BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhao J, Zhang X, Gao T, Wang S, Hou Y, Yuan P, Yang Y, Yang T, Xing J, Li J, Liu S. SIK2 enhances synthesis of fatty acid and cholesterol in ovarian cancer cells and tumor growth through PI3K/Akt signaling pathway. Cell Death Dis 2020;11:25. [PMID: 31932581 DOI: 10.1038/s41419-019-2221-x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
Number Citing Articles
1 Zhao S, Cheng L, Shi Y, Li J, Yun Q, Yang H. MIEF2 reprograms lipid metabolism to drive progression of ovarian cancer through ROS/AKT/mTOR signaling pathway. Cell Death Dis 2021;12:18. [PMID: 33414447 DOI: 10.1038/s41419-020-03336-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Chehade H, Tedja R, Ramos H, Bawa TS, Adzibolosu N, Gogoi R, Mor G, Alvero AB. Regulatory Role of the Adipose Microenvironment on Ovarian Cancer Progression. Cancers 2022;14:2267. [DOI: 10.3390/cancers14092267] [Reference Citation Analysis]
3 Wu C, Wang Y, Gao H, Zhang Y, Dai M, Li S. Relationship between salt-inducible kinase 2 (SIK2) and lymph node metastasis in colorectal cancer patients complicated with chronic schistosomiasis. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021;50:607-13. [PMID: 34986532 DOI: 10.3724/zdxbyxb-2021-0157] [Reference Citation Analysis]
4 Shi M, Zhao M, Wang L, Liu K, Li P, Liu J, Cai X, Chen L, Xu D. Exploring the stability of inhibitor binding to SIK2 using molecular dynamics simulation and binding free energy calculation. Phys Chem Chem Phys 2021;23:13216-27. [PMID: 34086021 DOI: 10.1039/d1cp00717c] [Reference Citation Analysis]
5 Xi Y, Yani Z, Jing M, Yinhang W, Xiaohui H, Jing Z, Quan Q, Shuwen H. Mechanisms of induction of tumors by cholesterol and potential therapeutic prospects. Biomed Pharmacother 2021;144:112277. [PMID: 34624674 DOI: 10.1016/j.biopha.2021.112277] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Sun Z, Niu S, Xu F, Zhao W, Ma R, Chen M. CircAMOTL1 Promotes Tumorigenesis Through miR-526b/SIK2 Axis in Cervical Cancer. Front Cell Dev Biol 2020;8:568190. [PMID: 33344445 DOI: 10.3389/fcell.2020.568190] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
7 Icard P, Simula L, Wu Z, Berzan D, Sogni P, Dohan A, Dautry R, Coquerel A, Lincet H, Loi M, Fuks D. Why may citrate sodium significantly increase the effectiveness of transarterial chemoembolization in hepatocellular carcinoma? Drug Resist Updat 2021;:100790. [PMID: 34924279 DOI: 10.1016/j.drup.2021.100790] [Reference Citation Analysis]
8 Fan D, Yang H, Mao W, Rask PJ, Pang L, Xu C, Vankayalapat H, Ahmed AA, Bast RC Jr, Lu Z. A Novel Salt Inducible Kinase 2 Inhibitor, ARN-3261, Sensitizes Ovarian Cancer Cell Lines and Xenografts to Carboplatin. Cancers (Basel) 2021;13:446. [PMID: 33503955 DOI: 10.3390/cancers13030446] [Reference Citation Analysis]
9 Patt A, Demoret B, Stets C, Bill KL, Smith P, Vijay A, Patterson A, Hays J, Hoang M, Chen JL, Mathé EA. MDM2-Dependent Rewiring of Metabolomic and Lipidomic Profiles in Dedifferentiated Liposarcoma Models. Cancers (Basel) 2020;12:E2157. [PMID: 32759684 DOI: 10.3390/cancers12082157] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Liu B, Yao P, Xiao F, Guo J, Wu L, Yang Y. MYBL2-induced PITPNA-AS1 upregulates SIK2 to exert oncogenic function in triple-negative breast cancer through miR-520d-5p and DDX54. J Transl Med 2021;19:333. [PMID: 34353336 DOI: 10.1186/s12967-021-02956-6] [Reference Citation Analysis]
11 Qin Y, Hou Y, Liu S, Zhu P, Wan X, Zhao M, Peng M, Zeng H, Li Q, Jin T, Cui X, Liu M. A Novel Long Non-Coding RNA lnc030 Maintains Breast Cancer Stem Cell Stemness by Stabilizing SQLE mRNA and Increasing Cholesterol Synthesis. Adv Sci (Weinh) 2021;8:2002232. [PMID: 33511005 DOI: 10.1002/advs.202002232] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
12 Xiong W, Sun KY, Zhu Y, Zhang X, Zhou YH, Zou X. Metformin alleviates inflammation through suppressing FASN-dependent palmitoylation of Akt. Cell Death Dis 2021;12:934. [PMID: 34642298 DOI: 10.1038/s41419-021-04235-0] [Reference Citation Analysis]
13 Icard P, Coquerel A, Wu Z, Gligorov J, Fuks D, Fournel L, Lincet H, Simula L. Understanding the Central Role of Citrate in the Metabolism of Cancer Cells and Tumors: An Update. Int J Mol Sci 2021;22:6587. [PMID: 34205414 DOI: 10.3390/ijms22126587] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Wang X, Du ZW, Xu TM, Wang XJ, Li W, Gao JL, Li J, Zhu H. HIF-1α Is a Rational Target for Future Ovarian Cancer Therapies. Front Oncol 2021;11:785111. [PMID: 35004308 DOI: 10.3389/fonc.2021.785111] [Reference Citation Analysis]
15 Yang Y, Han A, Wang X, Yin X, Cui M, Lin Z. Lipid metabolism regulator human hydroxysteroid dehydrogenase-like 2 (HSDL2) modulates cervical cancer cell proliferation and metastasis. J Cell Mol Med 2021;25:4846-59. [PMID: 33738911 DOI: 10.1111/jcmm.16461] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Ni X, Feng Y, Fu X. Role of salt‑inducible kinase 2 in the malignant behavior and glycolysis of colorectal cancer cells. Mol Med Rep 2021;24:822. [PMID: 34558647 DOI: 10.3892/mmr.2021.12460] [Reference Citation Analysis]
17 He J, Siu MKY, Ngan HYS, Chan KKL. Aberrant Cholesterol Metabolism in Ovarian Cancer: Identification of Novel Therapeutic Targets. Front Oncol 2021;11:738177. [PMID: 34820325 DOI: 10.3389/fonc.2021.738177] [Reference Citation Analysis]
18 Zhang R, Liu Y, Zhong W, Hu Z, Wu C, Ma M, Zhang Y, He X, Wang L, Li S, Hong Y. SIK2 Improving Mitochondrial Autophagy Restriction Induced by Cerebral Ischemia-Reperfusion in Rats. Front Pharmacol 2022;13:683898. [DOI: 10.3389/fphar.2022.683898] [Reference Citation Analysis]
19 Tesch R, Rak M, Raab M, Berger LM, Kronenberger T, Joerger AC, Berger BT, Abdi I, Hanke T, Poso A, Strebhardt K, Sanhaji M, Knapp S. Structure-Based Design of Selective Salt-Inducible Kinase Inhibitors. J Med Chem 2021;64:8142-60. [PMID: 34086472 DOI: 10.1021/acs.jmedchem.0c02144] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Sun Z, Jiang Q, Li J, Guo J. The potent roles of salt-inducible kinases (SIKs) in metabolic homeostasis and tumorigenesis. Signal Transduct Target Ther 2020;5:150. [PMID: 32788639 DOI: 10.1038/s41392-020-00265-w] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
21 Li Y, Yu J, Jia M, Ma P, Dong C. Salt-inducible kinase 2 functions as a tumor suppressor in hepatocellular carcinoma. Environ Toxicol 2021;36:2530-40. [PMID: 34491613 DOI: 10.1002/tox.23366] [Reference Citation Analysis]
22 Zhang J, Song Y, Shi Q, Fu L. Research progress on FASN and MGLL in the regulation of abnormal lipid metabolism and the relationship between tumor invasion and metastasis. Front Med 2021. [PMID: 33973101 DOI: 10.1007/s11684-021-0830-0] [Reference Citation Analysis]