BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Weng N, Jiang H, Wang W. In Situ Subcellular Imaging of Copper and Zinc in Contaminated Oysters Revealed by Nanoscale Secondary Ion Mass Spectrometry. Environ Sci Technol 2017;51:14426-35. [DOI: 10.1021/acs.est.7b05090] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Weng N, Guagliardo P, Jiang H, Wang WX. NanoSIMS Imaging of Bioaccumulation and Subcellular Distribution of Manganese During Oyster Gametogenesis. Environ Sci Technol 2021;55:8223-35. [PMID: 34032398 DOI: 10.1021/acs.est.1c02393] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Ma L, Li Y, Wang W, Weng N, Evans RD, Wang W. Zn Isotope Fractionation in the Oyster Crassostrea hongkongensis and Implications for Contaminant Source Tracking. Environ Sci Technol 2019;53:6402-9. [DOI: 10.1021/acs.est.8b06855] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 5.5] [Reference Citation Analysis]
3 Witt B, Schaumlöffel D, Schwerdtle T. Subcellular Localization of Copper-Cellular Bioimaging with Focus on Neurological Disorders. Int J Mol Sci 2020;21:E2341. [PMID: 32231018 DOI: 10.3390/ijms21072341] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 13.0] [Reference Citation Analysis]
4 Xue Q, Beguel JP, La Peyre J. Dominin and Segon Form Multiprotein Particles in the Plasma of Eastern Oysters (Crassostrea virginica) and Are Likely Involved in Shell Formation. Front Physiol 2019;10:566. [PMID: 31156455 DOI: 10.3389/fphys.2019.00566] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
5 Lu G, Pan K, Zhu A, Dong Y, Wang W. Spatial-temporal variations and trends predication of trace metals in oysters from the Pearl River Estuary of China during 2011–2018. Environmental Pollution 2020;264:114812. [DOI: 10.1016/j.envpol.2020.114812] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 11.0] [Reference Citation Analysis]
6 Wang W, Meng J, Weng N. Trace metals in oysters: molecular and cellular mechanisms and ecotoxicological impacts. Environ Sci : Processes Impacts 2018;20:892-912. [DOI: 10.1039/c8em00069g] [Cited by in Crossref: 21] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
7 Dowlatshahi Pour M, Ren L, Jennische E, Lange S, Ewing AG, Malmberg P. Mass spectrometry imaging as a novel approach to measure hippocampal zinc. J Anal At Spectrom 2019;34:1581-7. [DOI: 10.1039/c9ja00199a] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
8 Chan CY, Wang W. Biomarker responses in oysters Crassostrea hongkongensis in relation to metal contamination patterns in the Pearl River Estuary, southern China. Environmental Pollution 2019;251:264-76. [DOI: 10.1016/j.envpol.2019.04.140] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
9 Gyngard F, Steinhauser ML. Biological explorations with nanoscale secondary ion mass spectrometry. J Anal At Spectrom 2019;34:1534-45. [PMID: 34054180 DOI: 10.1039/c9ja00171a] [Cited by in Crossref: 17] [Cited by in F6Publishing: 3] [Article Influence: 8.5] [Reference Citation Analysis]
10 Zhang L, Jiang H, Wang W. Subcellular Imaging of Localization and Transformation of Silver Nanoparticles in the Oyster Larvae. Environ Sci Technol 2020;54:11434-42. [DOI: 10.1021/acs.est.0c03342] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
11 Pett-Ridge J, Weber PK. NanoSIP: NanoSIMS Applications for Microbial Biology. Methods Mol Biol 2022;2349:91-136. [PMID: 34718993 DOI: 10.1007/978-1-0716-1585-0_6] [Reference Citation Analysis]
12 Chen H, Yan L, Zhao J, Yang B, Huang G, Shi W, Hou L, Zha J, Luo Y, Mu J, Dong W, Ying GG, Xie L. The role of the freshwater oligochaete Limnodrilus hoffmeisteri in the distribution of Se in a water/sediment microcosm. Sci Total Environ 2019;687:1098-106. [PMID: 31412447 DOI: 10.1016/j.scitotenv.2019.06.170] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
13 Decelle J, Veronesi G, Gallet B, Stryhanyuk H, Benettoni P, Schmidt M, Tucoulou R, Passarelli M, Bohic S, Clode P, Musat N. Subcellular Chemical Imaging: New Avenues in Cell Biology. Trends in Cell Biology 2020;30:173-88. [DOI: 10.1016/j.tcb.2019.12.007] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 29.0] [Reference Citation Analysis]
14 Weng N, Jiang H, Wang W. Novel Insights into the Role of Copper in Critical Life Stages of Oysters Revealed by High-Resolution NanoSIMS Imaging. Environ Sci Technol 2019;53:14724-33. [DOI: 10.1021/acs.est.9b05877] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
15 Marsh JM, Huang S, Whitaker S, Guagliardo P, Lucas RL, Arca HC, Jiang H. High-resolution visualization of cosmetic active compounds in hair using nanoscale secondary ion mass spectrometry. Colloids and Surfaces B: Biointerfaces 2019;174:563-8. [DOI: 10.1016/j.colsurfb.2018.11.036] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Leo BF, Fearn S, Gonzalez-Cater D, Theodorou I, Ruenraroengsak P, Goode AE, McPhail D, Dexter DT, Shaffer M, Chung KF, Porter AE, Ryan MP. Label-Free Time-of-Flight Secondary Ion Mass Spectrometry Imaging of Sulfur-Producing Enzymes inside Microglia Cells following Exposure to Silver Nanowires. Anal Chem 2019;91:11098-107. [PMID: 31310103 DOI: 10.1021/acs.analchem.9b01704] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
17 Deniaud A. Imaging inorganic nanomaterial fate down to the organelle level. Metallomics 2021;13:mfab006. [PMID: 33576806 DOI: 10.1093/mtomcs/mfab006] [Reference Citation Analysis]
18 Shao Z, Guagliardo P, Jiang H, Wang WX. Intra- and Intercellular Silver Nanoparticle Translocation and Transformation in Oyster Gill Filaments: Coupling Nanoscale Secondary Ion Mass Spectrometry and Dual Stable Isotope Tracing Study. Environ Sci Technol 2021;55:433-46. [PMID: 33325689 DOI: 10.1021/acs.est.0c04621] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
19 Taylor A, Barlow N, Day MP, Hill S, Martin N, Patriarca M. Atomic Spectrometry Update: review of advances in the analysis of clinical and biological materials, foods and beverages. J Anal At Spectrom 2019;34:426-59. [DOI: 10.1039/c9ja90004g] [Cited by in Crossref: 15] [Article Influence: 7.5] [Reference Citation Analysis]
20 Li Y, Wang W. Protein molecular responses of field-collected oysters Crassostrea hongkongensis with greatly varying Cu and Zn body burdens. Aquatic Toxicology 2021;232:105749. [DOI: 10.1016/j.aquatox.2021.105749] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Chan CY, Wang W. A lipidomic approach to understand copper resilience in oyster Crassostrea hongkongensis. Aquatic Toxicology 2018;204:160-70. [DOI: 10.1016/j.aquatox.2018.09.011] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 6.3] [Reference Citation Analysis]