BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yang X, Lu X, Wang J, Zhang Z, Du X, Zhang J, Wang J. Near-Infrared Fluorescent Probe with a Large Stokes Shift for Detection of Hydrogen Sulfide in Food Spoilage, Living Cells, and Zebrafish. J Agric Food Chem 2022. [PMID: 35194991 DOI: 10.1021/acs.jafc.2c00087] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Dong Z, Liang W, Ren H, Zhang Y, Wang H, Wang Y. Selective visualization of cyanide in food, living cells and zebrafish by a mitochondria targeted NIR-emitting fluorescent probe. Spectrochim Acta A Mol Biomol Spectrosc 2022;279:121485. [PMID: 35696972 DOI: 10.1016/j.saa.2022.121485] [Reference Citation Analysis]
2 Su H, Ji X, Zhang J, Wang N, Wang H, Liu J, Jiao J, Zhao W. Red-emitting Fluorescent Probe for Visualizing Endogenous Peroxynitrite in Live Cells and Inflamed Mouse Model. Journal of Molecular Structure 2022;1265:133443. [DOI: 10.1016/j.molstruc.2022.133443] [Reference Citation Analysis]
3 Li Z, Zhou Z, Chen D, Wang K, Ye N, Sun X, Lv Y. Mitochondrial-targeted red-fluorescent chemodosimeter for hydrogen sulfide signaling and visualizing. Sensors and Actuators B: Chemical 2022;369:132357. [DOI: 10.1016/j.snb.2022.132357] [Reference Citation Analysis]
4 Al Shboul AM, Ketabi M, Mechael SS, Nyayachavadi A, Rondeau‐gagné S, Izquierdo R. Hydrogen Sulfide Gas Detection in ppb Levels at Room Temperature with a Printed, Flexible, Disposable In 2 O 3 NPs‐Based Sensor for IoT Food Packaging Applications. Adv Materials Technologies. [DOI: 10.1002/admt.202201086] [Reference Citation Analysis]
5 Tan X, Hong T, Jiang Y, Zhao Z, Shi Z. Synthesis and application of a novel fluorescent probe for detection of hydrogen sulfide in real samples. International Journal of Environmental Analytical Chemistry. [DOI: 10.1080/03067319.2022.2118582] [Reference Citation Analysis]
6 Du Y, Li F, Sun S, Zhao B. A Simple but Effective Fluorescent Probe for the Detection of 4-Methylthiophenol. J Fluoresc 2022. [PMID: 35953561 DOI: 10.1007/s10895-022-03015-z] [Reference Citation Analysis]
7 Cui Y, Hu G, Wu T, Yang J, Nie Y, Zhou Y. Construction of an in vivo NIR fluorescent probe for revealing the correlation between inflammation and mitochondrial hydrogen sulfide and viscosity. Bioorganic Chemistry 2022. [DOI: 10.1016/j.bioorg.2022.106107] [Reference Citation Analysis]
8 Chen M, Chen X, Wang Y, Fan X, Chen T, Liang Z. An ESIPT fluorescent probe for ultrarapid HClO detection during reagent-stimulated oxidative stress in cells and Zebrafish. Sensors and Actuators B: Chemical 2022. [DOI: 10.1016/j.snb.2022.132545] [Reference Citation Analysis]
9 Su H, Wang N, Zhang J, Lu X, Qin S, Wang J, Zhao W, Wang J. An activatable fluorescent probe for monitoring the up-regulation of peroxynitrite in drug-induced hepatotoxicity model. Dyes and Pigments 2022;203:110341. [DOI: 10.1016/j.dyepig.2022.110341] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Qin S, Lu H, Zhang J, Ji X, Wang N, Liu J, Zhao W, Wang J. An activatable reporter for fluorescence imaging drug-induced liver injury in diverse cell lines and in vivo. Dyes and Pigments 2022;203:110345. [DOI: 10.1016/j.dyepig.2022.110345] [Reference Citation Analysis]
11 Hu Y, Chen Z, Ma L, Zhang Z, Zhang H, Yi F, Liu C. A quinolinium-phenol vinylic conjugated fluorescent probe for H2S detection based on H2S-triggered release of protected group. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132837] [Reference Citation Analysis]