BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rada P, González-Rodríguez Á, García-Monzón C, Valverde ÁM. Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell Death Dis 2020;11:802. [PMID: 32978374 DOI: 10.1038/s41419-020-03003-w] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Lu L, Hao K, Hong Y, Liu J, Zhu J, Jiang W, Zhu Z, Wang G, Peng Y. Magnesium Isoglycyrrhizinate Reduces Hepatic Lipotoxicity through Regulating Metabolic Abnormalities. Int J Mol Sci 2021;22:5884. [PMID: 34070938 DOI: 10.3390/ijms22115884] [Reference Citation Analysis]
2 Blériot C, Barreby E, Dunsmore G, Ballaire R, Chakarov S, Ficht X, De Simone G, Andreata F, Fumagalli V, Guo W, Wan G, Gessain G, Khalilnezhad A, Zhang XM, Ang N, Chen P, Morgantini C, Azzimato V, Kong WT, Liu Z, Pai R, Lum J, Shihui F, Low I, Xu C, Malleret B, Kairi MFM, Balachander A, Cexus O, Larbi A, Lee B, Newell EW, Ng LG, Phoo WW, Sobota RM, Sharma A, Howland SW, Chen J, Bajenoff M, Yvan-Charvet L, Venteclef N, Iannacone M, Aouadi M, Ginhoux F. A subset of Kupffer cells regulates metabolism through the expression of CD36. Immunity 2021;54:2101-2116.e6. [PMID: 34469775 DOI: 10.1016/j.immuni.2021.08.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
3 Rebollo-hernanz M, Aguilera Y, Martín-cabrejas MA, Gonzalez de Mejia E. Activating Effects of the Bioactive Compounds From Coffee By-Products on FGF21 Signaling Modulate Hepatic Mitochondrial Bioenergetics and Energy Metabolism in vitro. Front Nutr 2022;9:866233. [DOI: 10.3389/fnut.2022.866233] [Reference Citation Analysis]
4 He Z, Guo T, Cui Z, Xu J, Wu Z, Yang X, Hu H, Mei H, Zhou J, Zhang Y, Wang K. New understanding of Angelica sinensis polysaccharide improving fatty liver: The dual inhibition of lipid synthesis and CD36-mediated lipid uptake and the regulation of alcohol metabolism. Int J Biol Macromol 2022:S0141-8130(22)00618-3. [PMID: 35358574 DOI: 10.1016/j.ijbiomac.2022.03.148] [Reference Citation Analysis]
5 Kozaczek M, Bottje W, Albataineh D, Hakkak R. Effects of Short- and Long-Term Soy Protein Feeding on Hepatic Cytochrome P450 Expression in Obese Nonalcoholic Fatty Liver Disease Rat Model. Front Nutr 2021;8:699620. [PMID: 34262928 DOI: 10.3389/fnut.2021.699620] [Reference Citation Analysis]
6 Ogino N, Miyagawa K, Nagaoka K, Sumida K, Kusanaga M, Oe S, Honma Y, Shibata M, Harada M, Suganuma N, Ogino K. Airborne fine particulate matter in Japan induces lipid synthesis and inhibits autophagy in HepG2 cells. Int J Biochem Cell Biol 2021;141:106099. [PMID: 34673217 DOI: 10.1016/j.biocel.2021.106099] [Reference Citation Analysis]
7 Wang L, Dong J, Xu M, Li L, Yang N, Qian G. Association Between Monocyte to High-Density Lipoprotein Cholesterol Ratio and Risk of Non-alcoholic Fatty Liver Disease: A Cross-Sectional Study. Front Med 2022;9:898931. [DOI: 10.3389/fmed.2022.898931] [Reference Citation Analysis]
8 Lua I, Balog S, Yanagi A, Tateno C, Asahina K. Loss of lysophosphatidic acid receptor 1 in hepatocytes reduces steatosis via down-regulation of CD36. Prostaglandins Other Lipid Mediat 2021;156:106577. [PMID: 34147666 DOI: 10.1016/j.prostaglandins.2021.106577] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Chen S, Che S, Li S, Ruan Z. The combined impact of decabromodiphenyl ether and high fat exposure on non-alcoholic fatty liver disease in vivo and in vitro. Toxicology 2021;464:153015. [PMID: 34757160 DOI: 10.1016/j.tox.2021.153015] [Reference Citation Analysis]
10 Zhang Y, Wen J, Liu D, Qiu Z, Zhu Q, Li R, Zhang Y. Demethylenetetrahydroberberine alleviates nonalcoholic fatty liver disease by inhibiting the NLRP3 inflammasome and oxidative stress in mice. Life Sci 2021;281:119778. [PMID: 34192596 DOI: 10.1016/j.lfs.2021.119778] [Reference Citation Analysis]
11 Yang L, Yang L, Wang X, Xing H, Zhao H, Xing Y, Zhou F, Wang C, Song G, Ma H. Exploring the Multi-Tissue Crosstalk Relevant to Insulin Resistance Through Network-Based Analysis. Front Endocrinol 2022;12:756785. [DOI: 10.3389/fendo.2021.756785] [Reference Citation Analysis]
12 Ahadi M, Molooghi K, Masoudifar N, Namdar AB, Vossoughinia H, Farzanehfar M. A review of non-alcoholic fatty liver disease in non-obese and lean individuals. J Gastroenterol Hepatol 2021;36:1497-507. [PMID: 33217052 DOI: 10.1111/jgh.15353] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
13 Huang Y, Tang Y, Qiu B, Talukder M, Li X, Li J. Di-2-ethylhexyl phthalate (DEHP) induced lipid metabolism disorder in liver via activating the LXR/SREBP-1c/PPARα/γ and NF-κB signaling pathway. Food and Chemical Toxicology 2022. [DOI: 10.1016/j.fct.2022.113119] [Reference Citation Analysis]
14 Grewal T, Buechler C. Emerging Insights on the Diverse Roles of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in Chronic Liver Diseases: Cholesterol Metabolism and Beyond. IJMS 2022;23:1070. [DOI: 10.3390/ijms23031070] [Reference Citation Analysis]
15 Henderson GC. Plasma Free Fatty Acid Concentration as a Modifiable Risk Factor for Metabolic Disease. Nutrients 2021;13:2590. [PMID: 34444750 DOI: 10.3390/nu13082590] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Tripathi A, Fanning S, Dettmer U. Lipotoxicity Downstream of α-Synuclein Imbalance: A Relevant Pathomechanism in Synucleinopathies? Biomolecules 2022;12:40. [DOI: 10.3390/biom12010040] [Reference Citation Analysis]
17 Qin S, He Z, Wu Y, Zeng C, Zheng Z, Zhang H, Lv C, Yuan Y, Wu H, Ye J, Liu Z, Shi M. Instant Dark Tea Alleviates Hyperlipidaemia in High-Fat Diet-Fed Rat: From Molecular Evidence to Redox Balance and Beyond. Front Nutr 2022;9:819980. [DOI: 10.3389/fnut.2022.819980] [Reference Citation Analysis]
18 Wang M, Li B, Qin F, Ye J, Jin L. Obesity induced Ext1 reduction mediates the occurrence of NAFLD. Biochem Biophys Res Commun 2021;589:123-30. [PMID: 34906902 DOI: 10.1016/j.bbrc.2021.12.017] [Reference Citation Analysis]
19 Santos-laso A, Gutiérrez-larrañaga M, Alonso-peña M, Medina JM, Iruzubieta P, Arias-loste MT, López-hoyos M, Crespo J. Pathophysiological Mechanisms in Non-Alcoholic Fatty Liver Disease: From Drivers to Targets. Biomedicines 2022;10:46. [DOI: 10.3390/biomedicines10010046] [Reference Citation Analysis]
20 Vural H, Armutcu F, Akyol O, Weiskirchen R. The potential pathophysiological role of altered lipid metabolism and electronegative low-density lipoprotein (LDL) in non-alcoholic fatty liver disease and cardiovascular diseases. Clin Chim Acta 2021;523:374-9. [PMID: 34678296 DOI: 10.1016/j.cca.2021.10.018] [Reference Citation Analysis]
21 Peiseler M, Tacke F. Inflammatory Mechanisms Underlying Nonalcoholic Steatohepatitis and the Transition to Hepatocellular Carcinoma. Cancers (Basel) 2021;13:730. [PMID: 33578800 DOI: 10.3390/cancers13040730] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Hliwa A, Ramos-Molina B, Laski D, Mika A, Sledzinski T. The Role of Fatty Acids in Non-Alcoholic Fatty Liver Disease Progression: An Update. Int J Mol Sci 2021;22:6900. [PMID: 34199035 DOI: 10.3390/ijms22136900] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Xiao L, Luo G, Li H, Yao P, Tang Y. Dietary iron overload mitigates atherosclerosis in high-fat diet-fed apolipoprotein E knockout mice: Role of dysregulated hepatic fatty acid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2021;1866:159004. [PMID: 34245925 DOI: 10.1016/j.bbalip.2021.159004] [Reference Citation Analysis]
24 Torre P, Motta BM, Sciorio R, Masarone M, Persico M. Inflammation and Fibrogenesis in MAFLD: Role of the Hepatic Immune System. Front Med (Lausanne) 2021;8:781567. [PMID: 34957156 DOI: 10.3389/fmed.2021.781567] [Reference Citation Analysis]
25 Piacentini M, Shi Y, Simon HU. 10 years of Cell Death & Disease. Cell Death Dis 2020;11:1064. [PMID: 33311494 DOI: 10.1038/s41419-020-03287-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Yang M, Geng CA, Liu X, Guan M. Lipid Disorders in NAFLD and Chronic Kidney Disease. Biomedicines 2021;9:1405. [PMID: 34680522 DOI: 10.3390/biomedicines9101405] [Reference Citation Analysis]
27 Gusev E, Sarapultsev A, Hu D, Chereshnev V. Problems of Pathogenesis and Pathogenetic Therapy of COVID-19 from the Perspective of the General Theory of Pathological Systems (General Pathological Processes). Int J Mol Sci 2021;22:7582. [PMID: 34299201 DOI: 10.3390/ijms22147582] [Reference Citation Analysis]
28 Hwang S, Yun H, Moon S, Cho YE, Gao B. Role of Neutrophils in the Pathogenesis of Nonalcoholic Steatohepatitis. Front Endocrinol (Lausanne) 2021;12:751802. [PMID: 34707573 DOI: 10.3389/fendo.2021.751802] [Reference Citation Analysis]
29 Krizanac M, Mass Sanchez PB, Weiskirchen R, Asimakopoulos A. A Scoping Review on Lipocalin-2 and Its Role in Non-Alcoholic Steatohepatitis and Hepatocellular Carcinoma. Int J Mol Sci 2021;22:2865. [PMID: 33799862 DOI: 10.3390/ijms22062865] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
30 Lambrecht J, Tacke F. Controversies and Opportunities in the Use of Inflammatory Markers for Diagnosis or Risk Prediction in Fatty Liver Disease. Front Immunol 2020;11:634409. [PMID: 33633748 DOI: 10.3389/fimmu.2020.634409] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
31 Ramanan SP, Mohamed MWF, Aung SS, Sange I, Hamid P. Treatment of Fatty Liver Disease: The Present and the Future. Cureus 2021;13:e12713. [PMID: 33614318 DOI: 10.7759/cureus.12713] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
32 Lewinska M, Santos-Laso A, Arretxe E, Alonso C, Zhuravleva E, Jimenez-Agüero R, Eizaguirre E, Pareja MJ, Romero-Gómez M, Jimenez MA, Suppli MP, Knop FK, Oversoe SK, Villadsen GE, Decaens T, Carrilho FJ, de Oliveira CP, Sangro B, Macias RIR, Banales JM, Andersen JB. The altered serum lipidome and its diagnostic potential for Non-Alcoholic Fatty Liver (NAFL)-associated hepatocellular carcinoma. EBioMedicine 2021;73:103661. [PMID: 34740106 DOI: 10.1016/j.ebiom.2021.103661] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Yang W, Zhu L, Lai S, Ding Q, Xu T, Guo R, Dou X, Chai H, Yu Z, Li S, Wang K. Cimifugin Ameliorates Lipotoxicity-Induced Hepatocyte Damage and Steatosis through TLR4/p38 MAPK- and SIRT1-Involved Pathways. Oxidative Medicine and Cellular Longevity 2022;2022:1-17. [DOI: 10.1155/2022/4557532] [Reference Citation Analysis]
34 Cabrera-Reyes F, Parra-Ruiz C, Yuseff MI, Zanlungo S. Alterations in Lysosome Homeostasis in Lipid-Related Disorders: Impact on Metabolic Tissues and Immune Cells. Front Cell Dev Biol 2021;9:790568. [PMID: 34957117 DOI: 10.3389/fcell.2021.790568] [Reference Citation Analysis]
35 Park S, Komatsu T, Hayashi H, Mori R, Shimokawa I. The Role of Neuropeptide Y in Adipocyte-Macrophage Crosstalk during High Fat Diet-Induced Adipose Inflammation and Liver Steatosis. Biomedicines 2021;9:1739. [PMID: 34829968 DOI: 10.3390/biomedicines9111739] [Reference Citation Analysis]
36 Jiang J, Zhang G, Zheng J, Sun J, Ding S. Targeting Mitochondrial ROS-Mediated Ferroptosis by Quercetin Alleviates High-Fat Diet-Induced Hepatic Lipotoxicity. Front Pharmacol 2022;13:876550. [DOI: 10.3389/fphar.2022.876550] [Reference Citation Analysis]
37 Rodrigues RM, He Y, Hwang S, Bertola A, Mackowiak B, Ait-Ahmed Y, Seo W, Ma J, Wang X, Park SH, Guan Y, Fu Y, Vanhaecke T, Feng D, Gao B. E-Selectin-Dependent Inflammation and Lipolysis in Adipose Tissue Exacerbate Steatosis-to-NASH Progression via S100A8/9. Cell Mol Gastroenterol Hepatol 2021:S2352-345X(21)00169-7. [PMID: 34390865 DOI: 10.1016/j.jcmgh.2021.08.002] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
38 Santos JPMD, Maio MC, Lemes MA, Laurindo LF, Haber JFDS, Bechara MD, Prado PSD Jr, Rauen EC, Costa F, Pereira BCA, Flato UAP, Goulart RA, Chagas EFB, Barbalho SM. Non-Alcoholic Steatohepatitis (NASH) and Organokines: What Is Now and What Will Be in the Future. Int J Mol Sci 2022;23:498. [PMID: 35008925 DOI: 10.3390/ijms23010498] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
39 Ontawong A, Pasachan T, Trisuwan K, Soodvilai S, Duangjai A, Pongchaidecha A, Amornlerdpison D, Srimaroeng C. Coffea arabica pulp aqueous extract attenuates oxidative stress and hepatic lipid accumulation in HepG2 cells. Journal of Herbal Medicine 2021;29:100465. [DOI: 10.1016/j.hermed.2021.100465] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Fu Q, North PE, Ke X, Huang YW, Fritz KA, Majnik AV, Lane RH. Adverse Maternal Environment and Postweaning Western Diet Alter Hepatic CD36 Expression and Methylation Concurrently with Nonalcoholic Fatty Liver Disease in Mouse Offspring. J Nutr 2021;151:3102-12. [PMID: 34486661 DOI: 10.1093/jn/nxab249] [Reference Citation Analysis]
41 Tan X, Sun Y, Chen L, Hu J, Meng Y, Yuan M, Wang Q, Li S, Zheng G, Qiu Z. Caffeine Ameliorates AKT-Driven Nonalcoholic Steatohepatitis by Suppressing De Novo Lipogenesis and MyD88 Palmitoylation. J Agric Food Chem 2022. [PMID: 35536225 DOI: 10.1021/acs.jafc.2c01013] [Reference Citation Analysis]
42 Lim S, Kim JW, Targher G. Links between metabolic syndrome and metabolic dysfunction-associated fatty liver disease. Trends Endocrinol Metab 2021;32:500-14. [PMID: 33975804 DOI: 10.1016/j.tem.2021.04.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
43 López-Pastor AR, Infante-Menéndez J, González-Illanes T, González-López P, González-Rodríguez Á, García-Monzón C, Vega de Céniga M, Esparza L, Gómez-Hernández A, Escribano Ó. Concerted regulation of non-alcoholic fatty liver disease progression by microRNAs in apolipoprotein E-deficient mice. Dis Model Mech 2021;14:dmm049173. [PMID: 34850865 DOI: 10.1242/dmm.049173] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Castañé H, Baiges-Gaya G, Hernández-Aguilera A, Rodríguez-Tomàs E, Fernández-Arroyo S, Herrero P, Delpino-Rius A, Canela N, Menendez JA, Camps J, Joven J. Coupling Machine Learning and Lipidomics as a Tool to Investigate Metabolic Dysfunction-Associated Fatty Liver Disease. A General Overview. Biomolecules 2021;11:473. [PMID: 33810079 DOI: 10.3390/biom11030473] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Kwapisz O, Górka J, Korlatowicz A, Kotlinowski J, Waligórska A, Marona P, Pydyn N, Dobrucki JW, Jura J, Miekus K. Fatty Acids and a High-Fat Diet Induce Epithelial-Mesenchymal Transition by Activating TGFβ and β-Catenin in Liver Cells. Int J Mol Sci 2021;22:1272. [PMID: 33525359 DOI: 10.3390/ijms22031272] [Reference Citation Analysis]
46 Van Gaal LF, Mertens J, Francque S, De Block C. Therapeutic approaches for non-alcoholic steatohepatitis. Ther Adv Endocrinol Metab 2021;12:20420188211034300. [PMID: 34497708 DOI: 10.1177/20420188211034300] [Reference Citation Analysis]
47 Kotlyarov S, Bulgakov A. Lipid Metabolism Disorders in the Comorbid Course of Nonalcoholic Fatty Liver Disease and Chronic Obstructive Pulmonary Disease. Cells 2021;10:2978. [PMID: 34831201 DOI: 10.3390/cells10112978] [Reference Citation Analysis]
48 Zhu L, Liao R, Huang J, Yan H, Xiao C, Yang Y, Wang H, Yang C. The miR-216/miR-217 Cluster Regulates Lipid Metabolism in Laying Hens With Fatty Liver Syndrome via PPAR/SREBP Signaling Pathway. Front Vet Sci 2022;9:913841. [DOI: 10.3389/fvets.2022.913841] [Reference Citation Analysis]
49 Patten DA, Wilkinson AL, O'Keeffe A, Shetty S. Scavenger Receptors: Novel Roles in the Pathogenesis of Liver Inflammation and Cancer. Semin Liver Dis 2021. [PMID: 34553345 DOI: 10.1055/s-0041-1733876] [Reference Citation Analysis]
50 Welch M, Secunda C, Ghimire N, Martinez I, Mathus A, Patel U, Bhogoju S, Al-mutairi M, Min K, Lawan A. Characterization and Roles of Membrane Lipids in Fatty Liver Disease. Membranes 2022;12:410. [DOI: 10.3390/membranes12040410] [Reference Citation Analysis]
51 Chung KW, Cho YE, Kim SJ, Hwang S. Immune-related pathogenesis and therapeutic strategies of nonalcoholic steatohepatitis. Arch Pharm Res 2022. [PMID: 35391713 DOI: 10.1007/s12272-022-01379-1] [Reference Citation Analysis]
52 Juchnicka I, Kuźmicki M, Szamatowicz J. Ceramides and Sphingosino-1-Phosphate in Obesity. Front Endocrinol (Lausanne) 2021;12:635995. [PMID: 34054722 DOI: 10.3389/fendo.2021.635995] [Reference Citation Analysis]
53 Sakurai Y, Kubota N, Yamauchi T, Kadowaki T. Role of Insulin Resistance in MAFLD. Int J Mol Sci 2021;22:4156. [PMID: 33923817 DOI: 10.3390/ijms22084156] [Reference Citation Analysis]
54 Luo H, Xu N, Wu J, Gan Y, Chen L, Guan F, Li M, Li Y, Chen J, Su Z, Liu Y. β-patchoulene protects against non-alcoholic steatohepatitis via interrupting the vicious circle among oxidative stress, histanoxia and lipid accumulation in rats. Int Immunopharmacol 2021;98:107915. [PMID: 34198236 DOI: 10.1016/j.intimp.2021.107915] [Reference Citation Analysis]
55 Wang Y, Chen C, Chen J, Sang T, Peng H, Lin X, Zhao Q, Chen S, Eling T, Wang X. Overexpression of NAG-1/GDF15 prevents hepatic steatosis through inhibiting oxidative stress-mediated dsDNA release and AIM2 inflammasome activation. Redox Biology 2022;52:102322. [DOI: 10.1016/j.redox.2022.102322] [Reference Citation Analysis]