BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Han X, Xu K, Taratula O, Farsad K. Applications of nanoparticles in biomedical imaging. Nanoscale 2019;11:799-819. [PMID: 30603750 DOI: 10.1039/c8nr07769j] [Cited by in Crossref: 126] [Cited by in F6Publishing: 31] [Article Influence: 42.0] [Reference Citation Analysis]
Number Citing Articles
1 Imran M, Riaz S, Batool T, Qamar A, Khan IU, Zahoor R, Shahid A, Naseem S. Biodistribution of iron-oxide-stabilized 99mTc- ZrO2 nanoparticles in rabbit using honey as a capping agent—microwave-assisted sol–gel approach. J Sol-Gel Sci Technol 2021;98:95-112. [DOI: 10.1007/s10971-021-05497-y] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Lin Y, Zhao Y, Yang Z, Shen Z, Ke J, Yin F, Fang L, Zvyagin AV, Yang B, Lin Q. Gold nanodots with stable red fluorescence for rapid dual-mode imaging of spinal cord and injury monitoring. Talanta 2022. [DOI: 10.1016/j.talanta.2022.123241] [Reference Citation Analysis]
3 Gonella VC, Hanser F, Vorwerk J, Odenbach S, Baumgarten D. Influence of local particle concentration gradient forces on the flow-mediated mass transport in a numerical model of magnetic drug targeting. Journal of Magnetism and Magnetic Materials 2021;525:167490. [DOI: 10.1016/j.jmmm.2020.167490] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Yuan D, Ellis CM, Davis JJ. Mesoporous Silica Nanoparticles in Bioimaging. Materials (Basel) 2020;13:E3795. [PMID: 32867401 DOI: 10.3390/ma13173795] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
5 Saladino GM, Kilic NI, Brodin B, Hamawandi B, Yazgan I, Hertz HM, Toprak MS. Carbon Quantum Dots Conjugated Rhodium Nanoparticles as Hybrid Multimodal Contrast Agents. Nanomaterials (Basel) 2021;11:2165. [PMID: 34578481 DOI: 10.3390/nano11092165] [Reference Citation Analysis]
6 Trayford C, Crosbie D, Rademakers T, van Blitterswijk C, Nuijts R, Ferrari S, Habibovic P, Lapointe V, Dickman M, van Rijt S. Mesoporous Silica-Coated Gold Nanoparticles for Multimodal Imaging and Reactive Oxygen Species Sensing of Stem Cells. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.1c03640] [Reference Citation Analysis]
7 Yazdani S, Daneshkhah A, Diwate A, Patel H, Smith J, Reul O, Cheng R, Izadian A, Hajrasouliha AR. Model for Gold Nanoparticle Synthesis: Effect of pH and Reaction Time. ACS Omega 2021;6:16847-53. [PMID: 34250344 DOI: 10.1021/acsomega.1c01418] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Della Camera G, Madej M, Ferretti AM, La Spina R, Li Y, Corteggio A, Heinzl T, Swartzwelter BJ, Sipos G, Gioria S, Ponti A, Boraschi D, Italiani P. Personalised Profiling of Innate Immune Memory Induced by Nano-Imaging Particles in Human Monocytes. Front Immunol 2021;12:692165. [PMID: 34421901 DOI: 10.3389/fimmu.2021.692165] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
9 Nasseri B, Alizadeh E, Bani F, Davaran S, Akbarzadeh A, Rabiee N, Bahadori A, Ziaei M, Bagherzadeh M, Saeb MR, Mozafari M, Hamblin MR. Nanomaterials for photothermal and photodynamic cancer therapy. Applied Physics Reviews 2022;9:011317. [DOI: 10.1063/5.0047672] [Reference Citation Analysis]
10 Nieves LM, Hsu JC, Lau KC, Maidment ADA, Cormode DP. Silver telluride nanoparticles as biocompatible and enhanced contrast agents for X-ray imaging: an in vivo breast cancer screening study. Nanoscale 2021;13:163-74. [PMID: 33325953 DOI: 10.1039/d0nr05489e] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
11 Díez-Villares S, Pellico J, Gómez-Lado N, Grijalvo S, Alijas S, Eritja R, Herranz F, Aguiar P, de la Fuente M. Biodistribution of 68/67Ga-Radiolabeled Sphingolipid Nanoemulsions by PET and SPECT Imaging. Int J Nanomedicine 2021;16:5923-35. [PMID: 34475757 DOI: 10.2147/IJN.S316767] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Michael PL, Lam YT, Hung J, Tan RP, Santos M, Wise SG. Comprehensive Evaluation of the Toxicity and Biosafety of Plasma Polymerized Nanoparticles. Nanomaterials (Basel) 2021;11:1176. [PMID: 33947114 DOI: 10.3390/nano11051176] [Reference Citation Analysis]
13 Yin IX, Zhao IS, Mei ML, Li Q, Yu OY, Chu CH. Use of Silver Nanomaterials for Caries Prevention: A Concise Review. Int J Nanomedicine 2020;15:3181-91. [PMID: 32440117 DOI: 10.2147/IJN.S253833] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
14 Park JH, Jin SM, Lee E, Ahn HS. Electrochemical synthesis of core-shell nanoparticles by seed-mediated selective deposition. Chem Sci 2021;12:13557-63. [PMID: 34777775 DOI: 10.1039/d1sc03625d] [Reference Citation Analysis]
15 Wong PM, Juan JC, Lai JC, Lim TH. Galvanic Replacement-Enabled Synthesis of In(OH)3/Ag/C Nanocomposite as an Effective Photocatalyst for Ultraviolet C Degradation of Methylene Blue. ACS Omega 2020;5:13719-28. [PMID: 32566837 DOI: 10.1021/acsomega.0c00881] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Attia MS, Youssef AO, Abou-Omar MN, Mohamed EH, Boukherroub R, Khan A, Altalhi T, Amin MA. Emerging advances and current applications of nanoMOF-based membranes for water treatment. Chemosphere 2021;:133369. [PMID: 34953879 DOI: 10.1016/j.chemosphere.2021.133369] [Reference Citation Analysis]
17 Lawson T, Joenathan A, Patwa A, Snyder BD, Grinstaff MW. Tantalum Oxide Nanoparticles for the Quantitative Contrast-Enhanced Computed Tomography of Ex Vivo Human Cartilage: Assessment of Biochemical Composition and Biomechanics. ACS Nano 2021;15:19175-84. [PMID: 34882411 DOI: 10.1021/acsnano.1c03375] [Reference Citation Analysis]
18 Liu CP, Chen ZD, Ye ZY, He DY, Dang Y, Li ZW, Wang L, Ren M, Fan ZJ, Liu HX. Therapeutic Applications of Functional Nanomaterials for Prostatitis. Front Pharmacol 2021;12:685465. [PMID: 34140892 DOI: 10.3389/fphar.2021.685465] [Reference Citation Analysis]
19 Bai X, Tan W, Abdurahman A, Li X, Li F. Stable red nanoparticles loaded neutral luminescent radicals for fluorescence imaging. Dyes and Pigments 2022;202:110260. [DOI: 10.1016/j.dyepig.2022.110260] [Reference Citation Analysis]
20 Wang J, Hou Y. Iron Carbide Nanostructures: An Emerging Material for Tumor Theranostics. Acc Mater Res 2022;3:89-99. [DOI: 10.1021/accountsmr.0c00018] [Reference Citation Analysis]
21 Payne LM, Albrecht W, Langbein W, Borri P. The optical nanosizer - quantitative size and shape analysis of individual nanoparticles by high-throughput widefield extinction microscopy. Nanoscale 2020;12:16215-28. [PMID: 32706004 DOI: 10.1039/d0nr03504a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Low LE, Lim HP, Ong YS, Siva SP, Sia CS, Goh B, Chan ES, Tey BT. Stimuli-controllable iron oxide nanoparticle assemblies: Design, manipulation and bio-applications. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.03.024] [Reference Citation Analysis]
23 Sharma N, Bietar K, Stochaj U. Targeting nanoparticles to malignant tumors. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2022. [DOI: 10.1016/j.bbcan.2022.188703] [Reference Citation Analysis]
24 Boraschi D, Li D, Li Y, Italiani P. In Vitro and In Vivo Models to Assess the Immune-Related Effects of Nanomaterials. Int J Environ Res Public Health 2021;18:11769. [PMID: 34831525 DOI: 10.3390/ijerph182211769] [Reference Citation Analysis]
25 Lemonier S, Marty J, Fitremann J. Polysiloxanes Modified by Thiol‐Ene Reaction and Their Interaction with Gold Nanoparticles. HCA 2019;102. [DOI: 10.1002/hlca.201900180] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
26 Khan SB, Khan MI, Nisar J. Microwave-Assisted Green Synthesis of Pure and Mn-Doped ZnO Nanocomposites: In Vitro Antibacterial Assay and Photodegradation of Methylene Blue. Front Mater 2022;8:710155. [DOI: 10.3389/fmats.2021.710155] [Reference Citation Analysis]
27 Pellico J, Ellis CM, Davis JJ. Nanoparticle-Based Paramagnetic Contrast Agents for Magnetic Resonance Imaging. Contrast Media Mol Imaging 2019;2019:1845637. [PMID: 31191182 DOI: 10.1155/2019/1845637] [Cited by in Crossref: 39] [Cited by in F6Publishing: 23] [Article Influence: 13.0] [Reference Citation Analysis]
28 Torresan V, Forrer D, Guadagnini A, Badocco D, Pastore P, Casarin M, Selloni A, Coral D, Ceolin M, Fernández van Raap MB, Busato A, Marzola P, Spinelli AE, Amendola V. 4D Multimodal Nanomedicines Made of Nonequilibrium Au-Fe Alloy Nanoparticles. ACS Nano 2020;14:12840-53. [PMID: 32877170 DOI: 10.1021/acsnano.0c03614] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
29 Abolaban F, Taha E. A Monte Carlo study on the effect of nanoparticle shapes on dose enhancement and distribution using 197Au and 195Pt. Journal of Radiation Research and Applied Sciences 2020;13:698-703. [DOI: 10.1080/16878507.2020.1828019] [Reference Citation Analysis]
30 Huber TC, Bochnakova T, Koethe Y, Park B, Farsad K. Percutaneous Therapies for Hepatocellular Carcinoma: Evolution of Liver Directed Therapies. J Hepatocell Carcinoma 2021;8:1181-93. [PMID: 34589446 DOI: 10.2147/JHC.S268300] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Liu M, Fang X, Yang Y, Wang C. Peptide-Enabled Targeted Delivery Systems for Therapeutic Applications. Front Bioeng Biotechnol 2021;9:701504. [PMID: 34277592 DOI: 10.3389/fbioe.2021.701504] [Reference Citation Analysis]
32 Oksel Karakus C, Bilgi E, Winkler DA. Biomedical nanomaterials: applications, toxicological concerns, and regulatory needs. Nanotoxicology 2021;15:331-51. [PMID: 33337941 DOI: 10.1080/17435390.2020.1860265] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 González-Gómez MA, Belderbos S, Yañez-Vilar S, Piñeiro Y, Cleeren F, Bormans G, Deroose CM, Gsell W, Himmelreich U, Rivas J. Development of Superparamagnetic Nanoparticles Coated with Polyacrylic Acid and Aluminum Hydroxide as an Efficient Contrast Agent for Multimodal Imaging. Nanomaterials (Basel) 2019;9:E1626. [PMID: 31731823 DOI: 10.3390/nano9111626] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
34 Joseph JM, Gigliobianco MR, Firouzabadi BM, Censi R, Di Martino P. Nanotechnology as a Versatile Tool for 19F-MRI Agent’s Formulation: A Glimpse into the Use of Perfluorinated and Fluorinated Compounds in Nanoparticles. Pharmaceutics 2022;14:382. [DOI: 10.3390/pharmaceutics14020382] [Reference Citation Analysis]
35 Klapproth AP, Shevtsov M, Stangl S, Li WB, Multhoff G. A New Pharmacokinetic Model Describing the Biodistribution of Intravenously and Intratumorally Administered Superparamagnetic Iron Oxide Nanoparticles (SPIONs) in a GL261 Xenograft Glioblastoma Model. Int J Nanomedicine 2020;15:4677-89. [PMID: 32669844 DOI: 10.2147/IJN.S254745] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Gongalsky M, Gvindzhiliia G, Tamarov K, Shalygina O, Pavlikov A, Solovyev V, Kudryavtsev A, Sivakov V, Osminkina LA. Radiofrequency Hyperthermia of Cancer Cells Enhanced by Silicic Acid Ions Released During the Biodegradation of Porous Silicon Nanowires. ACS Omega 2019;4:10662-9. [PMID: 31460163 DOI: 10.1021/acsomega.9b01030] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
37 Hosseinkazemi H, Samani S, O’neill A, Soezi M, Moghoofei M, Azhdari MH, Aavani F, Nazbar A, Keshel SH, Doroudian M, Shi D. Applications of Iron Oxide Nanoparticles against Breast Cancer. Journal of Nanomaterials 2022;2022:1-12. [DOI: 10.1155/2022/6493458] [Reference Citation Analysis]
38 Dong J, Moudgil BM. Interfacial Engineering of Particulate & Surfactant Systems for Enhanced Performance in Industrial Applications. KONA. [DOI: 10.14356/kona.2023002] [Reference Citation Analysis]
39 Han M, Beon J, Lee JY, Oh SS. Systematic Combination of Oligonucleotides and Synthetic Polymers for Advanced Therapeutic Applications. Macromol Res 2021;29:665-80. [PMID: 34754286 DOI: 10.1007/s13233-021-9093-5] [Reference Citation Analysis]
40 Lu F, Zhan C, Gong Y, Tang Y, Xie C, Wang Q, Wang W, Fan Q, Huang W. A General Strategy to Encapsulate Semiconducting Polymers within PEGylated Mesoporous Silica Nanoparticles for Optical Imaging and Drug Delivery. Part Part Syst Charact 2020;37:1900483. [DOI: 10.1002/ppsc.201900483] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
41 Pellizzi N, Mazzulla A, Pagliusi P, Cipparrone G. Core-shellchiralpolymeric-metallic particles obtained in a single step by concurrentlight induced processes. J Colloid Interface Sci 2022;606:113-23. [PMID: 34388565 DOI: 10.1016/j.jcis.2021.07.143] [Reference Citation Analysis]
42 Kaberov LI, Kaberova Z, Murmiliuk A, Trousil J, Sedláček O, Konefal R, Zhigunov A, Pavlova E, Vít M, Jirák D, Hoogenboom R, Filippov SK. Fluorine-Containing Block and Gradient Copoly(2-oxazoline)s Based on 2-(3,3,3-Trifluoropropyl)-2-oxazoline: A Quest for the Optimal Self-Assembled Structure for 19F Imaging. Biomacromolecules 2021;22:2963-75. [PMID: 34180669 DOI: 10.1021/acs.biomac.1c00367] [Reference Citation Analysis]
43 Xie N, Hou Y, Wang S, Ai X, Bai J, Lai X, Zhang Y, Meng X, Wang X. Second near-infrared (NIR-II) imaging: a novel diagnostic technique for brain diseases. Rev Neurosci 2021. [PMID: 34551223 DOI: 10.1515/revneuro-2021-0088] [Reference Citation Analysis]
44 Nakamura M, Hayashi K, Nakamura J, Mochizuki C, Murakami T, Miki H, Ozaki S, Abe M. Near-Infrared Fluorescent Thiol-Organosilica Nanoparticles That Are Functionalized with IR-820 and Their Applications for Long-Term Imaging of in Situ Labeled Cells and Depth-Dependent Tumor in Vivo Imaging. Chem Mater 2020;32:7201-14. [DOI: 10.1021/acs.chemmater.0c01414] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
45 Saladino GM, Vogt C, Li Y, Shaker K, Brodin B, Svenda M, Hertz HM, Toprak MS. Optical and X-ray Fluorescent Nanoparticles for Dual Mode Bioimaging. ACS Nano 2021;15:5077-85. [PMID: 33587608 DOI: 10.1021/acsnano.0c10127] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
46 El Hariri El Nokab M, Sebakhy KO. Solid State NMR Spectroscopy a Valuable Technique for Structural Insights of Advanced Thin Film Materials: A Review. Nanomaterials (Basel) 2021;11:1494. [PMID: 34200088 DOI: 10.3390/nano11061494] [Reference Citation Analysis]
47 Nieves LM, Mossburg K, Hsu JC, Maidment ADA, Cormode DP. Silver chalcogenide nanoparticles: a review of their biomedical applications. Nanoscale 2021;13:19306-23. [PMID: 34783806 DOI: 10.1039/d0nr03872e] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Atabakhshi-Kashi M, Carril M, Mahdavi H, Parak WJ, Carrillo-Carrion C, Khajeh K. In Vitro Cellular Uptake Studies of Self-Assembled Fluorinated Nanoparticles Labelled with Antibodies. Nanomaterials (Basel) 2021;11:1906. [PMID: 34443736 DOI: 10.3390/nano11081906] [Reference Citation Analysis]
49 Jana B, Kim S, Choi H, Jin S, Kim K, Kim M, Lee H, Lee KH, Lee J, Park M, Jeong Y, Ryu J, Kim C. Supramolecular protection-mediated one-pot synthesis of cationic gold nanoparticles. Journal of Industrial and Engineering Chemistry 2020;81:303-8. [DOI: 10.1016/j.jiec.2019.09.018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
50 Gessner I. Optimizing nanoparticle design and surface modification toward clinical translation. MRS Bull 2021;:1-7. [PMID: 34305307 DOI: 10.1557/s43577-021-00132-1] [Reference Citation Analysis]
51 Kim GW, Song NH, Park MR, Kim TE, Kim DS, Oh YB, Lee DW. Diagnosis and Simultaneous Treatment of Musculoskeletal Injury Using H2O2-Triggered Echogenic Antioxidant Polymer Nanoparticles in a Rat Model of Contusion Injury. Nanomaterials (Basel) 2021;11:2571. [PMID: 34685012 DOI: 10.3390/nano11102571] [Reference Citation Analysis]
52 Siafaka PI, Okur NÜ, Karantas ID, Okur ME, Gündoğdu EA. Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities. Asian J Pharm Sci 2021;16:24-46. [PMID: 33613728 DOI: 10.1016/j.ajps.2020.03.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
53 Carloni R, Sanz Del Olmo N, Ortega P, Fattori A, Gómez R, Ottaviani MF, García-Gallego S, Cangiotti M, de la Mata FJ. Exploring the Interactions of Ruthenium (II) Carbosilane Metallodendrimers and Precursors with Model Cell Membranes through a Dual Spin-Label Spin-Probe Technique Using EPR. Biomolecules 2019;9:E540. [PMID: 31569790 DOI: 10.3390/biom9100540] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
54 Wang F, Zhou P, Li K, Mamtilahun M, Tang Y, Du G, Deng B, Xie H, Yang G, Xiao T. Sensitive imaging of intact microvessels in vivo with synchrotron radiation. IUCrJ 2020;7:793-802. [PMID: 32939271 DOI: 10.1107/S2052252520008234] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
55 Świętek M, Gunár K, Kołodziej A, Wesełucha-birczyńska A, Veverka P, Šebestová Janoušková O, Horák D. Surface Effect of Iron Oxide Nanoparticles on the Suppression of Oxidative Burst in Cells. J Clust Sci. [DOI: 10.1007/s10876-022-02222-9] [Reference Citation Analysis]
56 Kimura A, Ueno M, Arai T, Oyama K, Taguchi M. Radiation Crosslinked Smart Peptide Nanoparticles: A New Platform for Tumor Imaging. Nanomaterials (Basel) 2021;11:714. [PMID: 33809100 DOI: 10.3390/nano11030714] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Abd Elkodous M, El-husseiny HM, El-sayyad GS, Hashem AH, Doghish AS, Elfadil D, Radwan Y, El-zeiny HM, Bedair H, Ikhdair OA, Hashim H, Salama AM, Alshater H, Ahmed AA, Elsayed MG, Nagy M, Ali NY, Elahmady M, Kamel AM, Elkodous MA, Maallem I, Kaml MBS, Nasser N, Nouh AA, Safwat FM, Alshal MM, Ahmed SK, Nagib T, El-sayed FM, Almahdi M, Adla Y, Elnashar NT, Hussien AM, Salih AS, Mahmoud SA, Magdy S, Ahmed DI, Hassan FMS, Edward NA, Milad KS, Halasa SR, Arafa MM, Hegazy A, Kawamura G, Tan WK, Matsuda A. Recent advances in waste-recycled nanomaterials for biomedical applications: Waste-to-wealth. Nanotechnology Reviews 2021;10:1662-739. [DOI: 10.1515/ntrev-2021-0099] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
58 Yan Y, Wang H, Zhao Y. Radiolabeled peptide probe for tumor imaging. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.02.016] [Reference Citation Analysis]
59 Makhani EY, Zhang A, Haun JB. Quantifying and controlling bond multivalency for advanced nanoparticle targeting to cells. Nano Converg 2021;8:38. [PMID: 34846580 DOI: 10.1186/s40580-021-00288-1] [Reference Citation Analysis]
60 Li X, Sun Y, Ma L, Liu G, Wang Z. The Renal Clearable Magnetic Resonance Imaging Contrast Agents: State of the Art and Recent Advances. Molecules 2020;25:E5072. [PMID: 33139643 DOI: 10.3390/molecules25215072] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
61 Shende P, Mondal A. Nanobulges: A Duplex Nanosystem for Multidimensional Applications. CNANO 2020;16:668-75. [DOI: 10.2174/1573413716666200218130452] [Reference Citation Analysis]
62 Oyarzún MP, Tapia-Arellano A, Cabrera P, Jara-Guajardo P, Kogan MJ. Plasmonic Nanoparticles as Optical Sensing Probes for the Detection of Alzheimer's Disease. Sensors (Basel) 2021;21:2067. [PMID: 33809416 DOI: 10.3390/s21062067] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
63 Yoong WC, Loke CF, Juan JC, Yusoff K, Mohtarrudin N, Tatsuma T, Xu Y, Lim TH. Alginate-enabled green synthesis of S/Ag1.93S nanoparticles, their photothermal property and in-vitro assessment of their anti-skin-cancer effects augmented by a NIR laser. Int J Biol Macromol 2022:S0141-8130(22)00078-2. [PMID: 35041888 DOI: 10.1016/j.ijbiomac.2022.01.062] [Reference Citation Analysis]
64 Han X, Taratula O, Taratula O, Xu K, St Lorenz A, Moses A, Jahangiri Y, Yu G, Farsad K. Biodegradable Hypericin-Containing Nanoparticles for Necrosis Targeting and Fluorescence Imaging. Mol Pharm 2020;17:1538-45. [PMID: 32212709 DOI: 10.1021/acs.molpharmaceut.9b01238] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
65 Suárez-garcía S, Solórzano R, Novio F, Alibés R, Busqué F, Ruiz-molina D. Coordination polymers nanoparticles for bioimaging. Coordination Chemistry Reviews 2021;432:213716. [DOI: 10.1016/j.ccr.2020.213716] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 12.0] [Reference Citation Analysis]
66 Ahmad MY, Ahmad MW, Yue H, Ho SL, Park JA, Jung KH, Cha H, Marasini S, Ghazanfari A, Liu S, Tegafaw T, Chae KS, Chang Y, Lee GH. In Vivo Positive Magnetic Resonance Imaging Applications of Poly(methyl vinyl ether-alt-maleic acid)-coated Ultra-small Paramagnetic Gadolinium Oxide Nanoparticles. Molecules 2020;25:E1159. [PMID: 32150823 DOI: 10.3390/molecules25051159] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
67 Figueroa RG, Valente M, Guarda J, Leiva J, Quilaguilque E, Casanelli B, Leyton F. OXIRIS project: Development of a new XRF device for the simultaneous detection and treatment of cancer. X‐Ray Spectrom. [DOI: 10.1002/xrs.3272] [Reference Citation Analysis]
68 Asghar MA, Yousuf RI, Shoaib MH, Asghar MA, Mumtaz N. A Review on Toxicity and Challenges in Transferability of Surface-functionalized Metallic Nanoparticles from Animal Models to Humans. BIO Integration 2021;2:71-80. [DOI: 10.15212/bioi-2020-0047] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Difonzo M, Fliedel L, Mignet N, Andrieux K, Alhareth K. How Could Nanomedicine Improve the Safety of Contrast Agents for MRI during Pregnancy? Sci 2022;4:11. [DOI: 10.3390/sci4010011] [Reference Citation Analysis]
70 Maisha N, Coombs T, Lavik E. Development of a Sensitive Assay to Screen Nanoparticles in vitro for Complement Activation. ACS Biomater Sci Eng 2020;6:4903-15. [PMID: 33313396 DOI: 10.1021/acsbiomaterials.0c00722] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
71 Osman NM, Sexton DW, Saleem IY. Toxicological assessment of nanoparticle interactions with the pulmonary system. Nanotoxicology 2020;14:21-58. [PMID: 31502904 DOI: 10.1080/17435390.2019.1661043] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
72 Yang H, Zhao W, Lin X, Liao Z, Nie Z, Luo L, Zhang W, Hu Z, Zhong J. Hundreds of times of photo-stimulation with low energy light as a new reused bio-imaging phosphor from Cr3+, Si4+-doped Y3Ga5O12. Journal of Luminescence 2020;219:116871. [DOI: 10.1016/j.jlumin.2019.116871] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
73 Paca AM, Ajibade PA. Effect of temperature on structural and optical properties of iron sulfide nanocrystals prepared from tris( N -methylbenzyldithiocarbamato) iron(III) complex. Inorganic and Nano-Metal Chemistry 2021;51:322-31. [DOI: 10.1080/24701556.2020.1789996] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]