BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wu L, Liu J, Tian X, Groleau RR, Bull SD, Li P, Tang B, James TD. Fluorescent probe for the imaging of superoxide and peroxynitrite during drug-induced liver injury. Chem Sci 2021;12:3921-8. [PMID: 34163661 DOI: 10.1039/d0sc05937d] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Lu X, Su H, Zhang J, Wang N, Wang H, Liu J, Zhao W. Resorufin-based fluorescent probe with elevated water solubility for visualizing fluctuant peroxynitrite in progression of inflammation. Spectrochim Acta A Mol Biomol Spectrosc 2022;267:120620. [PMID: 34802934 DOI: 10.1016/j.saa.2021.120620] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
2 Wang N, Wang H, Zhang J, Ji X, Su H, Liu J, Wang J, Zhao W. Diketopyrrolopyrrole-based sensor for over-expressed peroxynitrite in drug-induced hepatotoxicity via ratiometric fluorescence imaging. Sensors and Actuators B: Chemical 2022;352:130992. [DOI: 10.1016/j.snb.2021.130992] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 18.0] [Reference Citation Analysis]
3 Cui Y, Xu C, Wu T, Nie Y, Zhou Y. Near-infrared cyanine-based fluorescent probe: Rapidly visualizing the in situ release of hydrazine in living cells and zebrafish. Sensors and Actuators B: Chemical 2022;350:130878. [DOI: 10.1016/j.snb.2021.130878] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Feng S, Zheng Z, Gong S, Feng G. A unique probe enables labeling cell membrane and Golgi apparatus and tracking peroxynitrite in Golgi oxidative stress and drug-induced liver injury. Sensors and Actuators B: Chemical 2022;361:131751. [DOI: 10.1016/j.snb.2022.131751] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Mao Z, Xiong J, Wang P, An J, Zhang F, Liu Z, Seung Kim J. Activity-based fluorescence probes for pathophysiological peroxynitrite fluxes. Coordination Chemistry Reviews 2022;454:214356. [DOI: 10.1016/j.ccr.2021.214356] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
6 Wang N, Wang H, Zhang J, Ji X, Su H, Liu J, Wang J, Zhao W. Endogenous peroxynitrite activated fluorescent probe for revealing anti‐tuberculosis drug induced hepatotoxicity. Chinese Chemical Letters 2022;33:1584-8. [DOI: 10.1016/j.cclet.2021.09.046] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
7 Han R, Shu W, Kang H, Duan Q, Zhang X, Liang C, Gao M, Xu L, Jing J, Zhang X. A deep red ratiometric fluorescent probe for accurate detection of peroxynitrite in mitochondria. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.339652] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Wan Z, Yu S, Wang Q, Tobia J, Chen H, Li Z, Liu X, Zhang Y. A BODIPY‐Based Far‐Red‐Absorbing Fluorescent Probe for Hypochlorous Acid Imaging. ChemPhotoChem. [DOI: 10.1002/cptc.202100250] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Zhang C, Qiu Z, Zhang L, Wang S, Zhao S, Pang Q, Liang H. Mitochondria-Targeted Fluorescence/Photoacoustic Dual-Modality Imaging Probe Tailored for Visual Precise Diagnosis of Drug-Induced Liver Injury. Anal Chem 2022. [PMID: 35416025 DOI: 10.1021/acs.analchem.2c00041] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Zeng Z, Liew SS, Wei X, Pu K. Hemicyanine‐Based Near‐Infrared Activatable Probes for Imaging and Diagnosis of Diseases. Angew Chem 2021;133:26658-79. [DOI: 10.1002/ange.202107877] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 12.0] [Reference Citation Analysis]
11 Zhang Y, Liu C, Su M, Rong X, Wang X, Wang K, Li X, Zhu H, Yu M, Sheng W, Zhu B. A highly selective barbiturate-based fluorescent probe for detecting Hg2+ in cells and zebrafish as well as in real water samples. Journal of Photochemistry and Photobiology A: Chemistry 2022;425:113706. [DOI: 10.1016/j.jphotochem.2021.113706] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Qin S, Lu H, Zhang J, Ji X, Wang N, Liu J, Zhao W, Wang J. An activatable reporter for fluorescence imaging drug-induced liver injury in diverse cell lines and in vivo. Dyes and Pigments 2022;203:110345. [DOI: 10.1016/j.dyepig.2022.110345] [Reference Citation Analysis]
13 She ZP, Wang WX, Jiang WL, Wang ZQ, Mao GJ, Fei J, Li Y, Li CY. Accurate Fluorescence Diagnosis of Cancer Based on Sequential Detection of Hydrogen Sulfide and pH. Anal Chem 2021;93:11826-35. [PMID: 34461732 DOI: 10.1021/acs.analchem.1c02449] [Reference Citation Analysis]
14 Su H, Wang N, Zhang J, Lu X, Qin S, Wang J, Zhao W, Wang J. An activatable fluorescent probe for monitoring the up-regulation of peroxynitrite in drug-induced hepatotoxicity model. Dyes and Pigments 2022;203:110341. [DOI: 10.1016/j.dyepig.2022.110341] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Liang C, Shu W, Han R, Kang H, Zhang X, Jing J, Zhang R, Zhang X. A xanthene-based fluorescent probe for detection of peroxynitrite in living cells and zebrafish. Spectrochim Acta A Mol Biomol Spectrosc 2022;277:121264. [PMID: 35439675 DOI: 10.1016/j.saa.2022.121264] [Reference Citation Analysis]
16 Liu M, Huang Q, Zhu Y, Chen L, Li Y, Gong Z, Ai K. Harnessing reactive oxygen/nitrogen species and inflammation: Nanodrugs for liver injury. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100215] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
17 Wu L, Liu J, Tian X, Groleau RR, Feng B, Yang Y, Sedgwick AC, Han HH, Wang Y, Wang HM, Huang F, Bull SD, Zhang H, Huang C, Zang Y, Li J, He XP, Li P, Tang B, James TD, Sessler JL. Dual-Channel Fluorescent Probe for the Simultaneous Monitoring of Peroxynitrite and Adenosine-5'-triphosphate in Cellular Applications. J Am Chem Soc 2021. [PMID: 34931825 DOI: 10.1021/jacs.1c07954] [Reference Citation Analysis]
18 Niu P, Zhu J, Wei L, Liu X. Application of Fluorescent Probes in Reactive Oxygen Species Disease Model. Crit Rev Anal Chem 2022;:1-36. [PMID: 35639641 DOI: 10.1080/10408347.2022.2080495] [Reference Citation Analysis]
19 Huang T, Yan S, Yu Y, Xue Y, Yu Y, Han C. Dual-Responsive Ratiometric Fluorescent Probe for Hypochlorite and Peroxynitrite Detection and Imaging In Vitro and In Vivo. Anal Chem . [DOI: 10.1021/acs.analchem.1c04729] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
20 Ju Z, Shen L, Zhou M, Luo J, Yu Z, Qu C, Lei R, Lei M, Huang R. Helicobacter pylori and Alzheimer's Disease-Related Metabolic Dysfunction: Activation of TLR4/Myd88 Inflammation Pathway from p53 Perspective and a Case Study of Low-Dose Radiation Intervention. ACS Chem Neurosci 2022;13:1065-81. [PMID: 35312296 DOI: 10.1021/acschemneuro.2c00082] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Yue L, Huang H, Song W, Lin W. A near-infrared endoplasmic reticulum-targeted fluorescent probe to visualize the fluctuation of SO2 during endoplasmic reticulum stress. Chemical Engineering Journal 2022;431:133468. [DOI: 10.1016/j.cej.2021.133468] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
22 Chang M, Yan C, Shi L, Li D, Fu W, Guo Z. Rational design of shortwave infrared (SWIR) fluorescence probe: Cooperation of ICT and ESIPT processes for sensing endogenous cysteine. Chinese Chemical Letters 2022;33:762-6. [DOI: 10.1016/j.cclet.2021.08.015] [Reference Citation Analysis]