BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rosière R, Van Woensel M, Gelbcke M, Mathieu V, Hecq J, Mathivet T, Vermeersch M, Van Antwerpen P, Amighi K, Wauthoz N. New Folate-Grafted Chitosan Derivative To Improve Delivery of Paclitaxel-Loaded Solid Lipid Nanoparticles for Lung Tumor Therapy by Inhalation. Mol Pharm 2018;15:899-910. [PMID: 29341619 DOI: 10.1021/acs.molpharmaceut.7b00846] [Cited by in Crossref: 57] [Cited by in F6Publishing: 49] [Article Influence: 14.3] [Reference Citation Analysis]
Number Citing Articles
1 Rosière R, Berghmans T, De Vuyst P, Amighi K, Wauthoz N. The Position of Inhaled Chemotherapy in the Care of Patients with Lung Tumors: Clinical Feasibility and Indications According to Recent Pharmaceutical Progresses. Cancers (Basel) 2019;11:E329. [PMID: 30866545 DOI: 10.3390/cancers11030329] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
2 Abdulbaqi IM, Assi RA, Yaghmur A, Darwis Y, Mohtar N, Parumasivam T, Saqallah FG, Wahab HA. Pulmonary Delivery of Anticancer Drugs via Lipid-Based Nanocarriers for the Treatment of Lung Cancer: An Update. Pharmaceuticals (Basel) 2021;14:725. [PMID: 34451824 DOI: 10.3390/ph14080725] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Islam N, Richard D. Inhaled Micro/Nanoparticulate Anticancer Drug Formulations: An Emerging Targeted Drug Delivery Strategy for Lung Cancers. Curr Cancer Drug Targets 2019;19:162-78. [PMID: 29793407 DOI: 10.2174/1568009618666180525083451] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
4 Wang W, Yang B, Huang Z, Huang Y, Hu P, Pan X, Wu C. Investigating the Effect of Particle Size on Cellular Uptake by Aggregation-Caused Quenching Probe–Encapsulating Solid Lipid Nanoparticles, Inhaled. J Pharm Innov. [DOI: 10.1007/s12247-021-09576-z] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Mazzotta E, De Benedittis S, Qualtieri A, Muzzalupo R. Actively Targeted and Redox Responsive Delivery of Anticancer Drug by Chitosan Nanoparticles. Pharmaceutics 2019;12:E26. [PMID: 31888000 DOI: 10.3390/pharmaceutics12010026] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
6 Gulati N, Dua K, Dureja H. Role of chitosan based nanomedicines in the treatment of chronic respiratory diseases. Int J Biol Macromol 2021;185:20-30. [PMID: 34116092 DOI: 10.1016/j.ijbiomac.2021.06.035] [Reference Citation Analysis]
7 Huang Z, Wu M, Ma C, Bai X, Zhang X, Zhao Z, Huang Y, Pan X, Wu C. Spectroscopic Quantification of Surfactants in Solid Lipid Nanoparticles. J Pharm Innov 2020;15:155-62. [DOI: 10.1007/s12247-019-09379-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
8 Kumar N, Fazal S, Miyako E, Matsumura K, Rajan R. Avengers against cancer: A new era of nano-biomaterial-based therapeutics. Materials Today 2021;51:317-49. [DOI: 10.1016/j.mattod.2021.09.020] [Reference Citation Analysis]
9 Pontes JF, Grenha A. Multifunctional Nanocarriers for Lung Drug Delivery. Nanomaterials (Basel) 2020;10:E183. [PMID: 31973051 DOI: 10.3390/nano10020183] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 7.5] [Reference Citation Analysis]
10 Scioli Montoto S, Muraca G, Ruiz ME. Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Front Mol Biosci 2020;7:587997. [PMID: 33195435 DOI: 10.3389/fmolb.2020.587997] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 14.0] [Reference Citation Analysis]
11 Zhang J, Wang Y, Jiang Y, Liu T, Luo Y, Diao E, Cao Y, Chen L, Zhang L, Gu Q, Zhou J, Sun F, Zheng W, Liu J, Li X, Hu W. Enhanced cytotoxic and apoptotic potential in hepatic carcinoma cells of chitosan nanoparticles loaded with ginsenoside compound K. Carbohydr Polym 2018;198:537-45. [PMID: 30093032 DOI: 10.1016/j.carbpol.2018.06.121] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
12 Geskovski N, Matevska-Geshkovska N, Dimchevska Sazdovska S, Glavas Dodov M, Mladenovska K, Goracinova K. The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors. Beilstein J Nanotechnol 2021;12:375-401. [PMID: 33981532 DOI: 10.3762/bjnano.12.31] [Reference Citation Analysis]
13 Verco J, Johnston W, Frost M, Baltezor M, Kuehl PJ, Lopez A, Gigliotti A, Belinsky SA, Wolff R, diZerega G. Inhaled Submicron Particle Paclitaxel (NanoPac) Induces Tumor Regression and Immune Cell Infiltration in an Orthotopic Athymic Nude Rat Model of Non-Small Cell Lung Cancer. J Aerosol Med Pulm Drug Deliv 2019;32:266-77. [PMID: 31347939 DOI: 10.1089/jamp.2018.1517] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
14 Pramanik S, Mohanto S, Manne R, Rajendran RR, Deepak A, Edapully SJ, Patil T, Katari O. Nanoparticle-Based Drug Delivery System: The Magic Bullet for the Treatment of Chronic Pulmonary Diseases. Mol Pharm 2021;18:3671-718. [PMID: 34491754 DOI: 10.1021/acs.molpharmaceut.1c00491] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Bidram E, Esmaeili Y, Ranji-burachaloo H, Al-zaubai N, Zarrabi A, Stewart A, Dunstan DE. A concise review on cancer treatment methods and delivery systems. Journal of Drug Delivery Science and Technology 2019;54:101350. [DOI: 10.1016/j.jddst.2019.101350] [Cited by in Crossref: 24] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
16 Dong W, Ye J, Zhou J, Wang W, Wang H, Zheng X, Yang Y, Xia X, Liu Y. Comparative study of mucoadhesive and mucus-penetrative nanoparticles based on phospholipid complex to overcome the mucus barrier for inhaled delivery of baicalein. Acta Pharm Sin B 2020;10:1576-85. [PMID: 32963951 DOI: 10.1016/j.apsb.2019.10.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
17 Verco J, Johnston W, Baltezor M, Kuehl PJ, Gigliotti A, Belinsky SA, Lopez A, Wolff R, Hylle L, diZerega G. Pharmacokinetic Profile of Inhaled Submicron Particle Paclitaxel (NanoPac®) in a Rodent Model. J Aerosol Med Pulm Drug Deliv 2019;32:99-109. [PMID: 30359162 DOI: 10.1089/jamp.2018.1467] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
18 Bayón-Cordero L, Alkorta I, Arana L. Application of Solid Lipid Nanoparticles to Improve the Efficiency of Anticancer Drugs. Nanomaterials (Basel) 2019;9:E474. [PMID: 30909401 DOI: 10.3390/nano9030474] [Cited by in Crossref: 55] [Cited by in F6Publishing: 37] [Article Influence: 18.3] [Reference Citation Analysis]
19 Baldassi D, Gabold B, Merkel O. Air-liquid interface cultures of the healthy and diseased human respiratory tract: promises, challenges and future directions. Adv Nanobiomed Res 2021;1:2000111. [PMID: 34345878 DOI: 10.1002/anbr.202000111] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Verco S, Maulhardt H, Baltezor M, Williams E, Iacobucci M, Wendt A, Verco J, Marin A, Campbell S, Dorman P, diZerega G. Local administration of submicron particle paclitaxel to solid carcinomas induces direct cytotoxicity and immune-mediated tumoricidal effects without local or systemic toxicity: preclinical and clinical studies. Drug Deliv Transl Res 2021;11:1806-17. [PMID: 33159289 DOI: 10.1007/s13346-020-00868-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Tian X, Bera H, Guo X, Xu R, Sun J, He Z, Cun D, Yang M. Pulmonary Delivery of Reactive Oxygen Species/Glutathione-Responsive Paclitaxel Dimeric Nanoparticles Improved Therapeutic Indices against Metastatic Lung Cancer. ACS Appl Mater Interfaces 2021;13:56858-72. [PMID: 34806372 DOI: 10.1021/acsami.1c16351] [Reference Citation Analysis]
22 Mercel A, Tsihlis ND, Maile R, Kibbe MR. Emerging therapies for smoke inhalation injury: a review. J Transl Med 2020;18:141. [PMID: 32228626 DOI: 10.1186/s12967-020-02300-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Baranyai Z, Soria‐carrera H, Alleva M, Millán‐placer AC, Lucía A, Martín‐rapún R, Aínsa JA, la Fuente JM. Nanotechnology‐Based Targeted Drug Delivery: An Emerging Tool to Overcome Tuberculosis. Adv Therap 2021;4:2000113. [DOI: 10.1002/adtp.202000113] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
24 Bardoliwala D, Javia A, Ghosh S, Misra A, Sawant K. Formulation and clinical perspectives of inhalation-based nanocarrier delivery: a new archetype in lung cancer treatment. Ther Deliv 2021;12:397-418. [PMID: 33902294 DOI: 10.4155/tde-2020-0101] [Reference Citation Analysis]
25 Wauthoz N, Rosière R, Amighi K. Inhaled cytotoxic chemotherapy: clinical challenges, recent developments, and future prospects. Expert Opin Drug Deliv 2021;18:333-54. [PMID: 33050733 DOI: 10.1080/17425247.2021.1829590] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Alavi M, Nokhodchi A. Micro- and nanoformulations of paclitaxel based on micelles, liposomes, cubosomes, and lipid nanoparticles: Recent advances and challenges. Drug Discov Today 2021:S1359-6446(21)00445-1. [PMID: 34688912 DOI: 10.1016/j.drudis.2021.10.007] [Reference Citation Analysis]
27 Pramanik S, Sali V. Connecting the dots in drug delivery: A tour d'horizon of chitosan-based nanocarriers system. Int J Biol Macromol 2021;169:103-21. [PMID: 33338522 DOI: 10.1016/j.ijbiomac.2020.12.083] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
28 Gul A, Tzirtzilakis EE, Makhanov SS. A two - phase, two - way coupled model of targeted magnetic drug delivery for small Reynolds numbers. Engineering Applications of Computational Fluid Mechanics 2022;16:374-96. [DOI: 10.1080/19942060.2021.2016493] [Reference Citation Analysis]
29 Hoque SM, Islam MK, Hoq A, Haque MM, Maritim S, Coman D, Hyder F. Comparative Study of Specific Loss Power and Transverse Relaxivity of Spinel Ferrite Nanoensembles Coated With Chitosan and Polyethylene Glycol. Front Nanotechnol 2021;3:644080. [DOI: 10.3389/fnano.2021.644080] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Rodenak-Kladniew B, Noacco N, Pérez de Berti I, Stewart SJ, Cabrera AF, Alvarez VA, García de Bravo M, Durán N, Castro GR, Islan GA. Design of magnetic hybrid nanostructured lipid carriers containing 1,8-cineole as delivery systems for anticancer drugs: Physicochemical and cytotoxic studies. Colloids Surf B Biointerfaces 2021;202:111710. [PMID: 33765626 DOI: 10.1016/j.colsurfb.2021.111710] [Reference Citation Analysis]
31 Anderson CF, Grimmett ME, Domalewski CJ, Cui H. Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020;12:e1586. [PMID: 31602823 DOI: 10.1002/wnan.1586] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
32 Alhajj N, Chee CF, Wong TW, Rahman NA, Abu Kasim NH, Colombo P. Lung cancer: active therapeutic targeting and inhalational nanoproduct design. Expert Opinion on Drug Delivery 2018;15:1223-47. [DOI: 10.1080/17425247.2018.1547280] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
33 Alhajj N, Naharudin I, Colombo P, Quarta E, Wong TW. Probing Critical Physical Properties of Lactose-Polyethylene Glycol Microparticles in Pulmonary Delivery of Chitosan Nanoparticles. Pharmaceutics 2021;13:1581. [PMID: 34683876 DOI: 10.3390/pharmaceutics13101581] [Reference Citation Analysis]
34 Abdelaziz HM, Freag MS, Elzoghby AO. Solid Lipid Nanoparticle-Based Drug Delivery for Lung Cancer. Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer. Elsevier; 2019. pp. 95-121. [DOI: 10.1016/b978-0-12-815720-6.00005-8] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
35 Fathi M, Majidi S, Zangabad PS, Barar J, Erfan-niya H, Omidi Y. Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer. Med Res Rev 2018;38:2110-36. [DOI: 10.1002/med.21506] [Cited by in Crossref: 43] [Cited by in F6Publishing: 33] [Article Influence: 10.8] [Reference Citation Analysis]
36 Qindeel M, Ahmed N, Khan GM, Rehman AU. Ligand decorated chitosan as an advanced nanocarrier for targeted delivery: a critical review. Nanomedicine (Lond) 2019;14:1623-42. [PMID: 31166147 DOI: 10.2217/nnm-2018-0490] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
37 Essa ML, El-Kemary MA, Ebrahem Saied EM, Leporatti S, Nemany Hanafy NA. Nano targeted Therapies Made of Lipids and Polymers have Promising Strategy for the Treatment of Lung Cancer. Materials (Basel) 2020;13:E5397. [PMID: 33261031 DOI: 10.3390/ma13235397] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
38 Sutradhar A. Effects of buoyant and Saffman lift force on magnetic drug targeting in microvessel in the presence of inertia. Microvasc Res 2021;133:104099. [PMID: 33144121 DOI: 10.1016/j.mvr.2020.104099] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
39 Huang Z, Huang Y, Ma C, Ma X, Zhang X, Lin L, Zhao Z, Pan X, Wu C. Endotracheal Aerosolization Device for Laboratory Investigation of Pulmonary Delivery of Nanoparticle Suspensions: In Vitro and in Vivo Validation. Mol Pharm 2018;15:5521-33. [PMID: 30252486 DOI: 10.1021/acs.molpharmaceut.8b00668] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
40 Price PM, Mahmoud WE, Al-Ghamdi AA, Bronstein LM. Magnetic Drug Delivery: Where the Field Is Going. Front Chem 2018;6:619. [PMID: 30619827 DOI: 10.3389/fchem.2018.00619] [Cited by in Crossref: 111] [Cited by in F6Publishing: 51] [Article Influence: 27.8] [Reference Citation Analysis]
41 Su W, Liang Y, Meng Z, Chen X, Lu M, Han X, Deng X, Zhang Q, Zhu H, Fu T. Inhalation of Tetrandrine-hydroxypropyl-β-cyclodextrin Inclusion Complexes for Pulmonary Fibrosis Treatment. Mol Pharm 2020;17:1596-607. [PMID: 32142292 DOI: 10.1021/acs.molpharmaceut.0c00026] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
42 Huang Z, Huang Y, Wang W, Fu F, Wang W, Dang S, Li C, Ma C, Zhang X, Zhao Z, Pan X, Wu C. Relationship between particle size and lung retention time of intact solid lipid nanoparticle suspensions after pulmonary delivery. J Control Release 2020;325:206-22. [PMID: 32619747 DOI: 10.1016/j.jconrel.2020.06.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
43 Lorscheider M, Gaudin A, Nakhlé J, Veiman KL, Richard J, Chassaing C. Challenges and opportunities in the delivery of cancer therapeutics: update on recent progress. Ther Deliv 2021;12:55-76. [PMID: 33307811 DOI: 10.4155/tde-2020-0079] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
44 Ashrafizadeh M, Ahmadi Z, Mohamadi N, Zarrabi A, Abasi S, Dehghannoudeh G, Tamaddondoust RN, Khanbabaei H, Mohammadinejad R, Thakur VK. Chitosan-based advanced materials for docetaxel and paclitaxel delivery: Recent advances and future directions in cancer theranostics. Int J Biol Macromol 2020;145:282-300. [PMID: 31870872 DOI: 10.1016/j.ijbiomac.2019.12.145] [Cited by in Crossref: 32] [Cited by in F6Publishing: 24] [Article Influence: 10.7] [Reference Citation Analysis]
45 Zhang A, Meng K, Liu Y, Pan Y, Qu W, Chen D, Xie S. Absorption, distribution, metabolism, and excretion of nanocarriers in vivo and their influences. Adv Colloid Interface Sci 2020;284:102261. [PMID: 32942181 DOI: 10.1016/j.cis.2020.102261] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
46 Shaban NZ, Aboelsaad AM, Awad D, Abdulmalek SA, Shaban SY. Therapeutic effect of dithiophenolato chitosan nanocomposites against carbon tetrachloride-induced hepatotoxicity in rats. Environ Sci Pollut Res Int 2021. [PMID: 34487322 DOI: 10.1007/s11356-021-15834-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Chen X, Niu S, Bremner DH, Zhang X, Zhang H, Zhang Y, Li S, Zhu LM. Co-delivery of doxorubicin and oleanolic acid by triple-sensitive nanocomposite based on chitosan for effective promoting tumor apoptosis. Carbohydr Polym 2020;247:116672. [PMID: 32829800 DOI: 10.1016/j.carbpol.2020.116672] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
48 Kanwar R, Rathee J, Salunke DB, Mehta SK. Green Nanotechnology-Driven Drug Delivery Assemblies. ACS Omega 2019;4:8804-15. [PMID: 31459969 DOI: 10.1021/acsomega.9b00304] [Cited by in Crossref: 29] [Cited by in F6Publishing: 17] [Article Influence: 9.7] [Reference Citation Analysis]
49 Rosière R, Amighi K, Wauthoz N. Nanomedicine-Based Inhalation Treatments for Lung Cancer. Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer. Elsevier; 2019. pp. 249-68. [DOI: 10.1016/b978-0-12-815720-6.00010-1] [Cited by in Crossref: 7] [Article Influence: 2.3] [Reference Citation Analysis]
50 Rawal S, Patel M. Bio-Nanocarriers for Lung Cancer Management: Befriending the Barriers. Nanomicro Lett 2021;13:142. [PMID: 34138386 DOI: 10.1007/s40820-021-00630-6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
51 Bhargava A, Mishra DK, Tiwari R, Lohiya NK, Goryacheva IY, Mishra PK. Immune cell engineering: opportunities in lung cancer therapeutics. Drug Deliv Transl Res 2020;10:1203-27. [PMID: 32172351 DOI: 10.1007/s13346-020-00719-2] [Reference Citation Analysis]
52 Zhang J, Luo X, Wu YP, Wu F, Li YF, He RR, Liu M. Rod in Tube: A Novel Nanoplatform for Highly Effective Chemo-Photothermal Combination Therapy toward Breast Cancer. ACS Appl Mater Interfaces 2019;11:3690-703. [PMID: 30618237 DOI: 10.1021/acsami.8b17533] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 9.3] [Reference Citation Analysis]
53 Cerqueira M, Belmonte-reche E, Gallo J, Baltazar F, Bañobre-lópez M. Magnetic Solid Nanoparticles and Their Counterparts: Recent Advances towards Cancer Theranostics. Pharmaceutics 2022;14:506. [DOI: 10.3390/pharmaceutics14030506] [Reference Citation Analysis]
54 Wang W, Meng Q, Li Q, Liu J, Zhou M, Jin Z, Zhao K. Chitosan Derivatives and Their Application in Biomedicine. Int J Mol Sci 2020;21:E487. [PMID: 31940963 DOI: 10.3390/ijms21020487] [Cited by in Crossref: 70] [Cited by in F6Publishing: 54] [Article Influence: 35.0] [Reference Citation Analysis]
55 Yu XY, Jin X, Shou ZX. Surface-engineered smart nanocarrier-based inhalation formulations for targeted lung cancer chemotherapy: a review of current practices. Drug Deliv 2021;28:1995-2010. [PMID: 34569401 DOI: 10.1080/10717544.2021.1981492] [Reference Citation Analysis]
56 Rasul RM, Tamilarasi Muniandy M, Zakaria Z, Shah K, Chee CF, Dabbagh A, Rahman NA, Wong TW. A review on chitosan and its development as pulmonary particulate anti-infective and anti-cancer drug carriers. Carbohydr Polym 2020;250:116800. [PMID: 33049807 DOI: 10.1016/j.carbpol.2020.116800] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]