BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huang A, Yang XR, Chung WY, Dennison AR, Zhou J. Targeted therapy for hepatocellular carcinoma. Signal Transduct Target Ther 2020;5:146. [PMID: 32782275 DOI: 10.1038/s41392-020-00264-x] [Cited by in Crossref: 127] [Cited by in F6Publishing: 141] [Article Influence: 42.3] [Reference Citation Analysis]
Number Citing Articles
1 Gao B, Wang Y, Li C, Lu S. Estrogen-related genes influence immune cell infiltration and immunotherapy response in Hepatocellular Carcinoma. Front Immunol 2023;14. [DOI: 10.3389/fimmu.2023.1114717] [Reference Citation Analysis]
2 Jeng L, Chan W, Teng C. Prognostic Significance of Serum Albumin Level and Albumin-Based Mono- and Combination Biomarkers in Patients with Hepatocellular Carcinoma. Cancers 2023;15:1005. [DOI: 10.3390/cancers15041005] [Reference Citation Analysis]
3 Zeng H, Zhou C, Chen X, Hu L, Su K, Guo L, Han Y. Comparison of the efficacy and safety of selective internal radiotherapy and sorafenib alone or combined for hepatocellular carcinoma: a systematic review and Bayesian network meta-analysis. Clin Exp Med 2023. [PMID: 36737488 DOI: 10.1007/s10238-023-00997-3] [Reference Citation Analysis]
4 Toro AU, Kurya AU, Shukla SK, Bansal P. Emerging Role of MicroRNA-Based Theranostics in Advanced Hepatocellular Carcinoma.. [DOI: 10.21203/rs.3.rs-2505882/v1] [Reference Citation Analysis]
5 Wang G, Ge L, Liu T, Zheng Z, Chen L. The therapeutic potential of arctigenin against multiple human diseases: A mechanistic review. Phytomedicine 2023;110:154647. [PMID: 36628833 DOI: 10.1016/j.phymed.2023.154647] [Reference Citation Analysis]
6 Chakraborty S, Chakraborty A, Mukherjee B, Besra SE, Dewanjee S, Mukherjee A, Sen R, Ojha PK, Kumar V, Shaw TK, Ghosh P, Debnath MC, Ghosh MK. Assessment of superiority of HSP70-targeting aptamer-functionalized drug-nanocarrier over non-targeted commercially available counterpart in HCC therapy: in vitro and in vivo investigations and molecular modeling. Life Sci 2023;:121467. [PMID: 36736764 DOI: 10.1016/j.lfs.2023.121467] [Reference Citation Analysis]
7 Zeng L, Qin Y, Lu X, Fang X, Huang J, Yu C, Feng Z. 4-Methoxydalbergione Elicits Anticancer Effects by Upregulation of GADD45G in Human Liver Cancer Cells. Journal of Healthcare Engineering 2023;2023:1-13. [DOI: 10.1155/2023/6710880] [Reference Citation Analysis]
8 Kahraman E, Goker E. Nickel chloride induces anticancer biological responses in hepatocellular carcinoma cell lines. Toxicol Ind Health 2023;39:94-103. [PMID: 36628412 DOI: 10.1177/07482337221149573] [Reference Citation Analysis]
9 Zhang J, Gao J, Hu M, Xu S, Cheng C, Zheng W, Zhang J. Integrated investigation of the clinical implications and targeted landscape for RNA methylation modifications in hepatocellular carcinoma. Eur J Med Res 2023;28:46. [PMID: 36707911 DOI: 10.1186/s40001-023-01016-7] [Reference Citation Analysis]
10 Cai W, Ma Y, Song L, Cao N, Gao J, Zhou S, Tang X. IGF-1R down regulates the sensitivity of hepatocellular carcinoma to sorafenib through the PI3K / akt and RAS / raf / ERK signaling pathways. BMC Cancer 2023;23:87. [PMID: 36698167 DOI: 10.1186/s12885-023-10561-7] [Reference Citation Analysis]
11 Song R, Ma S, Xu J, Ren X, Guo P, Liu H, Li P, Yin F, Liu M, Wang Q, Yu L, Liu J, Duan B, Rahman NA, Wołczyński S, Li G, Li X. A novel polypeptide encoded by the circular RNA ZKSCAN1 suppresses HCC via degradation of mTOR. Mol Cancer 2023;22:16. [PMID: 36691031 DOI: 10.1186/s12943-023-01719-9] [Reference Citation Analysis]
12 Kumar S, Pandey AK. Potential Molecular Targeted Therapy for Unresectable Hepatocellular Carcinoma. Current Oncology 2023;30:1363-1380. [DOI: 10.3390/curroncol30020105] [Reference Citation Analysis]
13 Mao Z, Nie Y, Jia W, Wang Y, Li J, Zhang T, Lei X, Shi W, Song W, Zhang X. Revealing Prognostic and Immunotherapy-Sensitive Characteristics of a Novel Cuproptosis-Related LncRNA Model in Hepatocellular Carcinoma Patients by Genomic Analysis. Cancers (Basel) 2023;15. [PMID: 36672493 DOI: 10.3390/cancers15020544] [Reference Citation Analysis]
14 Yao C, Wu S, Kong J, Sun Y, Bai Y, Zhu R, Li Z, Sun W, Zheng L. Angiogenesis in hepatocellular carcinoma: mechanisms and anti-angiogenic therapies. Cancer Biol Med 2023;20:25-43. [PMID: 36647777 DOI: 10.20892/j.issn.2095-3941.2022.0449] [Reference Citation Analysis]
15 Ke C, Dai S, Xu F, Yuan J, Fan S, Chen Y, Yang L, Li Y. Cuproptosis regulatory genes greatly contribute to clinical assessments of hepatocellular carcinoma. BMC Cancer 2023;23:25. [PMID: 36611155 DOI: 10.1186/s12885-022-10461-2] [Reference Citation Analysis]
16 Zhu Y, Wang Y, Hu M, Lu X, Sun G. Identification of oncogenes and tumor-suppressor genes with hepatocellular carcinoma: A comprehensive analysis based on TCGA and GEO datasets. Front Genet 2022;13:934883. [PMID: 36685860 DOI: 10.3389/fgene.2022.934883] [Reference Citation Analysis]
17 Liu X, Zhou J, Wu H, Chen S, Zhang L, Tang W, Duan L, Wang Y, McCabe E, Hu M, Yu Z, Liu H, Choi CHJ, Sung JJ, Huang L, Liu R, Cheng AS. Fibrotic immune microenvironment remodeling mediates superior anti-tumor efficacy of a nano-PD-L1 trap in hepatocellular carcinoma. Mol Ther 2023;31:119-33. [PMID: 36146933 DOI: 10.1016/j.ymthe.2022.09.012] [Reference Citation Analysis]
18 Tian BW, Yan LJ, Ding ZN, Liu H, Han CL, Meng GX, Xue JS, Dong ZR, Yan YC, Hong JG, Chen ZQ, Wang DX, Li T. Evaluating liver function and the impact of immune checkpoint inhibitors in the prognosis of hepatocellular carcinoma patients: A systemic review and meta-analysis. Int Immunopharmacol 2023;114:109519. [PMID: 36459922 DOI: 10.1016/j.intimp.2022.109519] [Reference Citation Analysis]
19 Gao D, Xu X, Liu L, Liu L, Zhang X, Liang X, Cen L, Liu Q, Yuan X, Yu Z. Combination of Peglated-H1/HGFK1 Nanoparticles and TAE in the Treatment of Hepatocellular Carcinoma. Appl Biochem Biotechnol 2023;195:505-18. [PMID: 36094649 DOI: 10.1007/s12010-022-04153-7] [Reference Citation Analysis]
20 Tian BW, Yan LJ, Ding ZN, Liu H, Meng GX, Xue JS, Han CL, Dong ZR, Hong JG, Chen ZQ, Wang DX, Li T. Early alpha-fetoprotein response predicts prognosis of immune checkpoint inhibitor and targeted therapy for hepatocellular carcinoma: a systematic review with meta-analysis. Expert Rev Gastroenterol Hepatol 2023;17:73-83. [PMID: 36476076 DOI: 10.1080/17474124.2022.2156859] [Reference Citation Analysis]
21 Cai X, Guillot A, Liu H. Cellular Senescence in Hepatocellular Carcinoma: The Passenger or the Driver? Cells 2022;12. [PMID: 36611926 DOI: 10.3390/cells12010132] [Reference Citation Analysis]
22 Yang C, Zhang L, Hao X, Tang M, Zhou B, Hou J. Identification of a Novel N7-Methylguanosine-Related LncRNA Signature Predicts the Prognosis of Hepatocellular Carcinoma and Experiment Verification. Curr Oncol 2022;30:430-48. [PMID: 36661684 DOI: 10.3390/curroncol30010035] [Reference Citation Analysis]
23 Le VTT, Hung DV, Quy BM, Minh PTH, Lam DT. Hepatoprotective Effect of Millettia dielsiana: In Vitro and In Silico Study. Molecules 2022;27. [PMID: 36558112 DOI: 10.3390/molecules27248978] [Reference Citation Analysis]
24 Tang Y, Guo C, Chen C, Zhang Y. Characterization of cellular senescence patterns predicts the prognosis and therapeutic response of hepatocellular carcinoma. Front Mol Biosci 2022;9:1100285. [PMID: 36589233 DOI: 10.3389/fmolb.2022.1100285] [Reference Citation Analysis]
25 Huang T, Ge S, Huang W, Ma T, Sheng Y, Chen J, Wu S, Liu Z, Lu C. AIBP promotes cell proliferation and migration through MAPK/ERK1/2 signaling pathway in hepatocellular carcinoma.. [DOI: 10.21203/rs.3.rs-2370717/v1] [Reference Citation Analysis]
26 Ma J, Kuang L, Zhao R. Establishing a signature based on immunogenic cell death-related gene pairs to predict immunotherapy and survival outcomes of patients with hepatocellular carcinoma. Aging (Albany NY) 2022;14:9699-714. [PMID: 36516498 DOI: 10.18632/aging.204419] [Reference Citation Analysis]
27 Da BL, He AR, Shetty K, Suchman KI, Yu H, Lau L, Wong LL, Rabiee A, Amdur RL, Crawford JM, Fox SS, Grimaldi GM, Shah PK, Weinstein J, Bernstein D, Satapathy SK, Chambwe N, Xiang X, Mishra L. Pathogenesis to management of hepatocellular carcinoma. Genes Cancer 2022;13:72-87. [DOI: 10.18632/genesandcancer.226] [Reference Citation Analysis]
28 Telekes A, Horváth A. The Role of Cell-Free DNA in Cancer Treatment Decision Making. Cancers (Basel) 2022;14. [PMID: 36551600 DOI: 10.3390/cancers14246115] [Reference Citation Analysis]
29 Wang L, Wang L, He P. Comprehensive analysis of immune-related gene signature based on ssGSEA algorithms in the prognosis and immune landscape of hepatocellular carcinoma. Front Genet 2022;13:1064432. [PMID: 36568383 DOI: 10.3389/fgene.2022.1064432] [Reference Citation Analysis]
30 Giannou AD, Lücke J, Kleinschmidt D, Shiri AM, Steglich B, Nawrocki M, Zhang T, Zazara DE, Kempski J, Zhao L, Giannou O, Agalioti T, Brockmann L, Bertram F, Sabihi M, Böttcher M, Ewald F, Schulze K, von Felden J, Machicote A, Maroulis IC, Arck PC, Graß JK, Mercanoglu B, Reeh M, Wolter S, Tachezy M, Seese H, Theodorakopoulou M, Lykoudis PM, Heumann A, Uzunoglu FG, Ghadban T, Mann O, Izbicki JR, Li J, Duprée A, Melling N, Gagliani N, Huber S. A Critical Role of the IL-22-IL-22 Binding Protein Axis in Hepatocellular Carcinoma. Cancers (Basel) 2022;14. [PMID: 36551508 DOI: 10.3390/cancers14246019] [Reference Citation Analysis]
31 Zhu M, Zhang J, Bian S, Zhang X, Shen Y, Ni Z, Xu S, Cheng C, Zheng W. Circadian gene CSNK1D promoted the progression of hepatocellular carcinoma by activating Wnt/β-catenin pathway via stabilizing Dishevelled Segment Polarity Protein 3. Biol Proced Online 2022;24:21. [PMID: 36460966 DOI: 10.1186/s12575-022-00183-x] [Reference Citation Analysis]
32 Yuan XQ, Zhou N, Wang JP, Yang XZ, Wang S, Zhang CY, Li GC, Peng L. Anchoring super-enhancer-driven oncogenic lncRNAs for anti-tumor therapy in hepatocellular carcinoma. Mol Ther 2022:S1525-0016(22)00671-2. [PMID: 36461633 DOI: 10.1016/j.ymthe.2022.11.013] [Reference Citation Analysis]
33 Rhee Chai M, Sankaran P, Ming Yap L. Extrahepatic metastasis of hepatocellular carcinoma: A Malaysian case series. Int J Hepatobiliary Pancreat Dis 2022;12:9-12. [DOI: 10.5348/100099z04mc2022cs] [Reference Citation Analysis]
34 Su M, Chen S, Li S, Xu F, Zhao G, Qu J, Zhou J. Gelatin sponge microparticles for transarterial chemoembolization combined with regorafenib in hepatocellular carcinoma: a single-center retrospective study. J Gastrointest Oncol 2022;13:3183-92. [PMID: 36636092 DOI: 10.21037/jgo-22-1170] [Reference Citation Analysis]
35 Chen W, Yang W, Zhang C, Liu T, Zhu J, Wang H, Li T, Jin A, Ding L, Xian J, Tian T, Pan B, Guo W, Wang B. Modulation of the p38 MAPK Pathway by Anisomycin Promotes Ferroptosis of Hepatocellular Carcinoma through Phosphorylation of H3S10. Oxidative Medicine and Cellular Longevity 2022;2022:1-20. [DOI: 10.1155/2022/6986445] [Reference Citation Analysis]
36 Damaskos C, Garmpis N, Dimitroulis D, Garmpi A, Psilopatis I, Sarantis P, Koustas E, Kanavidis P, Prevezanos D, Kouraklis G, Karamouzis MV, Marinos G, Kontzoglou K, Antoniou EA. Targeted Therapies for Hepatocellular Carcinoma Treatment: A New Era Ahead-A Systematic Review. Int J Mol Sci 2022;23. [PMID: 36430594 DOI: 10.3390/ijms232214117] [Reference Citation Analysis]
37 Wu Z, Hu H, Zhang Q, Wang T, Li H, Qin Y, Ai X, Yi W, Wei X, Gao W, Ouyang C. Four circadian rhythm-related genes predict incidence and prognosis in hepatocellular carcinoma. Front Oncol 2022;12. [DOI: 10.3389/fonc.2022.937403] [Reference Citation Analysis]
38 Pallerla SR, Hoan NX, Rachakonda S, Meyer CG, Van Tong H, Toan NL, Linh LTK, Giang DP, Kremsner PG, Bang MH, Song LH, Velavan TP. Custom gene expression panel for evaluation of potential molecular markers in hepatocellular carcinoma. BMC Med Genomics 2022;15:235. [DOI: 10.1186/s12920-022-01386-7] [Reference Citation Analysis]
39 Xu M, Zhang T, Xia R, Wei Y, Wei X. Targeting the tumor stroma for cancer therapy. Mol Cancer 2022;21:208. [PMID: 36324128 DOI: 10.1186/s12943-022-01670-1] [Reference Citation Analysis]
40 Peng W, Jiang X, Zhang W, Hu J, Zhang Y, Zhang L. A radiomics-based model can predict recurrence-free survival of hepatocellular carcinoma after curative ablation. Asian Journal of Surgery 2022. [DOI: 10.1016/j.asjsur.2022.09.130] [Reference Citation Analysis]
41 Limpachayaporn P, Nuchpun S, Sirirak J, Charoensuksai P, Wongprayoon P, Chuaypen N, Tangkijvanich P, Suksamrarn A. meta-Ureidophenoxy-1,2,3-triazole hybrid as a novel scaffold for promising HepG2 hepatocellular carcinoma inhibitors: Synthesis, biological evaluation and molecular docking studies. Bioorganic & Medicinal Chemistry 2022;74:117048. [DOI: 10.1016/j.bmc.2022.117048] [Reference Citation Analysis]
42 Moon B, Park M, Cho SH, Kim KM, Seo HR, Kim JH, Kim JA. Synergistic antitumor activity of sorafenib and MG149 in hepatocellular carcinoma cells. BMB Rep 2022;55:506-11. [PMID: 35880431] [Reference Citation Analysis]
43 Lan SY, Ding Y, Wang C, Fang J, Ren C, Liu JL, Kang H, Chang Y. High Level of Ubiquitin Conjugate Enzyme E2O Indicates Poor Prognosis of Patients with Hepatocellular Carcinoma. Curr Med Sci 2022. [PMID: 36269535 DOI: 10.1007/s11596-022-2609-1] [Reference Citation Analysis]
44 Liu Y, Kong WY, Yu CF, Shao ZL, Lei QC, Deng YF, Cai GX, Zhuang XF, Sun WS, Wu SG, Wang R, Chen X, Chen GX, Huang HB, Liao YN. SNS-023 sensitizes hepatocellular carcinoma to sorafenib by inducing degradation of cancer drivers SIX1 and RPS16. Acta Pharmacol Sin 2022. [PMID: 36261513 DOI: 10.1038/s41401-022-01003-4] [Reference Citation Analysis]
45 Han Q, Wang M, Dong X, Wei F, Luo Y, Sun X. Non-coding RNAs in hepatocellular carcinoma: Insights into regulatory mechanisms, clinical significance, and therapeutic potential. Front Immunol 2022;13:985815. [DOI: 10.3389/fimmu.2022.985815] [Reference Citation Analysis]
46 Wong TLM, Wong TL, Zhou L, Man K, Purcell J, Lee TK, Yun JP, Ma S. Protein Tyrosine Kinase 7 (PTK7) Promotes Metastasis in Hepatocellular Carcinoma via SOX9 Regulation and TGF-β Signaling. Cell Mol Gastroenterol Hepatol 2023;15:13-37. [PMID: 36202326 DOI: 10.1016/j.jcmgh.2022.09.015] [Reference Citation Analysis]
47 Merritt JC, Richbart SD, Moles EG, Cox AJ, Brown KC, Miles SL, Finch PT, Hess JA, Tirona MT, Valentovic MA, Dasgupta P. Anti-cancer activity of sustained release capsaicin formulations. Pharmacology & Therapeutics 2022;238:108177. [DOI: 10.1016/j.pharmthera.2022.108177] [Reference Citation Analysis]
48 Li M, Zhang X, Wang M, Wang Y, Qian J, Xing X, Wang Z, You Y, Guo K, Chen J, Gao D, Zhao Y, Zhang L, Chen R, Cui J, Ren Z. Activation of Piezo1 contributes to matrix stiffness-induced angiogenesis in hepatocellular carcinoma. Cancer Commun (Lond) 2022. [PMID: 36181398 DOI: 10.1002/cac2.12364] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Wen Dong Bai, Jun Yu Liu, Miao Li, Xi Yang, Yu Lan Wang, Guang Jun Wang, Shi Chao Li. A Novel Cuproptosis-Related Signature Identified DLAT as a Prognostic Biomarker for Hepatocellular Carcinoma Patients. World J Oncol 2022;13. [PMID: 36406193 DOI: 10.14740/wjon1529] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Xu M, Yang L, Lin Y, Lu Y, Bi X, Jiang T, Deng W, Zhang L, Yi W, Xie Y, Li M. Emerging nanobiotechnology for precise theranostics of hepatocellular carcinoma. J Nanobiotechnology 2022;20:427. [PMID: 36175957 DOI: 10.1186/s12951-022-01615-2] [Reference Citation Analysis]
51 Bai L, Sun S, Su W, Chen C, Lv Y, Zhang J, Zhao J, Li M, Qi Y, Zhang W, Wang Y. Melatonin inhibits HCC progression through regulating the alternative splicing of NEMO. Front Pharmacol 2022;13:1007006. [DOI: 10.3389/fphar.2022.1007006] [Reference Citation Analysis]
52 Xu S, Liu H, Tian R, Xie J, Chen S, Luo J, Zhu H, Wang Y, Li Z. Construction and validation of a prognostic model with RNA binding protein-related mRNAs for the HBV-related hepatocellular carcinoma patients. Front Oncol 2022;12:970613. [DOI: 10.3389/fonc.2022.970613] [Reference Citation Analysis]
53 Zhang J, Ren Z, Zheng D, Song Z, Lin J, Luo Y, Zou X, Pan Y, Qi N, Li A, Liu X. AHSA1 Promotes Proliferation and EMT by Regulating ERK/CALD1 Axis in Hepatocellular Carcinoma. Cancers 2022;14:4600. [DOI: 10.3390/cancers14194600] [Reference Citation Analysis]
54 Chen X, Hu G, Xiong L, Xu Q. Relationships of Cuproptosis-Related Genes With Clinical Outcomes and the Tumour Immune Microenvironment in Hepatocellular Carcinoma. Pathol Oncol Res 2022;28:1610558. [DOI: 10.3389/pore.2022.1610558] [Reference Citation Analysis]
55 Han T, Liu Y, Chen Y, Chen T, Li Y, Li Q, Zhao M, Rauf A. Identification of the Mechanism of Matrine Combined with Glycyrrhizin for Hepatocellular Carcinoma Treatment through Network Pharmacology and Bioinformatics Analysis. Oxidative Medicine and Cellular Longevity 2022;2022:1-31. [DOI: 10.1155/2022/2663758] [Reference Citation Analysis]
56 Sweed D, Sweed E, Moaz I, Mosbeh A, Fayed Y, Elhamed SMA, Sweed E, Macshut M, Abdelsattar S, Kilany S, Saied SA, Badr R, Abdallah MS, Ehsan N. The clinicopathological and prognostic factors of hepatocellular carcinoma: a 10-year tertiary center experience in Egypt. World J Surg Onc 2022;20. [DOI: 10.1186/s12957-022-02764-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
57 Mo J, Da X, Li Q, Huang J, Lu L, Lu H, Liao R. The Study of Exosomes-Encapsulated mPEG-PLGA Polymer Drug-Loaded Particles for Targeted Therapy of Liver Cancer. Journal of Oncology 2022;2022:1-10. [DOI: 10.1155/2022/4234116] [Reference Citation Analysis]
58 Zhang T, Wang Y, Xie M, Ji X, Luo X, Chen X, Zhang B, Liu D, Feng Y, Sun M, Huang W, Xia L. HGF-mediated elevation of ETV1 facilitates hepatocellular carcinoma metastasis through upregulating PTK2 and c-MET. J Exp Clin Cancer Res 2022;41:275. [DOI: 10.1186/s13046-022-02475-2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
59 Tian Z, Xu C, Yang P, Lin Z, Wu W, Zhang W, Ding J, Ding R, Zhang X, Dou K. Molecular pathogenesis: Connections between viral hepatitis-induced and non-alcoholic steatohepatitis-induced hepatocellular carcinoma. Front Immunol 2022;13:984728. [DOI: 10.3389/fimmu.2022.984728] [Reference Citation Analysis]
60 Wang X, Li Y, Li Y, Liu P, Liu S, Pan Y. FBXW7 Reduces the Cancer Stem Cell-Like Properties of Hepatocellular Carcinoma by Regulating the Ubiquitination and Degradation of ACTL6A. Stem Cells Int 2022;2022:3242482. [PMID: 36159747 DOI: 10.1155/2022/3242482] [Reference Citation Analysis]
61 Jin Z, Wang M, Meng Y, Chen D, Xu Y, Jiang X, Xiong Z. Prognostic Implication of a Cuproptosis-Related miRNA Signature in Hepatocellular Carcinoma. Journal of Healthcare Engineering 2022;2022:1-14. [DOI: 10.1155/2022/4694323] [Reference Citation Analysis]
62 Wang H, Shi F, Zheng S, Zhao M, Pan Z, Xiong L, Zheng L. Feasibility of hepatocellular carcinoma treatment based on the tumor microenvironment. Front Oncol 2022;12:896662. [DOI: 10.3389/fonc.2022.896662] [Reference Citation Analysis]
63 Miri-lavasani Z, Torabi S, Solhi R, Shokouhian B, Afsharian P, Heydari Z, Piryaei A, Farzaneh Z, Hossein-khannazer N, Es HA, Zahmatkesh E, Nussler A, Hassan M, Najimi M, Vosough M, Faroni A. Conjugated Linoleic Acid Treatment Attenuates Cancerous features in Hepatocellular Carcinoma Cells. Stem Cells International 2022;2022:1-14. [DOI: 10.1155/2022/1850305] [Reference Citation Analysis]
64 Liang X, Zhang Y, He Y, Liu X, Ding Z, Zhang X, Dong M, Du R. A cancer stem cell associated gene signature for predicting overall survival of hepatocellular carcinoma. Front Genet 2022;13:888601. [DOI: 10.3389/fgene.2022.888601] [Reference Citation Analysis]
65 Jiang Y, Gao Y, Liu J, Xu Y, Wei M, Wang C, Gu Y, Shao C. Design and Characterization of a Natural Arf-GEFs Inhibitor Prodrug CHNQD-01255 with Potent Anti-Hepatocellular Carcinoma Efficacy In Vivo. J Med Chem . [DOI: 10.1021/acs.jmedchem.2c00532] [Reference Citation Analysis]
66 zeng X, Liu C, He Q, Zou Z, Liao Q, Wu C, Li G, Zhang Z, Tian Y, Zhu S, Yang X, Cui S, Zeng L. A novel lncRNA BF368575 promotes cell proliferation in hepatocellular carcinoma via PI3K/AKT/mTOR signaling pathway.. [DOI: 10.21203/rs.3.rs-2027515/v1] [Reference Citation Analysis]
67 Lin X, Luo L, Zou Y, Chen J. Cancer stemness-associated LINC02475 serves as a novel biomarker for diagnosis and prognosis prediction of hepatocellular carcinoma. Front Genet 2022;13:991936. [DOI: 10.3389/fgene.2022.991936] [Reference Citation Analysis]
68 Xu Z. Gene mining of immune microenvironment in hepatocellular carcinoma. Medicine 2022;101:e30453. [DOI: 10.1097/md.0000000000030453] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
69 Jia M, Jia J, Xu J, Xue H. . CMAR 2022;Volume 14:2625-38. [DOI: 10.2147/cmar.s372125] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Yang T, Yu Y, Li H, Huang K, Jason CC. Efficacy and Safety of Combined Targeted Therapy and Immunotherapy versus Targeted monotherapy in Unresectable Hepatocellular Carcinoma: A Systematic review and Meta- Analysis.. [DOI: 10.21203/rs.3.rs-1977814/v1] [Reference Citation Analysis]
71 Lin XH, Zhang DY, Liu ZY, Tang WQ, Chen RX, Li DP, Weng S, Dong L. lncRNA-AC079061.1/VIPR1 axis may suppress the development of hepatocellular carcinoma: a bioinformatics analysis and experimental validation. J Transl Med 2022;20:379. [PMID: 36038907 DOI: 10.1186/s12967-022-03573-7] [Reference Citation Analysis]
72 Lu Y, Chen S, Wang Q, Zhang J, Pei X, Pan J. PRR7-AS1 Correlates with Immune Cell Infiltration and Is a Diagnostic and Prognostic Marker for Hepatocellular Carcinoma. Journal of Oncology 2022;2022:1-8. [DOI: 10.1155/2022/1939368] [Reference Citation Analysis]
73 Atif J, Thoeni C, Bader GD, McGilvray ID, MacParland SA. Unraveling the Complexity of Liver Disease One Cell at a Time. Semin Liver Dis 2022;42:250-70. [PMID: 36008091 DOI: 10.1055/s-0042-1755272] [Reference Citation Analysis]
74 Cui Y, Li Y, Guo C, Li Y, Ma Y, Dong Z. Pharmacokinetic Interactions between Canagliflozin and Sorafenib or Lenvatinib in Rats. Molecules 2022;27:5419. [DOI: 10.3390/molecules27175419] [Reference Citation Analysis]
75 Wang T, Zhou Z, Wang X, You L, Li W, Zheng C, Zhang J, Wang L, Kong X, Gao Y, Sun X. Comprehensive analysis of nine m7G-related lncRNAs as prognosis factors in tumor immune microenvironment of hepatocellular carcinoma and experimental validation. Front Genet 2022;13:929035. [DOI: 10.3389/fgene.2022.929035] [Reference Citation Analysis]
76 Wang X, Hu R, Song Z, Zhao H, Pan Z, Feng Y, Yu Y, Han Q, Zhang J. Sorafenib combined with STAT3 knockdown triggers ER stress-induced HCC apoptosis and cGAS-STING-mediated anti-tumor immunity. Cancer Lett 2022;547:215880. [PMID: 35981569 DOI: 10.1016/j.canlet.2022.215880] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
77 Lei S, Chen X, Gao Y, Shuai M, Zhou W, Li J, Wu J, Men K, Duan X. ALPPL2‐Binding Peptide Facilitates Targeted mRNA Delivery for Efficient Hepatocellular Carcinoma Gene Therapy. Adv Funct Materials. [DOI: 10.1002/adfm.202204342] [Reference Citation Analysis]
78 Liu BW, Wang XY, Cao JL, Chen LL, Wang YL, Zhao BQ, Zhou J, Shen ZF. TDP-43 upregulates lipid metabolism modulator ABHD2 to suppress apoptosis in hepatocellular carcinoma. Commun Biol 2022;5:816. [PMID: 35963893 DOI: 10.1038/s42003-022-03788-w] [Reference Citation Analysis]
79 Lv S, Zhao X, Zhang E, Yan Y, Ma X, Li N, Zou Q, Sun L, Song T. Lysine demethylase KDM1A promotes cell growth via FKBP8-BCL2 axis in hepatocellular carcinoma. J Biol Chem 2022;:102374. [PMID: 35970393 DOI: 10.1016/j.jbc.2022.102374] [Reference Citation Analysis]
80 Liu C, Huang R, Yu H, Gong Y, Wu P, Feng Q, Li X. Fuzheng Xiaozheng prescription exerts anti-hepatocellular carcinoma effects by improving lipid and glucose metabolisms via regulating circRNA-miRNA-mRNA networks. Phytomedicine 2022;103:154226. [DOI: 10.1016/j.phymed.2022.154226] [Reference Citation Analysis]
81 Li X, Xie S, Shen J, Chen S, Yan J. Construction of functionalized ruthenium-modified selenium coated with pH-responsive silk fibroin nanomaterials enhanced anticancer efficacy in hepatocellular cancer. Process Biochemistry 2022. [DOI: 10.1016/j.procbio.2022.08.029] [Reference Citation Analysis]
82 Zhang Z, Liu X, Chen D, Yu J. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct Target Ther 2022;7:258. [PMID: 35906199 DOI: 10.1038/s41392-022-01102-y] [Reference Citation Analysis]
83 Zhao Z, Chen Z, Yu B, Xiao B, Liu L, Xia Y, Li A, Wang P, Xiang C, Liu C, Yang H, Li H, Xiao T. Characterization of the immune cell infiltration landscape in myxofibrosarcoma to aid immunotherapy. Front Immunol 2022;13:916915. [DOI: 10.3389/fimmu.2022.916915] [Reference Citation Analysis]
84 Digiacomo G, Fumarola C, La Monica S, Bonelli M, Cavazzoni A, Galetti M, Terenziani R, Eltayeb K, Volta F, Zoppi S, Bertolini P, Missale G, Alfieri R, Petronini PG. CDK4/6 inhibitors improve the anti-tumor efficacy of lenvatinib in hepatocarcinoma cells. Front Oncol 2022;12:942341. [DOI: 10.3389/fonc.2022.942341] [Reference Citation Analysis]
85 Wei W, Liu C, Wang M, Jiang W, Wang C, Zhang S. Prognostic Signature and Tumor Immune Landscape of N7-Methylguanosine-Related lncRNAs in Hepatocellular Carcinoma. Front Genet 2022;13:906496. [DOI: 10.3389/fgene.2022.906496] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
86 Fan C, Zhu X, Zhou Q, Wang W, Shi Z. CircFMN2 Boosts Sorafenib Resistance in Hepatocellular Carcinoma Cells via Upregulating CNBP by Restraining Ubiquitination. Journal of Oncology 2022;2022:1-9. [DOI: 10.1155/2022/2674163] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
87 Zhu H, Chen K, Chen Y, Liu J, Zhang X, Zhou Y, Liu Q, Wang B, Chen T, Cao X. RNA-binding protein ZCCHC4 promotes human cancer chemoresistance by disrupting DNA-damage-induced apoptosis. Signal Transduct Target Ther 2022;7:240. [PMID: 35853866 DOI: 10.1038/s41392-022-01033-8] [Reference Citation Analysis]
88 Sun L, Yu S, Dong C, Wu Z, Huang H, Chen Z, Wu Z, Yin X. Comprehensive Analysis of Prognostic Value and Immune Infiltration of Ficolin Family Members in Hepatocellular Carcinoma. Front Genet 2022;13:913398. [DOI: 10.3389/fgene.2022.913398] [Reference Citation Analysis]
89 Pérez-López A, Martín-Sabroso C, Gómez-Lázaro L, Torres-Suárez AI, Aparicio-Blanco J. Embolization therapy with microspheres for the treatment of liver cancer: State-of-the-art of clinical translation. Acta Biomater 2022:S1742-7061(22)00412-3. [PMID: 35842035 DOI: 10.1016/j.actbio.2022.07.019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
90 Jiang YY, Wu S, Wu YW, Gao Y, Chong D, Sun C, Wei MY, Gu YC, Shao CL, Gu Y. New brefeldin A-cinnamic acid ester derivatives as potential antitumor agents: Design, synthesis and biological evaluation. Eur J Med Chem 2022;240:114598. [PMID: 35849940 DOI: 10.1016/j.ejmech.2022.114598] [Reference Citation Analysis]
91 Long X, Zhang L, Wang WQ, Zhang EL, Lv X, Huang ZY. Response of Scalp and Skull Metastasis to Anti-PD-1 Antibody Combined with Regorafenib Treatment in a Sorafenib-Resistant Hepatocellular Carcinoma Patient and a Literature Review. Onco Targets Ther 2022;15:703-16. [PMID: 35791424 DOI: 10.2147/OTT.S365652] [Reference Citation Analysis]
92 Wang J, Zhou Y, Zhang D, Zhao W, Lu Y, Liu C, Lin W, Zhang Y, Chen K, Wang H, Zhao L. CRIP1 suppresses BBOX1-mediated carnitine metabolism to promote stemness in hepatocellular carcinoma. EMBO J 2022;:e110218. [PMID: 35775648 DOI: 10.15252/embj.2021110218] [Reference Citation Analysis]
93 Wu C, Tian S, Guo Y, Yu C, Lei L, Zheng D, Xie H, Zheng J, Sun C. circACTG1 Promotes Hepatocellular Carcinoma Progression by Regulating miR-940/RIF1 Axis and Activating AKT/mTOR Pathway. J Immunol Res 2022;2022:8649386. [PMID: 35769514 DOI: 10.1155/2022/8649386] [Reference Citation Analysis]
94 Pan Y, Liao X, Yang L, Zhang C, Wang J, Zheng P, Yu G, Song H. Extract of Marsdenia tenacissima (Roxb.) Moon [Apocynaceae] Suppresses Hepatocellular Carcinoma by Inhibiting Angiogenesis. Front Pharmacol 2022;13:900128. [DOI: 10.3389/fphar.2022.900128] [Reference Citation Analysis]
95 Chen Y, Hu H, Yuan X, Fan X, Zhang C. Advances in Immune Checkpoint Inhibitors for Advanced Hepatocellular Carcinoma. Front Immunol 2022;13:896752. [PMID: 35757756 DOI: 10.3389/fimmu.2022.896752] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
96 Zhao J, Zeng G, Lin E, Cai C, Li P, Zou B, Li J. Combined HIF-1α and SHH Up-Regulation Is a Potential Biomarker to Predict Poor Prognosis in Postoperative Hepatocellular Carcinoma. J Invest Surg 2022;:1-8. [PMID: 35768071 DOI: 10.1080/08941939.2022.2090034] [Reference Citation Analysis]
97 Li K, Liu J, Qin X. Research progress of gut microbiota in hepatocellular carcinoma. J Clin Lab Anal 2022;:e24512. [PMID: 35719048 DOI: 10.1002/jcla.24512] [Reference Citation Analysis]
98 Hui F, Xu C, Xu X, Chen J, Geng H, Yang C, Zhang Y. What Is the Most Suitable Agent Combined With Apatinib for Transarterial Chemoembolization Treatment in Advanced Hepatocellular Carcinoma Patients? A Systematic Review and Network Meta-analysis. Front Oncol 2022;12:887332. [PMID: 35692745 DOI: 10.3389/fonc.2022.887332] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
99 Gao H, Zhang Y, Mo X, Huo L, Luo Y, Zhang T, Ma X, Hu W, Jing T. Antitumor Effect of Pseudolaric Acid B Involving Regulation of Notch1/Akt Signaling Response in Human Hepatoma Cell In Vitro. Evidence-Based Complementary and Alternative Medicine 2022;2022:1-11. [DOI: 10.1155/2022/5353686] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
100 Yang X, Xiao J, Jiang L, Ran L, Fan Y, Zhang M, Xu Y, Yao C, An B, Yang Y, Yang C, Tian G, Zhang G, Zhang Y. A Multifunctional Vanadium-Iron-Oxide Nanoparticle Eradicates Hepatocellular Carcinoma via Targeting Tumor and Endothelial Cells. ACS Appl Mater Interfaces 2022. [PMID: 35698257 DOI: 10.1021/acsami.2c03474] [Reference Citation Analysis]
101 Fan HL, Liu ST, Chang YL, Chiu YL, Huang SM, Chen TW. In Vitro Cell Density Determines the Sensitivity of Hepatocarcinoma Cells to Ascorbate. Front Oncol 2022;12:843742. [PMID: 35677156 DOI: 10.3389/fonc.2022.843742] [Reference Citation Analysis]
102 Guang Y. Ligand-modified Nanomaterials for Specific Targeting of Hepatocellular Carcinoma. Journal of Modern Nanotechnology 2022;2. [DOI: 10.53964/jmn.2022004] [Reference Citation Analysis]
103 Hou J, Xiao Y, Huang J, Jiang X, Jiang K, Li X, Xu L, Chen M. Real-Life Experience of Regorafenib in Patients With Advanced Hepatocellular Carcinoma. Front Pharmacol 2022;13:917384. [DOI: 10.3389/fphar.2022.917384] [Reference Citation Analysis]
104 Yan H, He N, He S. HCG15 is a hypoxia-responsive lncRNA and facilitates hepatocellular carcinoma cell proliferation and invasion by enhancing ZNF641 transcription. Biochemical and Biophysical Research Communications 2022;608:170-6. [DOI: 10.1016/j.bbrc.2022.03.143] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
105 Chen WA, Chen YH, Hsieh CY, Hung PF, Chen CW, Chen CH, Lin JL, Cheng TR, Hsu TL, Wu YT, Shen CN, Cheng WC. Harnessing natural-product-inspired combinatorial chemistry and computation-guided synthesis to develop N-glycan modulators as anticancer agents. Chem Sci 2022;13:6233-43. [PMID: 35733906 DOI: 10.1039/d1sc05894k] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
106 Zeng Z, Lei S, Wang J, Yang Y, Lan J, Tian Q, Chen T, Hao X. A novel hypoxia-driven gene signature that can predict the prognosis of hepatocellular carcinoma. Bioengineered 2022;13:12193-210. [PMID: 35549979 DOI: 10.1080/21655979.2022.2073943] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
107 Darwish NM, Elshaer MMA, Almutairi SM, Chen TW, Mohamed MO, Ghaly WBA, Rasheed RA. Omega-3 Polyunsaturated Fatty Acids Provoke Apoptosis in Hepatocellular Carcinoma through Knocking Down the STAT3 Activated Signaling Pathway: In Vivo and In Vitro Study. Molecules 2022;27:3032. [PMID: 35566382 DOI: 10.3390/molecules27093032] [Reference Citation Analysis]
108 Xu H, Ma Z, Mo X, Chen X, Xu F, Wu F, Chen H, Zhou G, Xia H, Zhang C. Inducing Synergistic DNA Damage by TRIP13 and PARP1 Inhibitors Provides a Potential Treatment for Hepatocellular Carcinoma. J Cancer 2022;13:2226-37. [PMID: 35517402 DOI: 10.7150/jca.66020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
109 Yu Z, Li Y, Li Y, Zhang J, Li M, Ji L, Tang Y, Zheng Y, Sheng J, Han Q, Li F, Guo J, Wang L, Sun X, Gao Y, Feng H. Bufalin stimulates antitumor immune response by driving tumor-infiltrating macrophage toward M1 phenotype in hepatocellular carcinoma. J Immunother Cancer 2022;10:e004297. [PMID: 35618286 DOI: 10.1136/jitc-2021-004297] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
110 Park H, Park H, Baek J, Moon H, Ro SW. Target Therapy for Hepatocellular Carcinoma: Beyond Receptor Tyrosine Kinase Inhibitors and Immune Checkpoint Inhibitors. Biology 2022;11:585. [DOI: 10.3390/biology11040585] [Reference Citation Analysis]
111 Mahmoud K, Swidan S, El-nabarawi M, Teaima M. Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: a comprehensive review on targeting and recent advances. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01309-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
112 Suda T, Yamashita T, Sunagozaka H, Okada H, Nio K, Sakai Y, Yamashita T, Mizukoshi E, Honda M, Kaneko S. Dickkopf-1 Promotes Angiogenesis and is a Biomarker for Hepatic Stem Cell-like Hepatocellular Carcinoma. Int J Mol Sci 2022;23:2801. [PMID: 35269944 DOI: 10.3390/ijms23052801] [Reference Citation Analysis]
113 Wang H, Du D, Huang J, Wang S, He X, Yuan S, Xiao J. GPR27 Regulates Hepatocellular Carcinoma Progression via MAPK/ERK Pathway. CMAR 2022;Volume 14:1165-77. [DOI: 10.2147/cmar.s335749] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
114 Liu C, Yu H, Li X, Gong Y, Wu P, Feng QS. Anti-hepatocellular carcinoma efficacy of Fuzheng Xiaozheng prescription and its interventional mechanism studies. J Ethnopharmacol 2022;285:114913. [PMID: 34910953 DOI: 10.1016/j.jep.2021.114913] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
115 Qi J, Wang W, Tang Y, Lou S, Wang J, Yuan T, He Q, Yang B, Zhu H, Cui S. Discovery of Novel Indazoles as Potent and Selective PI3Kδ Inhibitors with High Efficacy for Treatment of Hepatocellular Carcinoma. J Med Chem 2022. [PMID: 35191698 DOI: 10.1021/acs.jmedchem.1c01520] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
116 Chen R, Li Q, Xu S, Ye C, Tian T, Jiang Q, Shan J, Ruan J. Modulation of the tumour microenvironment in hepatocellular carcinoma by tyrosine kinase inhibitors: from modulation to combination therapy targeting the microenvironment. Cancer Cell Int 2022;22:73. [PMID: 35148789 DOI: 10.1186/s12935-021-02435-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
117 Li X, Yu H, Gong Y, Wu P, Feng Q, Liu C. Fuzheng Xiaozheng prescription relieves rat hepatocellular carcinoma through improving anti-inflammation capacity and regulating lipid related metabolisms. J Ethnopharmacol 2022;284:114801. [PMID: 34748868 DOI: 10.1016/j.jep.2021.114801] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
118 Zhou Y, Tao J, Calvisi DF, Chen X. Role of Lipogenesis Rewiring in Hepatocellular Carcinoma. Semin Liver Dis 2022;42:77-86. [PMID: 34311471 DOI: 10.1055/s-0041-1731709] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
119 Lu I, Lin S, Chu Y, Wen Y, Lin Y, Cheng W, Sheu J, Lin C. (−)-Agelasidine A Induces Endoplasmic Reticulum Stress-Dependent Apoptosis in Human Hepatocellular Carcinoma. Marine Drugs 2022;20:109. [DOI: 10.3390/md20020109] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
120 Fukushima T, Morimoto M, Ueno M, Kubota K, Uojima H, Hidaka H, Chuma M, Numata K, Tsuruya K, Hirose S, Kagawa T, Hattori N, Watanabe T, Matsunaga K, Yamamoto K, Tanaka K, Maeda S. Comparative study between sorafenib and lenvatinib as the first-line therapy in the sequential treatment of unresectable hepatocellular carcinoma in a real-world setting. JGH Open 2022;6:29-35. [PMID: 35071785 DOI: 10.1002/jgh3.12691] [Reference Citation Analysis]
121 Hu X, Chen R, Wei Q, Xu X. The Landscape Of Alpha Fetoprotein In Hepatocellular Carcinoma: Where Are We? Int J Biol Sci 2022;18:536-51. [PMID: 35002508 DOI: 10.7150/ijbs.64537] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
122 Cui H, Guo D, Zhang X, Zhu Y, Wang Z, Jin Y, Guo W, Zhang S. ENO3 Inhibits Growth and Metastasis of Hepatocellular Carcinoma via Wnt/β-Catenin Signaling Pathway. Front Cell Dev Biol 2021;9:797102. [PMID: 35004693 DOI: 10.3389/fcell.2021.797102] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
123 McDonald SJ, VanderVeen BN, Velazquez KT, Enos RT, Fairman CM, Cardaci TD, Fan D, Murphy EA. Therapeutic Potential of Emodin for Gastrointestinal Cancers. Integr Cancer Ther 2022;21:15347354211067469. [PMID: 34984952 DOI: 10.1177/15347354211067469] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
124 Vempati RK, Malla RR. Targeting hepatocellular carcinoma by small-molecule inhibitors. Theranostics and Precision Medicine for the Management of Hepatocellular Carcinoma, Volume 3 2022. [DOI: 10.1016/b978-0-323-99283-1.00012-4] [Reference Citation Analysis]
125 Lima Cavalcanti ID. Combined Therapy for the Treatment of Cancer. Chemotherapy Protocols and Infusion Sequence 2022. [DOI: 10.1007/978-3-031-10839-6_2] [Reference Citation Analysis]
126 Lee TK, Guan XY, Ma S. Cancer stem cells in hepatocellular carcinoma - from origin to clinical implications. Nat Rev Gastroenterol Hepatol 2022;19:26-44. [PMID: 34504325 DOI: 10.1038/s41575-021-00508-3] [Cited by in Crossref: 63] [Cited by in F6Publishing: 63] [Article Influence: 63.0] [Reference Citation Analysis]
127 Liu JKH, Irvine AF, Jones RL, Samson A. Immunotherapies for hepatocellular carcinoma. Cancer Med 2021. [PMID: 34953051 DOI: 10.1002/cam4.4468] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
128 Tang L, Xiao Q, Mei Y, He S, Zhang Z, Wang R, Wang W. Insights on functionalized carbon nanotubes for cancer theranostics. J Nanobiotechnology 2021;19:423. [PMID: 34915901 DOI: 10.1186/s12951-021-01174-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
129 Yang S, Cheng Y, Wang X, Wei P, Wang H, Tan S. Identification of the Immune Cell Infiltration Landscape in Hepatocellular Carcinoma to Predict Prognosis and Guide Immunotherapy. Front Genet 2021;12:777931. [PMID: 34899862 DOI: 10.3389/fgene.2021.777931] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
130 Deldar Abad Paskeh M, Mirzaei S, Ashrafizadeh M, Zarrabi A, Sethi G. Wnt/β-Catenin Signaling as a Driver of Hepatocellular Carcinoma Progression: An Emphasis on Molecular Pathways. J Hepatocell Carcinoma 2021;8:1415-44. [PMID: 34858888 DOI: 10.2147/JHC.S336858] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
131 Yuan H, Lu Y, Chan YT, Zhang C, Wang N, Feng Y. The Role of Protein SUMOylation in Human Hepatocellular Carcinoma: A Potential Target of New Drug Discovery and Development. Cancers (Basel) 2021;13:5700. [PMID: 34830854 DOI: 10.3390/cancers13225700] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
132 Zhang BH, Cai YS, Jiang L, Yang JY. Donafenib as a first-line monotherapy for advanced hepatocellular carcinoma. Hepatobiliary Surg Nutr 2021;10:737-40. [PMID: 34760990 DOI: 10.21037/hbsn-21-304] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
133 Philips CA, Rajesh S, Nair DC, Ahamed R, Abduljaleel JK, Augustine P. Hepatocellular Carcinoma in 2021: An Exhaustive Update. Cureus 2021;13:e19274. [PMID: 34754704 DOI: 10.7759/cureus.19274] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
134 Jung JM, Kim SH, Giang Phan VH, Thambi T, Lee DS. Therapeutic effects of boronate ester cross-linked injectable hydrogels for the treatment of hepatocellular carcinoma. Biomater Sci 2021;9:7275-86. [PMID: 34609388 DOI: 10.1039/d1bm00881a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
135 Liang KH, Chen SF, Lin YH, Chu YD, Lin YH, Lai MW, Lin CL, Yeh CT. Tenofovir Hampers the Efficacy of Sorafenib in Prolonging Overall Survival in Hepatocellular Carcinoma. Biomedicines 2021;9:1539. [PMID: 34829768 DOI: 10.3390/biomedicines9111539] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
136 Huang PS, Liao CJ, Huang YH, Yeh CT, Chen CY, Tang HC, Chang CC, Lin KH. Functional and Clinical Significance of Dysregulated microRNAs in Liver Cancer. Cancers (Basel) 2021;13:5361. [PMID: 34771525 DOI: 10.3390/cancers13215361] [Reference Citation Analysis]
137 Wang J, Zhang Q, Shi F, Yadav DK, Hong Z, Wang J, Liang T, Bai X. A Seven-Gene Signature to Predict Prognosis of Patients With Hepatocellular Carcinoma. Front Genet 2021;12:728476. [PMID: 34603388 DOI: 10.3389/fgene.2021.728476] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
138 Giannakoulis VG, Dubovan P, Papoutsi E, Kataki A, Koskinas J. Senescence in HBV-, HCV- and NAFLD- Mediated Hepatocellular Carcinoma and Senotherapeutics: Current Evidence and Future Perspective. Cancers (Basel) 2021;13:4732. [PMID: 34572959 DOI: 10.3390/cancers13184732] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
139 El-Fadl HMA, Hagag NM, El-Shafei RA, Khayri MH, El-Gedawy G, Maksoud AIAE, Mohamed DD, Mohamed DD, El Halfawy I, Khoder AI, Elawdan KA, Elshal MF, Salah A, Khalil H. Effective Targeting of Raf-1 and Its Associated Autophagy by Novel Extracted Peptide for Treating Breast Cancer Cells. Front Oncol 2021;11:682596. [PMID: 34513674 DOI: 10.3389/fonc.2021.682596] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
140 Tong M, Wong TL, Zhao H, Zheng Y, Xie YN, Li CH, Zhou L, Che N, Yun JP, Man K, Lee TK, Cai Z, Ma S. Loss of tyrosine catabolic enzyme HPD promotes glutamine anaplerosis through mTOR signaling in liver cancer. Cell Rep 2021;36:109617. [PMID: 34433044 DOI: 10.1016/j.celrep.2021.109617] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
141 Qing X, Xu W, Zong J, Du X, Peng H, Zhang Y. Emerging treatment modalities for systemic therapy in hepatocellular carcinoma. Biomark Res 2021;9:64. [PMID: 34419152 DOI: 10.1186/s40364-021-00319-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
142 Chen Y, Pan B, Qiu J, Chen Z, Wang X, Tang N. Increased effects of 2,5-dimethylcelecoxib on sensitivity of hepatocellular carcinoma cells to sorafenib via CYP3A5 expression and activation of AMPK. Toxicol In Vitro 2021;76:105226. [PMID: 34293431 DOI: 10.1016/j.tiv.2021.105226] [Reference Citation Analysis]
143 Yeh H, Chiang CC, Yen TH. Hepatocellular carcinoma in patients with renal dysfunction: Pathophysiology, prognosis, and treatment challenges. World J Gastroenterol 2021; 27(26): 4104-4142 [PMID: 34326614 DOI: 10.3748/wjg.v27.i26.4104] [Cited by in CrossRef: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
144 Yang S, Yang S, Zhang H, Hua H, Kong Q, Wang J, Jiang Y. Targeting Na+ /K+ -ATPase by berbamine and ouabain synergizes with sorafenib to inhibit hepatocellular carcinoma. Br J Pharmacol 2021. [PMID: 34233013 DOI: 10.1111/bph.15616] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
145 Zheng Q, Yang Q, Zhou J, Gu X, Zhou H, Dong X, Zhu H, Chen Z. Immune signature-based hepatocellular carcinoma subtypes may provide novel insights into therapy and prognosis predictions. Cancer Cell Int 2021;21:330. [PMID: 34193146 DOI: 10.1186/s12935-021-02033-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
146 Zhang Z, Liu C, Akakuru O, Xu W, Wu A, Zhang Y. ICG and Sunitinib-loaded NH2-MOFs for Folate-mediated Hepatocellular Carcinoma Dual-modal Therapy. Chem Res Chin Univ 2021;37:967-74. [DOI: 10.1007/s40242-021-1206-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
147 Lu M, Qiu S, Jiang X, Wen D, Zhang R, Liu Z. Development and Validation of Epigenetic Modification-Related Signals for the Diagnosis and Prognosis of Hepatocellular Carcinoma. Front Oncol 2021;11:649093. [PMID: 34235075 DOI: 10.3389/fonc.2021.649093] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
148 Gabbia D, Cannella L, De Martin S. The Role of Oxidative Stress in NAFLD-NASH-HCC Transition-Focus on NADPH Oxidases. Biomedicines 2021;9:687. [PMID: 34204571 DOI: 10.3390/biomedicines9060687] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
149 Deng M, Li S, Mei J, Lin W, Zou J, Wei W, Guo R. High SGO2 Expression Predicts Poor Overall Survival: A Potential Therapeutic Target for Hepatocellular Carcinoma. Genes (Basel) 2021;12:876. [PMID: 34200261 DOI: 10.3390/genes12060876] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
150 Ye Z, Wu L, Zhang X, Hu Y, Zheng L. Quantification of sorafenib, lenvatinib, and apatinib in human plasma for therapeutic drug monitoring by UPLC-MS/MS. J Pharm Biomed Anal 2021;202:114161. [PMID: 34052550 DOI: 10.1016/j.jpba.2021.114161] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
151 Jeoung NH, Jo AL, Park HS. The effect of autocrine motility factor alone and in combination with methyl jasmonate on liver cancer cell growth. Biosci Biotechnol Biochem 2021;85:1711-5. [PMID: 33988672 DOI: 10.1093/bbb/zbab087] [Reference Citation Analysis]
152 Lücke J, Sabihi M, Zhang T, Bauditz LF, Shiri AM, Giannou AD, Huber S. The good and the bad about separation anxiety: roles of IL-22 and IL-22BP in liver pathologies. Semin Immunopathol 2021. [PMID: 33851257 DOI: 10.1007/s00281-021-00854-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
153 You H, Yuan D, Bi Y, Zhang N, Li Q, Tu T, Wei X, Lian Q, Yu T, Kong D, Yang X, Liu X, Liu X, Kong F, Zheng K, Tang R. Hepatitis B virus X protein promotes vimentin expression via LIM and SH3 domain protein 1 to facilitate epithelial-mesenchymal transition and hepatocarcinogenesis. Cell Commun Signal 2021;19:33. [PMID: 33722250 DOI: 10.1186/s12964-021-00714-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
154 Peng X, Chen R, Cai S, Lu S, Zhang Y. SLC1A4: A Powerful Prognostic Marker and Promising Therapeutic Target for HCC. Front Oncol 2021;11:650355. [PMID: 33777811 DOI: 10.3389/fonc.2021.650355] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
155 Cerrito L, Santopaolo F, Monti F, Pompili M, Gasbarrini A, Ponziani FR. Advances in pharmacotherapeutics for hepatocellular carcinoma. Expert Opin Pharmacother 2021;22:1343-54. [PMID: 33637024 DOI: 10.1080/14656566.2021.1892074] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
156 Chuang HY, Tyan YS, Hwang JJ, Shih KC, Lin WC. A combination of sorafenib and radiotherapy reduces NF-κB activity and growth of hepatocellular carcinoma in an orthotopic mouse model. Oncol Lett 2021;21:337. [PMID: 33692869 DOI: 10.3892/ol.2021.12598] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
157 Ni W, Bian S, Zhu M, Song Q, Zhang J, Xiao M, Zheng W. Identification and Validation of Ubiquitin-Specific Proteases as a Novel Prognostic Signature for Hepatocellular Carcinoma. Front Oncol 2021;11:629327. [PMID: 33718205 DOI: 10.3389/fonc.2021.629327] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
158 Shi Q, Meng Z, Tian XX, Wang YF, Wang WH. Identification and validation of a hub gene prognostic index for hepatocellular carcinoma. Future Oncol 2021;17:2193-208. [PMID: 33620260 DOI: 10.2217/fon-2020-1112] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
159 Zhu M, Wu M, Bian S, Song Q, Xiao M, Huang H, You L, Zhang J, Zhang J, Cheng C, Ni W, Zheng W. DNA primase subunit 1 deteriorated progression of hepatocellular carcinoma by activating AKT/mTOR signaling and UBE2C-mediated P53 ubiquitination. Cell Biosci 2021;11:42. [PMID: 33622397 DOI: 10.1186/s13578-021-00555-y] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
160 Lee SY. Quantitative Approaches to Therapeutic Decision Making in Hepatocellular Carcinoma. JCO Oncol Pract 2021;17:167-8. [PMID: 33411596 DOI: 10.1200/OP.20.00846] [Reference Citation Analysis]
161 Schipilliti FM, Garajová I, Rovesti G, Balsano R, Piacentini F, Dominici M, Gelsomino F. The Growing Skyline of Advanced Hepatocellular Carcinoma Treatment: A Review. Pharmaceuticals (Basel) 2021;14:43. [PMID: 33429973 DOI: 10.3390/ph14010043] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
162 冯 源. Clinical Research Progress of Apatinib in the Treatment of Hepatocellular Carcinoma. ACM 2021;11:6195-6200. [DOI: 10.12677/acm.2021.1112919] [Reference Citation Analysis]
163 Xue L, Liu P. Daurisoline inhibits hepatocellular carcinoma progression by restraining autophagy and promoting cispaltin-induced cell death. Biochem Biophys Res Commun 2021;534:1083-90. [PMID: 33213840 DOI: 10.1016/j.bbrc.2020.09.068] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
164 Serra M, Columbano A, Perra A, Kowalik MA. Animal Models: A Useful Tool to Unveil Metabolic Changes in Hepatocellular Carcinoma. Cancers (Basel) 2020;12:E3318. [PMID: 33182674 DOI: 10.3390/cancers12113318] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]