ding L, Nam TK, Heer CD, Rodman SN, Schoenfeld JD, Fath MA, Saha D, Pulliam CF, Langen B, Beardsley RA, Riley DP, Keene JL, Spitz DR, Story MD. Avasopasem manganese synergizes with hypofractionated radiation to ablate tumors through the generation of hydrogen peroxide. Sci Transl Med 2021;13:eabb3768. [PMID: 33980575 DOI: 10.1126/scitranslmed.abb3768] [Reference Citation Analysis]
49 Hasan B, Tovmasyan A, Batinic-Haberle I, Benov L. Ascorbate-dependent and ascorbate-independent Mn porphyrin cytotoxicity: anticancer activity of Mn porphyrin-based SOD mimics through ascorbate-dependent and -independent routes. Redox Rep 2021;26:85-93. [PMID: 33902399 DOI: 10.1080/13510002.2021.1917214] [Reference Citation Analysis]
50 Rosa AC, Corsi D, Cavi N, Bruni N, Dosio F. Superoxide Dismutase Administration: A Review of Proposed Human Uses. Molecules 2021;26:1844. [PMID: 33805942 DOI: 10.3390/molecules26071844] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
51 Senft L, Moore JL, Franke A, Fisher KR, Scheitler A, Zahl A, Puchta R, Fehn D, Ison S, Sader S, Ivanović-Burmazović I, Goldsmith CR. Quinol-containing ligands enable high superoxide dismutase activity by modulating coordination number, charge, oxidation states and stability of manganese complexes throughout redox cycling. Chem Sci 2021;12:10483-500. [PMID: 34447541 DOI: 10.1039/d1sc02465e] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Olson KR, Gao Y, Arif F, Patel S, Yuan X, Mannam V, Howard S, Batinic-Haberle I, Fukuto J, Minnion M, Feelisch M, Straub KD. Manganese Porphyrin-Based SOD Mimetics Produce Polysulfides from Hydrogen Sulfide. Antioxidants (Basel) 2019;8:E639. [PMID: 31842297 DOI: 10.3390/antiox8120639] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
53 Barbosa AM, Sarmento-Neto JF, Menezes Filho JER, Jesus ICG, Souza DS, Vasconcelos VMN, Gomes FDL, Lara A, Araújo JSS, Mattos SS, Vasconcelos CML, Guatimosim S, Cruz JS, Batinic-Haberle I, Araújo DAM, Rebouças JS, Gomes ER. Redox-Active Drug, MnTE-2-PyP5+, Prevents and Treats Cardiac Arrhythmias Preserving Heart Contractile Function. Oxid Med Cell Longev 2020;2020:4850697. [PMID: 32273944 DOI: 10.1155/2020/4850697] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
54 MacKinney A, Woska E, Spasojevic I, Batinic-Haberle I, Zennadi R. Disrupting the vicious cycle created by NOX activation in sickle erythrocytes exposed to hypoxia/reoxygenation prevents adhesion and vasoocclusion. Redox Biol 2019;25:101097. [PMID: 30661992 DOI: 10.1016/j.redox.2019.101097] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
55 Mapuskar KA, Anderson CM, Spitz DR, Batinic-Haberle I, Allen BG, E Oberley-Deegan R. Utilizing Superoxide Dismutase Mimetics to Enhance Radiation Therapy Response While Protecting Normal Tissues. Semin Radiat Oncol 2019;29:72-80. [PMID: 30573187 DOI: 10.1016/j.semradonc.2018.10.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
56 Yang B, Yao H, Yang J, Chen C, Guo Y, Fu H, Shi J. In Situ Synthesis of Natural Antioxidase Mimics for Catalytic Anti-Inflammatory Treatments: Rheumatoid Arthritis as an Example. J Am Chem Soc 2021. [PMID: 34881869 DOI: 10.1021/jacs.1c09993] [Reference Citation Analysis]