BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wan R, Mo Y, Feng L, Chien S, Tollerud DJ, Zhang Q. DNA damage caused by metal nanoparticles: involvement of oxidative stress and activation of ATM. Chem Res Toxicol 2012;25:1402-11. [PMID: 22559321 DOI: 10.1021/tx200513t] [Cited by in Crossref: 100] [Cited by in F6Publishing: 91] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Becker K, Schroecksnadel S, Geisler S, Carriere M, Gostner JM, Schennach H, Herlin N, Fuchs D. TiO(2) nanoparticles and bulk material stimulate human peripheral blood mononuclear cells. Food Chem Toxicol 2014;65:63-9. [PMID: 24361406 DOI: 10.1016/j.fct.2013.12.018] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
2 Feng S, Zhang Z, Mo Y, Tong R, Zhong Z, Chen Z, He D, Wan R, Gao M, Mo Y, Zhang Q, Huang Y. Activation of NLRP3 inflammasome in hepatocytes after exposure to cobalt nanoparticles: The role of oxidative stress. Toxicol In Vitro 2020;69:104967. [PMID: 32805375 DOI: 10.1016/j.tiv.2020.104967] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
3 Zhang M, Lu Y, Chen Y, Zhang Y, Xiong B. Insufficiency of melatonin in follicular fluid is a reversible cause for advanced maternal age-related aneuploidy in oocytes. Redox Biol 2020;28:101327. [PMID: 31526949 DOI: 10.1016/j.redox.2019.101327] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
4 Sengul AB, Asmatulu E. Toxicity of metal and metal oxide nanoparticles: a review. Environ Chem Lett 2020;18:1659-83. [DOI: 10.1007/s10311-020-01033-6] [Cited by in Crossref: 47] [Cited by in F6Publishing: 18] [Article Influence: 23.5] [Reference Citation Analysis]
5 Ezealisiji KM, Siwe-noundou X, Maduelosi B, Nwachukwu N, Krause RWM. Green synthesis of zinc oxide nanoparticles using Solanum torvum (L) leaf extract and evaluation of the toxicological profile of the ZnO nanoparticles–hydrogel composite in Wistar albino rats. Int Nano Lett 2019;9:99-107. [DOI: 10.1007/s40089-018-0263-1] [Cited by in Crossref: 51] [Cited by in F6Publishing: 15] [Article Influence: 17.0] [Reference Citation Analysis]
6 Lai X, Wei Y, Zhao H, Chen S, Bu X, Lu F, Qu D, Yao L, Zheng J, Zhang J. The effect of Fe 2 O 3 and ZnO nanoparticles on cytotoxicity and glucose metabolism in lung epithelial cells: Nanoparticles, cytotoxicity and metabolism. J Appl Toxicol 2015;35:651-64. [DOI: 10.1002/jat.3128] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 4.7] [Reference Citation Analysis]
7 Pirela SV, Miousse IR, Lu X, Castranova V, Thomas T, Qian Y, Bello D, Kobzik L, Koturbash I, Demokritou P. Effects of Laser Printer-Emitted Engineered Nanoparticles on Cytotoxicity, Chemokine Expression, Reactive Oxygen Species, DNA Methylation, and DNA Damage: A Comprehensive in Vitro Analysis in Human Small Airway Epithelial Cells, Macrophages, and Lymphoblasts. Environ Health Perspect 2016;124:210-9. [PMID: 26080392 DOI: 10.1289/ehp.1409582] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 6.6] [Reference Citation Analysis]
8 Toprani SM, Bitounis D, Huang Q, Oliveira N, Ng KW, Tay CY, Nagel ZD, Demokritou P. High-Throughput Screening Platform for Nanoparticle-Mediated Alterations of DNA Repair Capacity. ACS Nano 2021;15:4728-46. [PMID: 33710878 DOI: 10.1021/acsnano.0c09254] [Reference Citation Analysis]
9 Luczak MW, Zhitkovich A. Role of direct reactivity with metals in chemoprotection by N-acetylcysteine against chromium(VI), cadmium(II), and cobalt(II). Free Radic Biol Med 2013;65:262-9. [PMID: 23792775 DOI: 10.1016/j.freeradbiomed.2013.06.028] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 4.2] [Reference Citation Analysis]
10 Yuan J, Zhang Y, Zhang Y, Mo Y, Zhang Q. Effects of metal nanoparticles on tight junction-associated proteins via HIF-1α/miR-29b/MMPs pathway in human epidermal keratinocytes. Part Fibre Toxicol 2021;18:13. [PMID: 33740985 DOI: 10.1186/s12989-021-00405-2] [Reference Citation Analysis]
11 Mo Y, Jiang M, Zhang Y, Wan R, Li J, Zhong CJ, Li H, Tang S, Zhang Q. Comparative mouse lung injury by nickel nanoparticles with differential surface modification. J Nanobiotechnology 2019;17:2. [PMID: 30616599 DOI: 10.1186/s12951-018-0436-0] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
12 Aftab MN, Akram IN, Khosa T, Zahra SQ, Bashir I, Ashiq MN, Iqbal F. Oral supplementation of Lanthanum Zirconate nanoparticles moderately affected behavior but drastically disturbed leukocyte count, serum cholesterol levels and antioxidant parameters from vital organs of albino mice in a gender specific manner. Metab Brain Dis 2018;33:1421-9. [DOI: 10.1007/s11011-018-0248-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
13 da Luz JZ, Machado TN, Bezerra AG Jr, de Oliveira Ribeiro CA, Neto FF. Cytotoxicity of bismuth nanoparticles in the murine macrophage cell line RAW 264.7. J Mater Sci Mater Med 2020;31:95. [PMID: 33128626 DOI: 10.1007/s10856-020-06427-0] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Božinović K, Nestić D, Centa UG, Ambriović-ristov A, Dekanić A, de Bisschop L, Remškar M, Majhen D. In-vitro toxicity of molybdenum trioxide nanoparticles on human keratinocytes. Toxicology 2020;444:152564. [DOI: 10.1016/j.tox.2020.152564] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
15 Maqbool Q. Green-synthesised cerium oxide nanostructures (CeO 2 -NS) show excellent biocompatibility for phyto-cultures as compared to silver nanostructures (Ag-NS). RSC Adv 2017;7:56575-85. [DOI: 10.1039/c7ra12082f] [Cited by in Crossref: 25] [Article Influence: 5.0] [Reference Citation Analysis]
16 Jo DH, Kim JH, Son JG, Song NW, Kim Y, Yu YS, Lee TG, Kim JH. Anti-angiogenic effect of bare titanium dioxide nanoparticles on pathologic neovascularization without unbearable toxicity. Nanomedicine: Nanotechnology, Biology and Medicine 2014;10:e1109-17. [DOI: 10.1016/j.nano.2014.02.007] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
17 Feng L, Zhang Y, Jiang M, Mo Y, Wan R, Jia Z, Tollerud DJ, Zhang X, Zhang Q. Up-regulation of Gadd45α after exposure to metal nanoparticles: the role of hypoxia inducible factor 1α. Environ Toxicol 2015;30:490-9. [PMID: 24277352 DOI: 10.1002/tox.21926] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
18 de Souza TAJ, Rocha TL, Franchi LP. Detection of DNA Damage Induced by Cerium Dioxide Nanoparticles: From Models to Molecular Mechanism Activated. In: Saquib Q, Faisal M, Al-khedhairy AA, Alatar AA, editors. Cellular and Molecular Toxicology of Nanoparticles. Cham: Springer International Publishing; 2018. pp. 215-26. [DOI: 10.1007/978-3-319-72041-8_13] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
19 Dar GI, Saeed M, Wu A. Toxicity of TiO 2 Nanoparticles. In: Wu A, Ren W, editors. TiO2 Nanoparticles. Wiley; 2020. pp. 67-103. [DOI: 10.1002/9783527825431.ch2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
20 Rupf S, Berger H, Buchter A, Harth V, Ong MF, Hannig M. Exposure of patient and dental staff to fine and ultrafine particles from scanning spray. Clin Oral Invest 2015;19:823-30. [DOI: 10.1007/s00784-014-1300-8] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
21 Uz M, Bulmus V, Alsoy Altinkaya S. Effect of PEG Grafting Density and Hydrodynamic Volume on Gold Nanoparticle–Cell Interactions: An Investigation on Cell Cycle, Apoptosis, and DNA Damage. Langmuir 2016;32:5997-6009. [DOI: 10.1021/acs.langmuir.6b01289] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 6.3] [Reference Citation Analysis]
22 Matsuda S, Wanibuchi S, Kasahara T. Quantitative analysis of γH2AX reveals distinct responses in multiple mouse organs after administration of mitomycin C or ethyl methanesulfonate. Mutagenesis 2018;33:371-8. [DOI: 10.1093/mutage/gey040] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
23 Wan R, Mo Y, Tong R, Gao M, Zhang Q. Determination of Phosphorylated Histone H2AX in Nanoparticle-Induced Genotoxic Studies. Methods Mol Biol 2019;1894:145-59. [PMID: 30547460 DOI: 10.1007/978-1-4939-8916-4_9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
24 Ma C, White JC, Dhankher OP, Xing B. Metal-Based Nanotoxicity and Detoxification Pathways in Higher Plants. Environ Sci Technol 2015;49:7109-22. [DOI: 10.1021/acs.est.5b00685] [Cited by in Crossref: 210] [Cited by in F6Publishing: 152] [Article Influence: 30.0] [Reference Citation Analysis]
25 Braun NJ, Comfort KK, Schlager JJ, Hussain SM. Partial Recovery of Silver Nanoparticle-Induced Neural Cytotoxicity through the Application of a Static Magnetic Field. BioNanoSci 2013;3:367-77. [DOI: 10.1007/s12668-013-0109-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
26 Žalnėravičius R, Paškevičius A, Kurtinaitiene M, Jagminas A. Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles. J Nanopart Res 2016;18. [DOI: 10.1007/s11051-016-3612-x] [Cited by in Crossref: 24] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
27 Uboldi C, Orsière T, Darolles C, Aloin V, Tassistro V, George I, Malard V. Poorly soluble cobalt oxide particles trigger genotoxicity via multiple pathways. Part Fibre Toxicol 2016;13:5. [PMID: 26843362 DOI: 10.1186/s12989-016-0118-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
28 Akram IN, Akhtar S, Khadija G, Awais MM, Latif M, Noreen A, Mobeen M, Sajjad F, Sardar Z, Iqbal S, Ashiq MN, Iqbal F. Synthesis, characterization, and biocompatibility of lanthanum titanate nanoparticles in albino mice in a sex-specific manner. Naunyn Schmiedebergs Arch Pharmacol 2020;393:1089-101. [PMID: 31940053 DOI: 10.1007/s00210-020-01819-z] [Reference Citation Analysis]
29 Valdiglesias V, Costa C, Sharma V, Kiliç G, Pásaro E, Teixeira JP, Dhawan A, Laffon B. Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells. Food Chem Toxicol 2013;57:352-61. [PMID: 23597443 DOI: 10.1016/j.fct.2013.04.010] [Cited by in Crossref: 72] [Cited by in F6Publishing: 61] [Article Influence: 8.0] [Reference Citation Analysis]
30 Ciappellano SG, Tedesco E, Venturini M, Benetti F. In vitro toxicity assessment of oral nanocarriers. Adv Drug Deliv Rev 2016;106:381-401. [PMID: 27544694 DOI: 10.1016/j.addr.2016.08.007] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
31 Thai SF, Jones CP, Nelson GB, Vallanat B, Killius M, Crooks JL, Ward WO, Blackman CF, Ross JA. Differential Effects of Nano TiO₂ and CeO₂ on Normal Human Lung Epithelial Cells In Vitro. J Nanosci Nanotechnol 2019;19:6907-23. [PMID: 31039842 DOI: 10.1166/jnn.2019.16737] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
32 García-Rodríguez A, Rubio L, Vila L, Xamena N, Velázquez A, Marcos R, Hernández A. The Comet Assay as a Tool to Detect the Genotoxic Potential of Nanomaterials. Nanomaterials (Basel) 2019;9:E1385. [PMID: 31569740 DOI: 10.3390/nano9101385] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
33 Mo Y, Zhang Y, Zhang Y, Yuan J, Mo L, Zhang Q. Nickel nanoparticle-induced cell transformation: involvement of DNA damage and DNA repair defect through HIF-1α/miR-210/Rad52 pathway. J Nanobiotechnology 2021;19:370. [PMID: 34789290 DOI: 10.1186/s12951-021-01117-7] [Reference Citation Analysis]
34 Hanot-roy M, Tubeuf E, Guilbert A, Bado-nilles A, Vigneron P, Trouiller B, Braun A, Lacroix G. Oxidative stress pathways involved in cytotoxicity and genotoxicity of titanium dioxide (TiO2) nanoparticles on cells constitutive of alveolo-capillary barrier in vitro. Toxicology in Vitro 2016;33:125-35. [DOI: 10.1016/j.tiv.2016.01.013] [Cited by in Crossref: 54] [Cited by in F6Publishing: 47] [Article Influence: 9.0] [Reference Citation Analysis]
35 Agnihotri R, Gaur S, Albin S. Nanometals in Dentistry: Applications and Toxicological Implications—a Systematic Review. Biol Trace Elem Res 2020;197:70-88. [DOI: 10.1007/s12011-019-01986-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
36 Cheng G, Guo W, Han L, Chen E, Kong L, Wang L, Ai W, Song N, Li H, Chen H. Cerium oxide nanoparticles induce cytotoxicity in human hepatoma SMMC-7721 cells via oxidative stress and the activation of MAPK signaling pathways. Toxicol In Vitro. 2013;27:1082-1088. [PMID: 23416263 DOI: 10.1016/j.tiv.2013.02.005] [Cited by in Crossref: 77] [Cited by in F6Publishing: 74] [Article Influence: 8.6] [Reference Citation Analysis]
37 Rajput V, Minkina T, Mazarji M, Shende S, Sushkova S, Mandzhieva S, Burachevskaya M, Chaplygin V, Singh A, Jatav H. Accumulation of nanoparticles in the soil-plant systems and their effects on human health. Annals of Agricultural Sciences 2020;65:137-43. [DOI: 10.1016/j.aoas.2020.08.001] [Cited by in Crossref: 22] [Cited by in F6Publishing: 5] [Article Influence: 11.0] [Reference Citation Analysis]
38 Shukla RK, Badiye A, Vajpayee K, Kapoor N. Genotoxic Potential of Nanoparticles: Structural and Functional Modifications in DNA. Front Genet 2021;12:728250. [PMID: 34659351 DOI: 10.3389/fgene.2021.728250] [Reference Citation Analysis]
39 Watson C, Ge J, Cohen J, Pyrgiotakis G, Engelward BP, Demokritou P. High-throughput screening platform for engineered nanoparticle-mediated genotoxicity using CometChip technology. ACS Nano 2014;8:2118-33. [PMID: 24617523 DOI: 10.1021/nn404871p] [Cited by in Crossref: 94] [Cited by in F6Publishing: 85] [Article Influence: 11.8] [Reference Citation Analysis]
40 Sharan A, Nara S. Exposure of synthesized Co3O4 nanoparticles to Chlorella minutissima: An ecotoxic evaluation in freshwater microalgae. Aquatic Toxicology 2020;224:105498. [DOI: 10.1016/j.aquatox.2020.105498] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
41 Donida B, Raabe M, Tauffner B, Farias MA, Machado AZ, Timm F, Kessler RG, Hammerschmidt TG, Reinhardt LS, Brito VB, Portugal RV, Bernardi A, Frozza R, Moura DJ, Giugliani R, Poletto F, Vargas CR. Nanoparticles containing β‐cyclodextrin potentially useful for the treatment of Niemann‐Pick C. Jrnl of Inher Metab Disea 2020;43:586-601. [DOI: 10.1002/jimd.12210] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
42 Gupta R, Xie H. Nanoparticles in Daily Life: Applications, Toxicity and Regulations. J Environ Pathol Toxicol Oncol 2018;37:209-30. [PMID: 30317972 DOI: 10.1615/JEnvironPatholToxicolOncol.2018026009] [Cited by in Crossref: 101] [Cited by in F6Publishing: 35] [Article Influence: 25.3] [Reference Citation Analysis]
43 Zhuang SL, Bao LL, Wang HF, Zhang M, Yang C, Zhou XY, Wu Y, Rehman K, Naranmandura H. The Involvement of ER-stress and ROS Generation in Difenoconazole-Induced Hepatocellular Toxicity. Toxicol Res 2015;4:1195-203. [DOI: 10.1039/c5tx00093a] [Cited by in Crossref: 14] [Article Influence: 2.0] [Reference Citation Analysis]
44 Zhang H, Cao J, Tang B, Wang Y. Effect of TiO2 nanoparticles on the structure and activity of catalase. Chemico-Biological Interactions 2014;219:168-74. [DOI: 10.1016/j.cbi.2014.06.005] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
45 Tabei Y, Sugino S, Nakajima Y, Horie M. Reactive oxygen species independent genotoxicity of indium tin oxide nanoparticles triggered by intracellular degradation. Food Chem Toxicol 2018;118:264-71. [PMID: 29772267 DOI: 10.1016/j.fct.2018.05.036] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
46 Dharmalingam P, Venkatakrishnan K, Tan B. Probing Cancer Metastasis at a Single-Cell Level with a Raman-Functionalized Anionic Probe. Nano Lett 2020;20:1054-66. [PMID: 31904972 DOI: 10.1021/acs.nanolett.9b04288] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
47 Tarantini A, Lanceleur R, Mourot A, Lavault MT, Casterou G, Jarry G, Hogeveen K, Fessard V. Toxicity, genotoxicity and proinflammatory effects of amorphous nanosilica in the human intestinal Caco-2 cell line. Toxicol In Vitro 2015;29:398-407. [PMID: 25448807 DOI: 10.1016/j.tiv.2014.10.023] [Cited by in Crossref: 60] [Cited by in F6Publishing: 57] [Article Influence: 7.5] [Reference Citation Analysis]
48 Qiao Y, An J, Ma L. Single Cell Array Based Assay for in Vitro Genotoxicity Study of Nanomaterials. Anal Chem 2013;85:4107-12. [DOI: 10.1021/ac400242w] [Cited by in Crossref: 43] [Cited by in F6Publishing: 36] [Article Influence: 4.8] [Reference Citation Analysis]
49 Pogribna M, Hammons G. Epigenetic Effects of Nanomaterials and Nanoparticles. J Nanobiotechnology 2021;19:2. [PMID: 33407537 DOI: 10.1186/s12951-020-00740-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
50 Gaharwar US, Meena R, Rajamani P. Iron oxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in lymphocytes. J Appl Toxicol 2017;37:1232-44. [PMID: 28585739 DOI: 10.1002/jat.3485] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
51 Kuroda S, Tam J, Roth JA, Sokolov K, Ramesh R. EGFR-targeted plasmonic magnetic nanoparticles suppress lung tumor growth by abrogating G2/M cell-cycle arrest and inducing DNA damage. Int J Nanomedicine 2014;9:3825-39. [PMID: 25143731 DOI: 10.2147/IJN.S65990] [Cited by in Crossref: 4] [Cited by in F6Publishing: 13] [Article Influence: 0.5] [Reference Citation Analysis]
52 Mohammed ET, Hashem KS, Abdelazem AZ, Foda FAMA. Prospective Protective Effect of Ellagic Acid as a SIRT1 Activator in Iron Oxide Nanoparticle-Induced Renal Damage in Rats. Biol Trace Elem Res 2020;198:177-88. [PMID: 31933277 DOI: 10.1007/s12011-020-02034-w] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
53 Elespuru R, Pfuhler S, Aardema MJ, Chen T, Doak SH, Doherty A, Farabaugh CS, Kenny J, Manjanatha M, Mahadevan B, Moore MM, Ouédraogo G, Stankowski LF Jr, Tanir JY. Genotoxicity Assessment of Nanomaterials: Recommendations on Best Practices, Assays, and Methods. Toxicol Sci 2018;164:391-416. [PMID: 29701824 DOI: 10.1093/toxsci/kfy100] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 10.7] [Reference Citation Analysis]
54 Ratnasekhar C, Sonane M, Satish A, Mudiam MKR. Metabolomics reveals the perturbations in the metabolome of Caenorhabditis elegans exposed to titanium dioxide nanoparticles. Nanotoxicology 2015;9:994-1004. [DOI: 10.3109/17435390.2014.993345] [Cited by in Crossref: 62] [Cited by in F6Publishing: 53] [Article Influence: 8.9] [Reference Citation Analysis]
55 Gerić M, Gajski G, Garaj-Vrhovac V. γ-H2AX as a biomarker for DNA double-strand breaks in ecotoxicology. Ecotoxicol Environ Saf 2014;105:13-21. [PMID: 24780228 DOI: 10.1016/j.ecoenv.2014.03.035] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 4.9] [Reference Citation Analysis]
56 Wang S, Wu BD, Wei M, Zhou JW, Jiang K, Wang C. Silver nanoparticles with different concentrations and particle sizes affect the functional traits of wheat. Biologia plant 2020;64:1-8. [DOI: 10.32615/bp.2019.122] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Zhang H, Chen F, Li Y, Shan X, Yin L, Hao X, Zhong Y. More serious autophagy can be induced by ZnO nanoparticles than single-walled carbon nanotubes in rat tracheal epithelial cells. Environ Toxicol 2021;36:238-48. [PMID: 32951350 DOI: 10.1002/tox.23029] [Reference Citation Analysis]
58 Li Y, Jing L, Yu Y, Yu Y, Duan J, Yang M, Geng W, Jiang L, Li Q, Sun Z. Cytoskeleton and Chromosome Damage Leading to Abnormal Mitosis Were Involved in Multinucleated Cells Induced by Silicon Nanoparticles. Part Part Syst Charact 2015;32:636-45. [DOI: 10.1002/ppsc.201400180] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
59 Attarilar S, Yang J, Ebrahimi M, Wang Q, Liu J, Tang Y, Yang J. The Toxicity Phenomenon and the Related Occurrence in Metal and Metal Oxide Nanoparticles: A Brief Review From the Biomedical Perspective. Front Bioeng Biotechnol 2020;8:822. [PMID: 32766232 DOI: 10.3389/fbioe.2020.00822] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 10.0] [Reference Citation Analysis]
60 Pöttler M, Staicu A, Zaloga J, Unterweger H, Weigel B, Schreiber E, Hofmann S, Wiest I, Jeschke U, Alexiou C, Janko C. Genotoxicity of Superparamagnetic Iron Oxide Nanoparticles in Granulosa Cells. Int J Mol Sci 2015;16:26280-90. [PMID: 26540051 DOI: 10.3390/ijms161125960] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
61 Skeete Z, Cheng H, Crew E, Lin L, Zhao W, Joseph P, Shan S, Cronk H, Luo J, Li Y, Zhang Q, Zhong C. Design of Functional Nanoparticles and Assemblies for Theranostic Applications. ACS Appl Mater Interfaces 2014;6:21752-68. [DOI: 10.1021/am502693t] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 3.5] [Reference Citation Analysis]
62 Gonzalez-Pastor R, Hernandez Y, Gimeno M, de Martino A, Man YKS, Hallden G, Quintanilla M, de la Fuente JM, Martin-Duque P. Coating an adenovirus with functionalized gold nanoparticles favors uptake, intracellular trafficking and anti-cancer therapeutic efficacy. Acta Biomater 2021:S1742-7061(21)00485-2. [PMID: 34325075 DOI: 10.1016/j.actbio.2021.07.047] [Reference Citation Analysis]
63 Emerce E, Ghosh M, Öner D, Duca RC, Vanoirbeek J, Bekaert B, Hoet PHM, Godderis L. Carbon Nanotube- and Asbestos-Induced DNA and RNA Methylation Changes in Bronchial Epithelial Cells. Chem Res Toxicol 2019;32:850-60. [PMID: 30990028 DOI: 10.1021/acs.chemrestox.8b00406] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
64 El-Shahawy AAG, Abo El-Ela FI, Mohamed NA, Eldine ZE, El Rouby WMA. Synthesis and evaluation of layered double hydroxide/doxycycline and cobalt ferrite/chitosan nanohybrid efficacy on gram positive and gram negative bacteria. Mater Sci Eng C Mater Biol Appl 2018;91:361-71. [PMID: 30033266 DOI: 10.1016/j.msec.2018.05.042] [Cited by in Crossref: 26] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
65 Møller P, Hemmingsen JG, Jensen DM, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Cao Y, Kermanizadeh A, Klingberg H, Christophersen DV, Hersoug LG, Loft S. Applications of the comet assay in particle toxicology: air pollution and engineered nanomaterials exposure. Mutagenesis 2015;30:67-83. [PMID: 25527730 DOI: 10.1093/mutage/geu035] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 5.6] [Reference Citation Analysis]
66 Zhang Y, Bai Y, Jia J, Gao N, Li Y, Zhang R, Jiang G, Yan B. Perturbation of physiological systems by nanoparticles. Chem Soc Rev 2014;43:3762-809. [PMID: 24647382 DOI: 10.1039/c3cs60338e] [Cited by in Crossref: 87] [Cited by in F6Publishing: 24] [Article Influence: 10.9] [Reference Citation Analysis]
67 Ursini CL, Cavallo D, Fresegna AM, Ciervo A, Maiello R, Tassone P, Buresti G, Casciardi S, Iavicoli S. Evaluation of cytotoxic, genotoxic and inflammatory response in human alveolar and bronchial epithelial cells exposed to titanium dioxide nanoparticles. J Appl Toxicol 2014;34:1209-19. [PMID: 25224607 DOI: 10.1002/jat.3038] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 5.1] [Reference Citation Analysis]
68 He H, Zou Z, Wang B, Xu G, Chen C, Qin X, Yu C, Zhang J. Copper Oxide Nanoparticles Induce Oxidative DNA Damage and Cell Death via Copper Ion-Mediated P38 MAPK Activation in Vascular Endothelial Cells. Int J Nanomedicine 2020;15:3291-302. [PMID: 32494130 DOI: 10.2147/IJN.S241157] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
69 Wang C, Yang J, Lu D, Fan Y, Zhao M, Li Z. Oxidative stress-related DNA damage and homologous recombination repairing induced by N , N -dimethylformamide: Hepatotoxic effects of DMF. J Appl Toxicol 2016;36:936-45. [DOI: 10.1002/jat.3226] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
70 Lison D. Cobalt. Handbook on the Toxicology of Metals. Elsevier; 2015. pp. 743-63. [DOI: 10.1016/b978-0-444-59453-2.00034-2] [Cited by in Crossref: 13] [Article Influence: 1.9] [Reference Citation Analysis]
71 Ray S, Bhattacharyya S, Panda P, Pandey A, Ghosal K. Advances in Pulmonary Nanomedicine for Therapeutic Management of Respiratory Diseases. In: Das MK, Pathak YV, editors. Nano Medicine and Nano Safety. Singapore: Springer; 2020. pp. 237-66. [DOI: 10.1007/978-981-15-6255-6_10] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
72 Cheng H, Luo J, Zhong C. An aggregative growth process for controlling size, shape and composition of metal, alloy and core–shell nanoparticles toward desired bioapplications. J Mater Chem B 2014;2:6904-16. [DOI: 10.1039/c4tb00962b] [Cited by in Crossref: 11] [Article Influence: 1.4] [Reference Citation Analysis]
73 Salana S, Wang Y, Puthussery JV, Verma V. A semi-automated instrument for cellular oxidative potential evaluation (SCOPE) of water-soluble extracts of ambient particulate matter. Atmos Meas Tech 2021;14:7579-93. [DOI: 10.5194/amt-14-7579-2021] [Reference Citation Analysis]
74 Ng CT, Yong LQ, Hande MP, Ong CN, Yu LE, Bay BH, Baeg GH. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int J Nanomedicine 2017;12:1621-37. [PMID: 28280330 DOI: 10.2147/IJN.S124403] [Cited by in Crossref: 114] [Cited by in F6Publishing: 32] [Article Influence: 22.8] [Reference Citation Analysis]
75 Sweeney S, Berhanu D, Ruenraroengsak P, Thorley AJ, Valsami-jones E, Tetley TD. Nano-titanium dioxide bioreactivity with human alveolar type-I-like epithelial cells: Investigating crystalline phase as a critical determinant. Nanotoxicology 2015;9:482-92. [DOI: 10.3109/17435390.2014.948518] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
76 Liu J, Zhao Y, Ge W, Zhang P, Liu X, Zhang W, Hao Y, Yu S, Li L, Chu M, Min L, Zhang H, Shen W. Oocyte exposure to ZnO nanoparticles inhibits early embryonic development through the γ-H2AX and NF-κB signaling pathways. Oncotarget 2017;8:42673-92. [PMID: 28487501 DOI: 10.18632/oncotarget.17349] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
77 Cavallo D, Ciervo A, Fresegna AM, Maiello R, Tassone P, Buresti G, Casciardi S, Iavicoli S, Ursini CL. Investigation on cobalt-oxide nanoparticles cyto-genotoxicity and inflammatory response in two types of respiratory cells. J Appl Toxicol 2015;35:1102-13. [PMID: 25772588 DOI: 10.1002/jat.3133] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 4.6] [Reference Citation Analysis]
78 Wu B, Wang L, Wei M, Wang S, Jiang K, Wang C. Silver nanoparticles reduced the invasiveness of redroot pigweed. Ecotoxicology 2019;28:983-94. [PMID: 31435863 DOI: 10.1007/s10646-019-02097-z] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
79 Quinteros MA, Viviana CA, Onnainty R, Mary VS, Theumer MG, Granero GE, Paraje MG, Páez PL. Biosynthesized silver nanoparticles: Decoding their mechanism of action in Staphylococcus aureus and Escherichia coli. Int J Biochem Cell Biol 2018;104:87-93. [PMID: 30243952 DOI: 10.1016/j.biocel.2018.09.006] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
80 Zhu S, Gong L, Li Y, Xu H, Gu Z, Zhao Y. Safety Assessment of Nanomaterials to Eyes: An Important but Neglected Issue. Adv Sci (Weinh) 2019;6:1802289. [PMID: 31453052 DOI: 10.1002/advs.201802289] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 8.3] [Reference Citation Analysis]
81 Dong H, Shi Q, Song X, Fu J, Hu L, Xu D, Su C, Xia X, Song E, Song Y. Polychlorinated biphenyl quinone induces oxidative DNA damage and repair responses: The activations of NHEJ, BER and NER via ATM-p53 signaling axis. Toxicology and Applied Pharmacology 2015;286:10-6. [DOI: 10.1016/j.taap.2015.03.017] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
82 Nelson BC, Wright CW, Ibuki Y, Moreno-Villanueva M, Karlsson HL, Hendriks G, Sims CM, Singh N, Doak SH. Emerging metrology for high-throughput nanomaterial genotoxicology. Mutagenesis 2017;32:215-32. [PMID: 27565834 DOI: 10.1093/mutage/gew037] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
83 Wang J, Li M, Feng J, Yan X, Chen H, Han R. Effects of TiO2-NPs pretreatment on UV-B stress tolerance in Arabidopsis thaliana. Chemosphere 2021;281:130809. [PMID: 33992849 DOI: 10.1016/j.chemosphere.2021.130809] [Reference Citation Analysis]
84 Cappellini F, Hedberg Y, Mccarrick S, Hedberg J, Derr R, Hendriks G, Odnevall Wallinder I, Karlsson HL. Mechanistic insight into reactivity and (geno)toxicity of well-characterized nanoparticles of cobalt metal and oxides. Nanotoxicology 2018;12:602-20. [DOI: 10.1080/17435390.2018.1470694] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 5.8] [Reference Citation Analysis]
85 Duan J, Yu Y, Li Y, Yu Y, Li Y, Zhou X, Huang P, Sun Z. Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint. PLoS One 2013;8:e62087. [PMID: 23620807 DOI: 10.1371/journal.pone.0062087] [Cited by in Crossref: 124] [Cited by in F6Publishing: 128] [Article Influence: 13.8] [Reference Citation Analysis]
86 Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 2013;10:15. [PMID: 23587290 DOI: 10.1186/1743-8977-10-15] [Cited by in Crossref: 776] [Cited by in F6Publishing: 627] [Article Influence: 86.2] [Reference Citation Analysis]
87 Malaviya R, Laskin JD, Laskin DL. Oxidative stress-induced autophagy: role in pulmonary toxicity. Toxicol Appl Pharmacol 2014;275:145-51. [PMID: 24398106 DOI: 10.1016/j.taap.2013.12.022] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
88 Sharifi M, Hosseinali SH, Saboury AA, Szegezdi E, Falahati M. Involvement of planned cell death of necroptosis in cancer treatment by nanomaterials: Recent advances and future perspectives. Journal of Controlled Release 2019;299:121-37. [DOI: 10.1016/j.jconrel.2019.02.007] [Cited by in Crossref: 31] [Cited by in F6Publishing: 20] [Article Influence: 10.3] [Reference Citation Analysis]
89 Ortega-Pinazo J, Díaz T, Martínez B, Jiménez A, Pinto-Medel MJ, Ferro P. Quality assessment on the long-term cryopreservation and nucleic acids extraction processes implemented in the andalusian public biobank. Cell Tissue Bank 2019;20:255-65. [PMID: 30903409 DOI: 10.1007/s10561-019-09764-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
90 Alaraby M, Demir E, Domenech J, Velázquez A, Hernández A, Marcos R. In vivo evaluation of the toxic and genotoxic effects of exposure to cobalt nanoparticles using Drosophila melanogaster. Environ Sci : Nano 2020;7:610-22. [DOI: 10.1039/c9en00690g] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
91 Attia AA, Ramdan HS, Al-Eisa RA, Adle Fadle BOA, El-Shenawy NS. Effect of Saffron Extract on the Hepatotoxicity Induced by Copper Nanoparticles in Male Mice. Molecules 2021;26:3045. [PMID: 34065267 DOI: 10.3390/molecules26103045] [Reference Citation Analysis]
92 Wan R, Mo Y, Zhang Z, Jiang M, Tang S, Zhang Q. Cobalt nanoparticles induce lung injury, DNA damage and mutations in mice. Part Fibre Toxicol 2017;14:38. [PMID: 28923112 DOI: 10.1186/s12989-017-0219-z] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 9.4] [Reference Citation Analysis]
93 Browning CL, The T, Mason MD, Wise JP Sr. Titanium Dioxide Nanoparticles are not Cytotoxic or Clastogenic in Human Skin Cells. J Environ Anal Toxicol 2014;4:239. [PMID: 26568896 DOI: 10.4172/2161-0525.1000239] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
94 Golbamaki N, Rasulev B, Cassano A, Marchese Robinson RL, Benfenati E, Leszczynski J, Cronin MTD. Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. Nanoscale 2015;7:2154-98. [DOI: 10.1039/c4nr06670g] [Cited by in Crossref: 114] [Cited by in F6Publishing: 31] [Article Influence: 16.3] [Reference Citation Analysis]
95 Cui L, Wang X, Sun B, Xia T, Hu S. Predictive Metabolomic Signatures for Safety Assessment of Metal Oxide Nanoparticles. ACS Nano 2019;13:13065-82. [PMID: 31682760 DOI: 10.1021/acsnano.9b05793] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]