BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lee JS, Shin J, Park HM, Kim YG, Kim BG, Oh JW, Cho SW. Liver extracellular matrix providing dual functions of two-dimensional substrate coating and three-dimensional injectable hydrogel platform for liver tissue engineering. Biomacromolecules. 2014;15:206-218. [PMID: 24350561 DOI: 10.1021/bm4015039] [Cited by in Crossref: 130] [Cited by in F6Publishing: 121] [Article Influence: 14.4] [Reference Citation Analysis]
Number Citing Articles
1 Jin Y, Lee JS, Kim J, Min S, Wi S, Yu JH, Chang G, Cho A, Choi Y, Ahn D, Cho S, Cheong E, Kim Y, Kim H, Kim Y, Kim DS, Kim HW, Quan Z, Kang H, Cho S. Three-dimensional brain-like microenvironments facilitate the direct reprogramming of fibroblasts into therapeutic neurons. Nat Biomed Eng 2018;2:522-39. [DOI: 10.1038/s41551-018-0260-8] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 11.5] [Reference Citation Analysis]
2 Shridhar A, Lam AYL, Sun Y, Simmons CA, Gillies ER, Flynn LE. Culture on Tissue‐Specific Coatings Derived from α‐Amylase‐Digested Decellularized Adipose Tissue Enhances the Proliferation and Adipogenic Differentiation of Human Adipose‐Derived Stromal Cells. Biotechnol J 2020;15:1900118. [DOI: 10.1002/biot.201900118] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
3 Frtús A, Smolková B, Uzhytchak M, Lunova M, Jirsa M, Hof M, Jurkiewicz P, Lozinsky VI, Wolfová L, Petrenko Y, Kubinová Š, Dejneka A, Lunov O. Hepatic Tumor Cell Morphology Plasticity under Physical Constraints in 3D Cultures Driven by YAP-mTOR Axis. Pharmaceuticals (Basel) 2020;13:E430. [PMID: 33260691 DOI: 10.3390/ph13120430] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Patarashvili L, Gvidiani S, Azmaipharashvili E, Tsomaia K, Sareli M, Kordzaia D, Chanukvadze I. Porta-caval fibrous connections — the lesser-known structure of intrahepatic connective-tissue framework: A unified view of liver extracellular matrix. World J Hepatol 2021; 13(11): 1484-1493 [PMID: 34904025 DOI: 10.4254/wjh.v13.i11.1484] [Reference Citation Analysis]
5 Ding ZZ, Ma J, He W, Ge ZL, Lu Q, Kaplan DL. Simulation of ECM with Silk and Chitosan Nanocomposite Materials. J Mater Chem B 2017;5:4789-96. [PMID: 29098078 DOI: 10.1039/C7TB00486A] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 3.4] [Reference Citation Analysis]
6 Cho AN, Jin Y, An Y, Kim J, Choi YS, Lee JS, Kim J, Choi WY, Koo DJ, Yu W, Chang GE, Kim DY, Jo SH, Kim J, Kim SY, Kim YG, Kim JY, Choi N, Cheong E, Kim YJ, Je HS, Kang HC, Cho SW. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun 2021;12:4730. [PMID: 34354063 DOI: 10.1038/s41467-021-24775-5] [Reference Citation Analysis]
7 Fujita K, Feng Z, Sato D, Kosawada T, Nakamura T, Shiraishi Y, Umezu M; 1 Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan, 2 Graduate School of Medical Science, Yamagata University, Yamagata, Japan, 3 Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan, 4 Integrative Bioscience and Biomedical Engineering, Waseda University, Tokyo, Japan. . AIMS Materials Science 2018;5:54-74. [DOI: 10.3934/matersci.2018.1.54] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
8 Choi YS, Jeong E, Lee JS, Kim SK, Jo SH, Kim YG, Sung HJ, Cho SW, Jin Y. Immunomodulatory Scaffolds Derived from Lymph Node Extracellular Matrices. ACS Appl Mater Interfaces 2021;13:14037-49. [PMID: 33745275 DOI: 10.1021/acsami.1c02542] [Reference Citation Analysis]
9 Agarwal T, Narayan R, Maji S, Ghosh SK, Maiti TK. Decellularized caprine liver extracellular matrix as a 2D substrate coating and 3D hydrogel platform for vascularized liver tissue engineering. J Tissue Eng Regen Med 2017;12. [DOI: 10.1002/term.2594] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
10 Kozlowski MT, Crook CJ, Ku HT. Towards organoid culture without Matrigel. Commun Biol 2021;4:1387. [PMID: 34893703 DOI: 10.1038/s42003-021-02910-8] [Reference Citation Analysis]
11 Choi S, Kim J. Designed fabrication of super-stiff, anisotropic hybrid hydrogels via linear remodeling of polymer networks and subsequent crosslinking. J Mater Chem B 2015;3:1479-83. [DOI: 10.1039/c4tb01852d] [Cited by in Crossref: 42] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
12 Saheli M, Sepantafar M, Pournasr B, Farzaneh Z, Vosough M, Piryaei A, Baharvand H. Three-dimensional liver-derived extracellular matrix hydrogel promotes liver organoids function. J Cell Biochem 2018;119:4320-33. [PMID: 29247536 DOI: 10.1002/jcb.26622] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 11.0] [Reference Citation Analysis]
13 Lin T, Liu S, Chen S, Qiu S, Rao Z, Liu J, Zhu S, Yan L, Mao H, Zhu Q, Quan D, Liu X. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects. Acta Biomater 2018;73:326-38. [PMID: 29649641 DOI: 10.1016/j.actbio.2018.04.001] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 10.0] [Reference Citation Analysis]
14 Krishtul S, Baruch L, Machluf M. Processed Tissue–Derived Extracellular Matrices: Tailored Platforms Empowering Diverse Therapeutic Applications. Adv Funct Mater 2020;30:1900386. [DOI: 10.1002/adfm.201900386] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
15 Zhang X, Dong J. Direct comparison of different coating matrix on the hepatic differentiation from adipose-derived stem cells. Biochem Biophys Res Commun. 2015;456:938-944. [PMID: 25446084 DOI: 10.1016/j.bbrc.2014.11.004] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
16 Meng FY, Liu L, Yang FH, Li CY, Liu J, Zhou P. Reversible immortalization of human hepatocytes mediated by retroviral transfer and site-specific recombination. World J Gastroenterol 2014; 20(36): 13119-13126 [PMID: 25278705 DOI: 10.3748/wjg.v20.i36.13119] [Cited by in CrossRef: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
17 Collins SD, Yuen G, Tu T, Budzinska MA, Spring K, Bryant K, Shackel NA; Gastoenterology and Liver Laboratory, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia, South Western Sydney Clinical School, University of New South Wales, Sydney, Australia, Gastoenterology and Liver Laboratory, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia, South Western Sydney Clinical School, University of New South Wales, Sydney, Australia, Department of Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany, German Center for Infection Research (DZIF), Heidelberg Partner Site, Heidelberg, Germany, Gastoenterology and Liver Laboratory, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia, Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, Australia, Liverpool Clinical School, Western Sydney University, Liverpool, Australia, Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, Australia, Liverpool Clinical School, Western Sydney University, Liverpool, Australia, Gastoenterology and Liver Laboratory, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia, South Western Sydney Clinical School, University of New South Wales, Sydney, Australia, Gastoenterology and Liver Laboratory, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia, South Western Sydney Clinical School, University of New South Wales, Sydney, Australia. In Vitro Models of the Liver: Disease Modeling, Drug Discovery and Clinical Applications. In: Tirnitz-parker JE, editor. Hepatocellular Carcinoma. Codon Publications; 2019. pp. 47-67. [DOI: 10.15586/hepatocellularcarcinoma.2019.ch3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
18 Abaci A, Guvendiren M. Designing Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting. Adv Healthc Mater 2020;9:e2000734. [PMID: 32691980 DOI: 10.1002/adhm.202000734] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
19 Jabbari E, Leijten J, Xu Q, Khademhosseini A. The matrix reloaded: the evolution of regenerative hydrogels. Materials Today 2016;19:190-6. [DOI: 10.1016/j.mattod.2015.10.005] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
20 Willemse J, Lieshout R, van der Laan LJ, Verstegen MM. From organoids to organs: Bioengineering liver grafts from hepatic stem cells and matrix. Best Practice & Research Clinical Gastroenterology 2017;31:151-9. [DOI: 10.1016/j.bpg.2017.03.003] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
21 Wang L, Neumann M, Fu T, Li W, Cheng X, Su B. Porous and responsive hydrogels for cell therapy. Current Opinion in Colloid & Interface Science 2018;38:135-57. [DOI: 10.1016/j.cocis.2018.10.010] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 3.8] [Reference Citation Analysis]
22 Krueger W, Boelsterli UA, Rasmussen TP. Stem Cell Strategies to Evaluate Idiosyncratic Drug-induced Liver Injury. J Clin Transl Hepatol. 2014;2:143-152. [PMID: 26355943 DOI: 10.14218/jcth.2014.00012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
23 Wu J, Brazile B, McMahan SR, Liao J, Hong Y. Heart valve tissue-derived hydrogels: Preparation and characterization of mitral valve chordae, aortic valve, and mitral valve gels. J Biomed Mater Res B Appl Biomater 2019;107:1732-40. [PMID: 30419146 DOI: 10.1002/jbm.b.34266] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
24 Wu X, Wang S, Li M, Li J, Shen J, Zhao Y, Pang J, Wen Q, Chen M, Wei B, Kaboli PJ, Du F, Zhao Q, Cho CH, Wang Y, Xiao Z, Wu X. Conditional reprogramming: next generation cell culture. Acta Pharm Sin B 2020;10:1360-81. [PMID: 32963937 DOI: 10.1016/j.apsb.2020.01.011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
25 Tamayo-Angorrilla M, López de Andrés J, Jiménez G, Marchal JA. The biomimetic extracellular matrix: a therapeutic tool for breast cancer research. Transl Res 2021:S1931-5244(21)00281-4. [PMID: 34844003 DOI: 10.1016/j.trsl.2021.11.008] [Reference Citation Analysis]
26 Gibler P, Gimble J, Hamel K, Rogers E, Henderson M, Wu X, Olesky S, Frazier T. Human Adipose-Derived Stromal/Stem Cell Culture and Analysis Methods for Adipose Tissue Modeling In Vitro: A Systematic Review. Cells 2021;10:1378. [PMID: 34204869 DOI: 10.3390/cells10061378] [Reference Citation Analysis]
27 Bankoti K, Rameshbabu AP, Datta S, Goswami P, Roy M, Das D, Ghosh SK, Das AK, Mitra A, Pal S, Maulik D, Su B, Ghosh P, Basu B, Dhara S. Dual Functionalized Injectable Hybrid Extracellular Matrix Hydrogel for Burn Wounds. Biomacromolecules 2021;22:514-33. [PMID: 33289564 DOI: 10.1021/acs.biomac.0c01400] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
28 Correia Carreira S, Taghavi M, Pavez Loriè E, Rossiter J. FleXert: A Soft, Actuatable Multiwell Plate Insert for Cell Culture under Stretch. ACS Biomater Sci Eng 2021;7:2225-45. [PMID: 33843187 DOI: 10.1021/acsbiomaterials.0c01448] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Lee G, Kim H, Park JY, Kim G, Han J, Chung S, Yang JH, Jeon JS, Woo DH, Han C, Kim SK, Park HJ, Kim JH. Generation of uniform liver spheroids from human pluripotent stem cells for imaging-based drug toxicity analysis. Biomaterials 2021;269:120529. [PMID: 33257114 DOI: 10.1016/j.biomaterials.2020.120529] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
30 Yang L, Li LC, Lamaoqiezhong, Wang X, Wang WH, Wang YC, Xu CR. The contributions of mesoderm-derived cells in liver development. Semin Cell Dev Biol 2019;92:63-76. [PMID: 30193996 DOI: 10.1016/j.semcdb.2018.09.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
31 Janani G, Nandi SK, Mandal BB. Functional hepatocyte clusters on bioactive blend silk matrices towards generating bioartificial liver constructs. Acta Biomaterialia 2018;67:167-82. [DOI: 10.1016/j.actbio.2017.11.053] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 8.3] [Reference Citation Analysis]
32 Kim BS, Das S, Jang J, Cho DW. Decellularized Extracellular Matrix-based Bioinks for Engineering Tissue- and Organ-specific Microenvironments. Chem Rev 2020;120:10608-61. [PMID: 32786425 DOI: 10.1021/acs.chemrev.9b00808] [Cited by in Crossref: 51] [Cited by in F6Publishing: 43] [Article Influence: 25.5] [Reference Citation Analysis]
33 Venault A, Subarja A, Chang Y. Zwitterionic Polyhydroxybutyrate Electrospun Fibrous Membranes with a Compromise of Bioinert Control and Tissue-Cell Growth. Langmuir 2017;33:2460-71. [PMID: 28177247 DOI: 10.1021/acs.langmuir.6b04683] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
34 Heath DE. A Review of Decellularized Extracellular Matrix Biomaterials for Regenerative Engineering Applications. Regen Eng Transl Med 2019;5:155-66. [DOI: 10.1007/s40883-018-0080-0] [Cited by in Crossref: 24] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
35 Agarwal T, Maiti TK, Ghosh SK. Decellularized caprine liver-derived biomimetic and pro-angiogenic scaffolds for liver tissue engineering. Materials Science and Engineering: C 2019;98:939-48. [DOI: 10.1016/j.msec.2019.01.037] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
36 Lih E, Park KW, Chun SY, Kim H, Kwon TG, Joung YK, Han DK. Biomimetic Porous PLGA Scaffolds Incorporating Decellularized Extracellular Matrix for Kidney Tissue Regeneration. ACS Appl Mater Interfaces 2016;8:21145-54. [DOI: 10.1021/acsami.6b03771] [Cited by in Crossref: 51] [Cited by in F6Publishing: 43] [Article Influence: 8.5] [Reference Citation Analysis]
37 Hou Y, Hsu S, Lee K. Decellularized liver matrix as substrates for rescue of acute hepatocytes toxicity. J Biomed Mater Res 2020;108:1592-602. [DOI: 10.1002/jbm.b.34506] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
38 Chang SH, Huang HH, Kang PL, Wu YC, Chang MH, Kuo SM. In vitro and in vivo study of the application of volvox spheres to co-culture vehicles in liver tissue engineering. Acta Biomater 2017;63:261-73. [PMID: 28941653 DOI: 10.1016/j.actbio.2017.09.028] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
39 Peng H, Rübsam K, Jakob F, Schwaneberg U, Pich A. Tunable Enzymatic Activity and Enhanced Stability of Cellulase Immobilized in Biohybrid Nanogels. Biomacromolecules 2016;17:3619-31. [DOI: 10.1021/acs.biomac.6b01119] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
40 Ijima H, Nakamura S, Bual R, Shirakigawa N, Tanoue S. Physical Properties of the Extracellular Matrix of Decellularized Porcine Liver. Gels 2018;4:E39. [PMID: 30674815 DOI: 10.3390/gels4020039] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
41 Lu S, Zhang J, Lin S, Zheng D, Shen Y, Qin J, Li Y, Wang S. Recent advances in the development of in vitro liver models for hepatotoxicity testing. Bio-des Manuf 2021;4:717-34. [DOI: 10.1007/s42242-021-00142-7] [Reference Citation Analysis]
42 Ma X, Yu C, Wang P, Xu W, Wan X, Lai CSE, Liu J, Koroleva-Maharajh A, Chen S. Rapid 3D bioprinting of decellularized extracellular matrix with regionally varied mechanical properties and biomimetic microarchitecture. Biomaterials 2018;185:310-21. [PMID: 30265900 DOI: 10.1016/j.biomaterials.2018.09.026] [Cited by in Crossref: 80] [Cited by in F6Publishing: 74] [Article Influence: 20.0] [Reference Citation Analysis]
43 Kim W, Lee H, Lee J, Atala A, Yoo JJ, Lee SJ, Kim GH. Efficient myotube formation in 3D bioprinted tissue construct by biochemical and topographical cues. Biomaterials 2020;230:119632. [PMID: 31761486 DOI: 10.1016/j.biomaterials.2019.119632] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 13.3] [Reference Citation Analysis]
44 Ergün C, Parmaksiz M, Vurat MT, Elçin AE, Elçin YM. Decellularized liver ECM-based 3D scaffolds: Compositional, physical, chemical, rheological, thermal, mechanical, and in vitro biological evaluations. Int J Biol Macromol 2021:S0141-8130(21)02716-1. [PMID: 34971643 DOI: 10.1016/j.ijbiomac.2021.12.086] [Reference Citation Analysis]
45 Wang B, Li W, Dean D, Mishra MK, Wekesa KS. Enhanced hepatogenic differentiation of bone marrow derived mesenchymal stem cells on liver ECM hydrogel. J Biomed Mater Res A 2018;106:829-38. [PMID: 29067792 DOI: 10.1002/jbm.a.36278] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
46 Jin Y, Kim J, Lee JS, Min S, Kim S, Ahn D, Kim Y, Cho S. Vascularized Liver Organoids Generated Using Induced Hepatic Tissue and Dynamic Liver-Specific Microenvironment as a Drug Testing Platform. Adv Funct Mater 2018;28:1801954. [DOI: 10.1002/adfm.201801954] [Cited by in Crossref: 47] [Cited by in F6Publishing: 23] [Article Influence: 11.8] [Reference Citation Analysis]
47 Nobakht Lahrood F, Saheli M, Farzaneh Z, Taheri P, Dorraj M, Baharvand H, Vosough M, Piryaei A. Generation of Transplantable Three-Dimensional Hepatic-Patch to Improve the Functionality of Hepatic Cells In Vitro and In Vivo. Stem Cells Dev 2020;29:301-13. [PMID: 31856676 DOI: 10.1089/scd.2019.0130] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
48 Chiti MC, Vanacker J, Ouni E, Tatic N, Viswanath A, des Rieux A, Dolmans MM, White LJ, Amorim CA. Ovarian extracellular matrix-based hydrogel for human ovarian follicle survival in vivo: A pilot work. J Biomed Mater Res B Appl Biomater 2021. [PMID: 34825466 DOI: 10.1002/jbm.b.34974] [Reference Citation Analysis]
49 Li Y, Wu Q, Wang Y, Li L, Chen F, Shi Y, Bao J, Bu H. Construction of bioengineered hepatic tissue derived from human umbilical cord mesenchymal stem cells via aggregation culture in porcine decellularized liver scaffolds. Xenotransplantation 2017;24. [PMID: 28127796 DOI: 10.1111/xen.12285] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
50 Wu Q, Li Y, Yang Z, Li L, Yang J, Zhu X, Liu Y, Bao J, Bu H. Ectopic expansion and vascularization of engineered hepatic tissue based on heparinized acellular liver matrix and mesenchymal stromal cell spheroids. Acta Biomater 2021:S1742-7061(21)00686-3. [PMID: 34678485 DOI: 10.1016/j.actbio.2021.10.017] [Reference Citation Analysis]
51 Zhang J, Chan HF, Wang H, Shao D, Tao Y, Li M. Stem cell therapy and tissue engineering strategies using cell aggregates and decellularized scaffolds for the rescue of liver failure. J Tissue Eng 2021;12:204173142098671. [DOI: 10.1177/2041731420986711] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
52 Willemse J, Verstegen MMA, Vermeulen A, Schurink IJ, Roest HP, van der Laan LJW, de Jonge J. Fast, robust and effective decellularization of whole human livers using mild detergents and pressure controlled perfusion. Mater Sci Eng C Mater Biol Appl 2020;108:110200. [PMID: 31923991 DOI: 10.1016/j.msec.2019.110200] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 7.3] [Reference Citation Analysis]
53 White L, Saldin L, Keane T, Cramer M, Shakesheff K, Badylak S. 2.24 Hydrogels of Decellularized Matrix. Comprehensive Biomaterials II. Elsevier; 2017. pp. 532-41. [DOI: 10.1016/b978-0-12-803581-8.09313-9] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
54 Grant R, Hay DC, Callanan A. A Drug-Induced Hybrid Electrospun Poly-Capro-Lactone: Cell-Derived Extracellular Matrix Scaffold for Liver Tissue Engineering. Tissue Eng Part A 2017;23:650-62. [PMID: 28437180 DOI: 10.1089/ten.TEA.2016.0419] [Cited by in Crossref: 33] [Cited by in F6Publishing: 26] [Article Influence: 6.6] [Reference Citation Analysis]
55 Sawkins MJ, Saldin LT, Badylak SF, White LJ. ECM Hydrogels for Regenerative Medicine. In: Berardi AC, editor. Extracellular Matrix for Tissue Engineering and Biomaterials. Cham: Springer International Publishing; 2018. pp. 27-58. [DOI: 10.1007/978-3-319-77023-9_2] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
56 Ahearne M, Coyle A. Application of UVA-riboflavin crosslinking to enhance the mechanical properties of extracellular matrix derived hydrogels. J Mech Behav Biomed Mater 2016;54:259-67. [PMID: 26476968 DOI: 10.1016/j.jmbbm.2015.09.035] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
57 Zhou C, Zhou L, Liu J, Xu L, Xu Z, Chen Z, Ge Y, Zhao F, Wu R, Wang X, Jiang N, Mao L, Jia R. Kidney extracellular matrix hydrogel enhances therapeutic potential of adipose-derived mesenchymal stem cells for renal ischemia reperfusion injury. Acta Biomaterialia 2020;115:250-63. [DOI: 10.1016/j.actbio.2020.07.056] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
58 Datta S, Rameshbabu AP, Bankoti K, Roy M, Gupta C, Jana S, Das AK, Sen R, Dhara S. Decellularized bone matrix/oleoyl chitosan derived supramolecular injectable hydrogel promotes efficient bone integration. Mater Sci Eng C Mater Biol Appl 2021;119:111604. [PMID: 33321648 DOI: 10.1016/j.msec.2020.111604] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
59 Tripathi A, Melo JS. Preparation of a sponge-like biocomposite agarose–chitosan scaffold with primary hepatocytes for establishing an in vitro 3D liver tissue model. RSC Adv 2015;5:30701-10. [DOI: 10.1039/c5ra04153h] [Cited by in Crossref: 51] [Cited by in F6Publishing: 1] [Article Influence: 7.3] [Reference Citation Analysis]
60 Shin J, Kang EH, Choi S, Jeon EJ, Cho JH, Kang D, Lee H, Yun IS, Cho SW. Tissue-Adhesive Chondroitin Sulfate Hydrogel for Cartilage Reconstruction. ACS Biomater Sci Eng 2021;7:4230-43. [PMID: 33538598 DOI: 10.1021/acsbiomaterials.0c01414] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
61 Dzobo K, Motaung KSCM, Adesida A. Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review. Int J Mol Sci 2019;20:E4628. [PMID: 31540457 DOI: 10.3390/ijms20184628] [Cited by in Crossref: 67] [Cited by in F6Publishing: 53] [Article Influence: 22.3] [Reference Citation Analysis]
62 Lee JS, Roh YH, Choi YS, Jin Y, Jeon EJ, Bong KW, Cho S. Tissue Beads: Tissue‐Specific Extracellular Matrix Microbeads to Potentiate Reprogrammed Cell‐Based Therapy. Adv Funct Mater 2019;29:1807803. [DOI: 10.1002/adfm.201807803] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
63 Augustyniak J, Bertero A, Coccini T, Baderna D, Buzanska L, Caloni F. Organoids are promising tools for species-specific in vitro toxicological studies. J Appl Toxicol 2019;39:1610-22. [PMID: 31168795 DOI: 10.1002/jat.3815] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 9.3] [Reference Citation Analysis]
64 Lee JS, Cho A, Jin Y, Kim J, Kim S, Cho S. Bio-artificial tongue with tongue extracellular matrix and primary taste cells. Biomaterials 2018;151:24-37. [DOI: 10.1016/j.biomaterials.2017.10.019] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 5.8] [Reference Citation Analysis]
65 Chu X, Xu Q, Feng Z, Xiao J, Li Q, Sun X, Cao Y, Ding Y. In vitro biocompatibility of polypyrrole/PLGA conductive nanofiber scaffold with cultured rat hepatocytes. Mater Res Express 2014;1:035402. [DOI: 10.1088/2053-1591/1/3/035402] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
66 Saldin LT, Cramer MC, Velankar SS, White LJ, Badylak SF. Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomater. 2017;49:1-15. [PMID: 27915024 DOI: 10.1016/j.actbio.2016.11.068] [Cited by in Crossref: 273] [Cited by in F6Publishing: 241] [Article Influence: 45.5] [Reference Citation Analysis]
67 Bual RP, Ijima H. Intact extracellular matrix component promotes maintenance of liver-specific functions and larger aggregates formation of primary rat hepatocytes. Regen Ther 2019;11:258-68. [PMID: 31667205 DOI: 10.1016/j.reth.2019.08.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
68 Aguado BA, Caffe JR, Nanavati D, Rao SS, Bushnell GG, Azarin SM, Shea LD. Extracellular matrix mediators of metastatic cell colonization characterized using scaffold mimics of the pre-metastatic niche. Acta Biomater 2016;33:13-24. [PMID: 26844426 DOI: 10.1016/j.actbio.2016.01.043] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 6.2] [Reference Citation Analysis]
69 Wu J, Ravikumar P, Nguyen KT, Hsia CC, Hong Y. Lung protection by inhalation of exogenous solubilized extracellular matrix. PLoS One 2017;12:e0171165. [PMID: 28151947 DOI: 10.1371/journal.pone.0171165] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
70 Nantasanti S, de Bruin A, Rothuizen J, Penning LC, Schotanus BA. Concise Review: Organoids Are a Powerful Tool for the Study of Liver Disease and Personalized Treatment Design in Humans and Animals. Stem Cells Transl Med. 2016;5:325-330. [PMID: 26798060 DOI: 10.5966/sctm.2015-0152] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 7.0] [Reference Citation Analysis]
71 Mazza G, Al-Akkad W, Rombouts K, Pinzani M. Liver tissue engineering: From implantable tissue to whole organ engineering. Hepatol Commun. 2018;2:131-141. [PMID: 29404520 DOI: 10.1002/hep4.1136] [Cited by in Crossref: 50] [Cited by in F6Publishing: 46] [Article Influence: 10.0] [Reference Citation Analysis]
72 Su J, Satchell SC, Shah RN, Wertheim JA. Kidney decellularized extracellular matrix hydrogels: Rheological characterization and human glomerular endothelial cell response to encapsulation. J Biomed Mater Res A 2018;106:2448-62. [PMID: 29664217 DOI: 10.1002/jbm.a.36439] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 8.7] [Reference Citation Analysis]
73 Hu C, Xu W, Conrads CM, Wu J, Pich A. Visible light and temperature dual-responsive microgels by crosslinking of spiropyran modified prepolymers. Journal of Colloid and Interface Science 2021;582:1075-84. [DOI: 10.1016/j.jcis.2020.08.081] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
74 Alzebdeh DA, Matthew HW. Metabolic Oscillations in Co-Cultures of Hepatocytes and Mesenchymal Stem Cells: Effects of Seeding Arrangement and Culture Mixing. J Cell Biochem. 2017;118:3003-3015. [PMID: 28252220 DOI: 10.1002/jcb.25962] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
75 Zhang W, Huo Y, Wang X, Jia Y, Su L, Wang C, Li Y, Yang Y, Liu Y. Decellularized ovine arteries as biomatrix scaffold support endothelial of mesenchymal stem cells. Heart Vessels 2016;31:1874-81. [DOI: 10.1007/s00380-016-0834-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
76 López-Martínez S, Campo H, de Miguel-Gómez L, Faus A, Navarro AT, Díaz A, Pellicer A, Ferrero H, Cervelló I. A Natural Xenogeneic Endometrial Extracellular Matrix Hydrogel Toward Improving Current Human in vitro Models and Future in vivo Applications. Front Bioeng Biotechnol 2021;9:639688. [PMID: 33748086 DOI: 10.3389/fbioe.2021.639688] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
77 Choudhury D, Tun HW, Wang T, Naing MW. Organ-Derived Decellularized Extracellular Matrix: A Game Changer for Bioink Manufacturing? Trends in Biotechnology 2018;36:787-805. [DOI: 10.1016/j.tibtech.2018.03.003] [Cited by in Crossref: 108] [Cited by in F6Publishing: 89] [Article Influence: 27.0] [Reference Citation Analysis]
78 Shirakigawa N, Ijima H. Decellularized Tissue Engineering. In: Tripathi A, Melo JS, editors. Advances in Biomaterials for Biomedical Applications. Singapore: Springer; 2017. pp. 185-226. [DOI: 10.1007/978-981-10-3328-5_5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
79 Pluta KD, Ciezkowska M, Wisniewska M, Wencel A, Pijanowska DG. Cell-based clinical and experimental methods for assisting the function of impaired livers – Present and future of liver support systems. Biocybernetics and Biomedical Engineering 2021;41:1322-46. [DOI: 10.1016/j.bbe.2021.06.005] [Reference Citation Analysis]
80 Wang W, Zhang X, Chao NN, Qin TW, Ding W, Zhang Y, Sang JW, Luo JC. Preparation and characterization of pro-angiogenic gel derived from small intestinal submucosa. Acta Biomater 2016;29:135-48. [PMID: 26472613 DOI: 10.1016/j.actbio.2015.10.013] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 5.3] [Reference Citation Analysis]
81 Dwyer BJ, Macmillan MT, Brennan PN, Forbes SJ. Cell therapy for advanced liver diseases: Repair or rebuild. J Hepatol 2021;74:185-99. [PMID: 32976865 DOI: 10.1016/j.jhep.2020.09.014] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
82 Park KM, Hussein KH, Hong SH, Ahn C, Yang SR, Park SM, Kweon OK, Kim BM, Woo HM. Decellularized Liver Extracellular Matrix as Promising Tools for Transplantable Bioengineered Liver Promotes Hepatic Lineage Commitments of Induced Pluripotent Stem Cells. Tissue Eng Part A. 2016;22:449-460. [PMID: 26801816 DOI: 10.1089/ten.tea.2015.0313] [Cited by in Crossref: 63] [Cited by in F6Publishing: 62] [Article Influence: 10.5] [Reference Citation Analysis]
83 Aleahmad F, Talaei-khozani T, Rajabi-zeleti S, Sani M, Jalili-firoozinezhad S, Bonakdar S, Heshmat-azad S, Azarnia M, Jaberipour M. Fabrication and Characterization of Heparin/Collagen Sponge for in Vitro Differentiation of Wharton’s Jelly-Derived Mesenchymal Stem Cells into Hepatocytes. Hepat Mon 2017;17. [DOI: 10.5812/hepatmon.40599] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
84 Agmon G, Christman KL. Controlling stem cell behavior with decellularized extracellular matrix scaffolds. Curr Opin Solid State Mater Sci 2016;20:193-201. [PMID: 27524932 DOI: 10.1016/j.cossms.2016.02.001] [Cited by in Crossref: 82] [Cited by in F6Publishing: 74] [Article Influence: 13.7] [Reference Citation Analysis]
85 Cramer MC, Badylak SF.  Extracellular Matrix-Based Biomaterials and Their Influence Upon Cell Behavior. Ann Biomed Eng 2020;48:2132-53. [PMID: 31741227 DOI: 10.1007/s10439-019-02408-9] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 9.0] [Reference Citation Analysis]
86 Serna-Márquez N, Rodríguez-Hernández A, Ayala-Reyes M, Martínez-Hernández LO, Peña-Rico MÁ, Carretero-Ortega J, Hautefeuille M, Vázquez-Victorio G. Fibrillar Collagen Type I Participates in the Survival and Aggregation of Primary Hepatocytes Cultured on Soft Hydrogels. Biomimetics (Basel) 2020;5:E30. [PMID: 32630500 DOI: 10.3390/biomimetics5020030] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
87 Bisker G, Iverson NM, Ahn J, Strano MS. A pharmacokinetic model of a tissue implantable insulin sensor. Adv Healthc Mater 2015;4:87-97. [PMID: 25080048 DOI: 10.1002/adhm.201400264] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 3.4] [Reference Citation Analysis]
88 Wu J, Ding Q, Dutta A, Wang Y, Huang YH, Weng H, Tang L, Hong Y. An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration. Acta Biomater 2015;16:49-59. [PMID: 25644450 DOI: 10.1016/j.actbio.2015.01.027] [Cited by in Crossref: 99] [Cited by in F6Publishing: 98] [Article Influence: 14.1] [Reference Citation Analysis]
89 Bual R, Kimura H, Ikegami Y, Shirakigawa N, Ijima H. Fabrication of liver-derived extracellular matrix nanofibers and functional evaluation in in vitro culture using primary hepatocytes. Materialia 2018;4:518-28. [DOI: 10.1016/j.mtla.2018.11.014] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
90 Spang MT, Christman KL. Extracellular matrix hydrogel therapies: In vivo applications and development. Acta Biomater. 2018;68:1-14. [PMID: 29274480 DOI: 10.1016/j.actbio.2017.12.019] [Cited by in Crossref: 104] [Cited by in F6Publishing: 86] [Article Influence: 20.8] [Reference Citation Analysis]
91 Morita A, Yamada M, Utoh R, Momiyama K, Iwadate H, Seki M. Formation of 3D tissues of primary hepatocytes using fibrillized collagen microparticles as intercellular binders. J Biosci Bioeng 2021:S1389-1723(21)00324-8. [PMID: 34903469 DOI: 10.1016/j.jbiosc.2021.11.009] [Reference Citation Analysis]
92 Li T, Sui Z, Matsuno A, Ten H, Oyama K, Ito A, Jiang H, Ren X, Javed R, Zhang L, Ao Q. Fabrication and Evaluation of a Xenogeneic Decellularized Nerve-Derived Material: Preclinical Studies of a New Strategy for Nerve Repair. Neurotherapeutics 2020;17:356-70. [PMID: 31758411 DOI: 10.1007/s13311-019-00794-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
93 Mattei G, Magliaro C, Giusti S, Ramachandran SD, Heinz S, Braspenning J, Ahluwalia A. On the adhesion-cohesion balance and oxygen consumption characteristics of liver organoids. PLoS One 2017;12:e0173206. [PMID: 28267799 DOI: 10.1371/journal.pone.0173206] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
94 Liang J, Yi P, Wang X, Huang F, Luan X, Zhao Z, Liu C. Acellular matrix hydrogel for repair of the temporomandibular joint disc. J Biomed Mater Res B Appl Biomater 2020;108:2995-3007. [PMID: 32598574 DOI: 10.1002/jbm.b.34629] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
95 Bakhtiar H, Rajabi S, Pezeshki-Modaress M, Ellini MR, Panahinia M, Alijani S, Mazidi A, Kamali A, Azarpazhooh A, Kishen A. Optimizing Methods for Bovine Dental Pulp Decellularization. J Endod 2021;47:62-8. [PMID: 33049226 DOI: 10.1016/j.joen.2020.08.027] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
96 Ghahremanzadeh F, Alihosseini F, Semnani D. Investigation and comparison of new galactosylation methods on PCL/chitosan scaffolds for enhanced liver tissue engineering. Int J Biol Macromol 2021;174:278-88. [PMID: 33524484 DOI: 10.1016/j.ijbiomac.2021.01.158] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
97 Sharma P, Kaur H, Roy S. Designing a Tenascin-C-Inspired Short Bioactive Peptide Scaffold to Direct and Control Cellular Behavior. ACS Biomater Sci Eng 2019;5:6497-510. [DOI: 10.1021/acsbiomaterials.9b01115] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
98 Meng FY, Liu L, Liu J, Li CY, Wang JP, Yang FH, Chen ZS, Zhou P. Hepatocyte isolation from resected benign tissues: Results of a 5-year experience. World J Gastroenterol 2016; 22(36): 8178-8186 [PMID: 27688659 DOI: 10.3748/wjg.v22.i36.8178] [Cited by in CrossRef: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
99 Sang J, Wang S, Zhang J, Ding W, Luo J. [Effect of porcine small intestinal submucosa extracellular matrix in promoting vitality and functional gene expression of hepatocyte]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2017;31:607-13. [PMID: 29798552 DOI: 10.7507/1002-1892.201702072] [Reference Citation Analysis]
100 Evangelista-Leite D, Carreira ACO, Gilpin SE, Miglino MA. Protective Effects of Extracellular Matrix-Derived Hydrogels in Idiopathic Pulmonary Fibrosis. Tissue Eng Part B Rev 2021. [PMID: 33899554 DOI: 10.1089/ten.TEB.2020.0357] [Reference Citation Analysis]
101 Verstegen MMA, Spee B, van der Laan LJW. Bioengineering Liver Transplantation. Bioengineering (Basel) 2019;6:E96. [PMID: 31623066 DOI: 10.3390/bioengineering6040096] [Reference Citation Analysis]
102 Wang LR, Lin YQ, Wang JT, Pan LL, Huang KT, Wan L, Zhu GQ, Liu WY, Braddock M, Zheng MH. Recent advances in re-engineered liver: de-cellularization and re-cellularization techniques. Cytotherapy 2015;17:1015-24. [PMID: 25981396 DOI: 10.1016/j.jcyt.2015.04.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
103 Sun D, Liu Y, Wang H, Deng F, Zhang Y, Zhao S, Ma X, Wu H, Sun G. Novel decellularized liver matrix-alginate hybrid gel beads for the 3D culture of hepatocellular carcinoma cells. International Journal of Biological Macromolecules 2018;109:1154-63. [DOI: 10.1016/j.ijbiomac.2017.11.103] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
104 Lewis PL, Su J, Yan M, Meng F, Glaser SS, Alpini GD, Green RM, Sosa-Pineda B, Shah RN. Complex bile duct network formation within liver decellularized extracellular matrix hydrogels. Sci Rep 2018;8:12220. [PMID: 30111800 DOI: 10.1038/s41598-018-30433-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
105 Hussey GS, Dziki JL, Badylak SF. Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater 2018;3:159-73. [DOI: 10.1038/s41578-018-0023-x] [Cited by in Crossref: 241] [Cited by in F6Publishing: 132] [Article Influence: 60.3] [Reference Citation Analysis]
106 Wu G, Wu D, Lo J, Wang Y, Wu J, Lu S, Xu H, Zhao X, He Y, Li J, Demirci U, Wang S. A bioartificial liver support system integrated with a DLM/GelMA-based bioengineered whole liver for prevention of hepatic encephalopathy via enhanced ammonia reduction. Biomater Sci 2020;8:2814-24. [PMID: 32307491 DOI: 10.1039/c9bm01879d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
107 Damania A, Kumar A, Teotia AK, Kimura H, Kamihira M, Ijima H, Sarin SK, Kumar A. Decellularized Liver Matrix-Modified Cryogel Scaffolds as Potential Hepatocyte Carriers in Bioartificial Liver Support Systems and Implantable Liver Constructs. ACS Appl Mater Interfaces 2018;10:114-26. [PMID: 29210278 DOI: 10.1021/acsami.7b13727] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 6.8] [Reference Citation Analysis]
108 da Silva Morais A, Vieira S, Zhao X, Mao Z, Gao C, Oliveira JM, Reis RL. Advanced Biomaterials and Processing Methods for Liver Regeneration: State-of-the-Art and Future Trends. Adv Healthc Mater 2020;9:e1901435. [PMID: 31977159 DOI: 10.1002/adhm.201901435] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
109 Choi YJ, Park SJ, Yi HG, Lee H, Kim DS, Cho DW. Muscle-derived extracellular matrix on sinusoidal wavy surfaces synergistically promotes myogenic differentiation and maturation. J Mater Chem B 2018;6:5530-9. [PMID: 32254963 DOI: 10.1039/c8tb01475b] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
110 Asadian S, Piryaei A, Gheibi N, Aziz Kalantari B, Reza Davarpanah M, Azad M, Kapustina V, Alikhani M, Moghbeli Nejad S, Keshavarz Alikhani H, Mohamadi M, Shpichka A, Timashev P, Hassan M, Vosough M. Rhenium Perrhenate (188ReO4) Induced Apoptosis and Reduced Cancerous Phenotype in Liver Cancer Cells. Cells 2022;11:305. [DOI: 10.3390/cells11020305] [Reference Citation Analysis]
111 Wachs RA, Hoogenboezem EN, Huda HI, Xin S, Porvasnik SL, Schmidt CE. Creation of an injectable in situ gelling native extracellular matrix for nucleus pulposus tissue engineering. Spine J 2017;17:435-44. [PMID: 27989725 DOI: 10.1016/j.spinee.2016.10.022] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
112 Agarwal T, Subramanian B, Maiti TK. Liver Tissue Engineering: Challenges and Opportunities. ACS Biomater Sci Eng 2019;5:4167-82. [PMID: 33417776 DOI: 10.1021/acsbiomaterials.9b00745] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 6.7] [Reference Citation Analysis]
113 Grant R, Hallett J, Forbes S, Hay D, Callanan A. Blended electrospinning with human liver extracellular matrix for engineering new hepatic microenvironments. Sci Rep 2019;9:6293. [PMID: 31000735 DOI: 10.1038/s41598-019-42627-7] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
114 Lee H, Chae S, Kim JY, Han W, Kim J, Choi Y, Cho DW. Cell-printed 3D liver-on-a-chip possessing a liver microenvironment and biliary system. Biofabrication 2019;11:025001. [PMID: 30566930 DOI: 10.1088/1758-5090/aaf9fa] [Cited by in Crossref: 51] [Cited by in F6Publishing: 42] [Article Influence: 17.0] [Reference Citation Analysis]
115 Kumari J, Karande AA, Kumar A. Combined Effect of Cryogel Matrix and Temperature-Reversible Soluble-Insoluble Polymer for the Development of in Vitro Human Liver Tissue. ACS Appl Mater Interfaces 2016;8:264-77. [PMID: 26654271 DOI: 10.1021/acsami.5b08607] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 5.0] [Reference Citation Analysis]
116 Ahmed E, Saleh T, Yu L, Song SH, Park KM, Kwak HH, Woo HM. Decellularized extracellular matrix-rich hydrogel-silver nanoparticle mixture as a potential treatment for acute liver failure model. J Biomed Mater Res A 2020;108:2351-67. [PMID: 32415903 DOI: 10.1002/jbm.a.36988] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
117 Li S, Liang C, Jiang W, Deng J, Gu R, Li W, Tian F, Tang L, Sun H. Tissue-Specific Hydrogels Ameliorate Hepatic Ischemia/Reperfusion Injury in Rats by Regulating Macrophage Polarization via TLR4/NF-κB Signaling. ACS Biomater Sci Eng 2021;7:1552-63. [PMID: 33683856 DOI: 10.1021/acsbiomaterials.0c01610] [Reference Citation Analysis]
118 White LJ, Keane TJ, Smoulder A, Zhang L, Castleton AA, Reing JE, Turner NJ, Dearth CL, Badylak SF. The impact of sterilization upon extracellular matrix hydrogel structure and function. Journal of Immunology and Regenerative Medicine 2018;2:11-20. [DOI: 10.1016/j.regen.2018.04.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
119 Wu B, Jin L, Ding K, Zhou Y, Yang L, Lei Y, Guo Y, Wang Y. Extracellular matrix coating improves the biocompatibility of polymeric heart valves. J Mater Chem B 2020;8:10616-29. [PMID: 33146226 DOI: 10.1039/d0tb01884h] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
120 Mußbach F, Dahmen U, Dirsch O, Settmacher U. [Liver engineering as a new source of donor organs : A systematic review]. Chirurg 2016;87:504-13. [PMID: 25986672 DOI: 10.1007/s00104-015-0015-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
121 Geetha Bai R, Muthoosamy K, Manickam S, Hilal-Alnaqbi A. Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering. Int J Nanomedicine 2019;14:5753-83. [PMID: 31413573 DOI: 10.2147/IJN.S192779] [Cited by in Crossref: 37] [Cited by in F6Publishing: 11] [Article Influence: 12.3] [Reference Citation Analysis]
122 Pouliot RA, Young BM, Link PA, Park HE, Kahn AR, Shankar K, Schneck MB, Weiss DJ, Heise RL. Porcine Lung-Derived Extracellular Matrix Hydrogel Properties Are Dependent on Pepsin Digestion Time. Tissue Eng Part C Methods 2020;26:332-46. [PMID: 32390520 DOI: 10.1089/ten.TEC.2020.0042] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
123 Bobrova MM, Safonova LA, Efimov AE, Iljinsky IM, Agapova OI, Agapov II. Relation between micro- and nanostructure features and biological properties of the decellularized rat liver. Biomed Mater 2021;16. [PMID: 34100773 DOI: 10.1088/1748-605X/ac058b] [Reference Citation Analysis]
124 Kim SK, Kim YH, Park S, Cho SW. Organoid engineering with microfluidics and biomaterials for liver, lung disease, and cancer modeling. Acta Biomater 2021:S1742-7061(21)00143-4. [PMID: 33711526 DOI: 10.1016/j.actbio.2021.03.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
125 Wu J, Xu J, Huang Y, Tang L, Hong Y. Regional-specific meniscal extracellular matrix hydrogels and their effects on cell-matrix interactions of fibrochondrocytes. Biomed Mater 2021;17. [PMID: 34883474 DOI: 10.1088/1748-605X/ac4178] [Reference Citation Analysis]
126 Ahn J, Ahn JH, Yoon S, Nam YS, Son MY, Oh JH. Human three-dimensional in vitro model of hepatic zonation to predict zonal hepatotoxicity. J Biol Eng 2019;13:22. [PMID: 30886645 DOI: 10.1186/s13036-019-0148-5] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 6.7] [Reference Citation Analysis]
127 Alevra Sarika N, Payen VL, Fléron M, Ravau J, Brusa D, Najimi M, Pauw E, Eppe G, Mazzucchelli G, Sokal EM, Rieux AD, Taghdouini AE. Human Liver-Derived Extracellular Matrix for the Culture of Distinct Human Primary Liver Cells. Cells 2020;9:E1357. [PMID: 32486126 DOI: 10.3390/cells9061357] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
128 Mazza G, Al-Akkad W, Rombouts K. Engineering in vitro models of hepatofibrogenesis. Adv Drug Deliv Rev. 2017;121:147-157. [PMID: 28578016 DOI: 10.1016/j.addr.2017.05.018] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 5.6] [Reference Citation Analysis]
129 Sullivan DC, Repper JP, Frock AW, Mcfetridge PS, Petersen BE. Current Translational Challenges for Tissue Engineering: 3D Culture, Nanotechnology, and Decellularized Matrices. Curr Pathobiol Rep 2015;3:99-106. [DOI: 10.1007/s40139-015-0066-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
130 Vasconcellos R, Alvarenga ÉC, Parreira RC, Lima SS, Resende RR. Exploring the cell signalling in hepatocyte differentiation. Cellular Signalling 2016;28:1773-88. [DOI: 10.1016/j.cellsig.2016.08.011] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
131 Wang A, Kuriata O, Xu F, Nietzsche S, Gremse F, Dirsch O, Settmacher U, Dahmen U. A Survival Model of In Vivo Partial Liver Lobe Decellularization Towards In Vivo Liver Engineering. Tissue Eng Part C Methods 2020;26:402-17. [PMID: 31668131 DOI: 10.1089/ten.TEC.2019.0194] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
132 Ravichandran A, Murekatete B, Moedder D, Meinert C, Bray LJ. Photocrosslinkable liver extracellular matrix hydrogels for the generation of 3D liver microenvironment models. Sci Rep 2021;11:15566. [PMID: 34330947 DOI: 10.1038/s41598-021-94990-z] [Reference Citation Analysis]