BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Welcome MO. Neuroinflammation in CNS diseases: Molecular mechanisms and the therapeutic potential of plant derived bioactive molecules. PharmaNutrition 2020;11:100176. [DOI: 10.1016/j.phanu.2020.100176] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Akter A, Islam F, Bepary S, Al-amin M, Begh MZA, Islam MAFU, Ashraf GM, Baeesa SS, Ullah MF. CNS depressant activities of Averrhoa carambola leaves extract in thiopental-sodium model of Swiss albino mice: implication for neuro-modulatory properties. Biologia. [DOI: 10.1007/s11756-022-01057-z] [Cited by in Crossref: 22] [Cited by in F6Publishing: 8] [Article Influence: 22.0] [Reference Citation Analysis]
2 Marino M, Gardana C, Scialpi A, Giorgini G, Simonetti P, Del Bo’ C. An in vitro approach to study the absorption of a new oral formulation of berberine. PharmaNutrition 2021;18:100279. [DOI: 10.1016/j.phanu.2021.100279] [Reference Citation Analysis]
3 Ghosh P, Singh R, Ganeshpurkar A, Pokle AV, Singh RB, Singh SK, Kumar A. Cellular and molecular influencers of neuroinflammation in Alzheimer's disease: Recent concepts & roles. Neurochem Int 2021;151:105212. [PMID: 34656693 DOI: 10.1016/j.neuint.2021.105212] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
4 Huang R, Zhu Z, Wu Q, Bekhit AEA, Wu S, Chen M, Wang J, Ding Y. Whole-plant foods and their macromolecules: untapped approaches to modulate neuroinflammation in Alzheimer's disease. Crit Rev Food Sci Nutr 2021;:1-19. [PMID: 34553662 DOI: 10.1080/10408398.2021.1975093] [Reference Citation Analysis]
5 Williams ME, Fielding BC. Insult to Injury-Potential Contribution of Coronavirus Disease-19 to Neuroinflammation and the Development of HIV-Associated Neurocognitive Disorders. AIDS Res Hum Retroviruses 2021;37:601-9. [PMID: 32993321 DOI: 10.1089/AID.2020.0136] [Reference Citation Analysis]
6 Govindula A, Pai A, Baghel S, Mudgal J. Molecular mechanisms of cordycepin emphasizing its potential against neuroinflammation: An update. Eur J Pharmacol 2021;908:174364. [PMID: 34297967 DOI: 10.1016/j.ejphar.2021.174364] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
7 Manochkumar J, Doss CGP, El-Seedi HR, Efferth T, Ramamoorthy S. The neuroprotective potential of carotenoids in vitro and in vivo. Phytomedicine 2021;91:153676. [PMID: 34339943 DOI: 10.1016/j.phymed.2021.153676] [Cited by in F6Publishing: 12] [Reference Citation Analysis]
8 Welcome MO, Mastorakis NE. The taste of neuroinflammation: Molecular mechanisms linking taste sensing to neuroinflammatory responses. Pharmacol Res 2021;167:105557. [PMID: 33737243 DOI: 10.1016/j.phrs.2021.105557] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Del Fabbro L, de Gomes MG, Goes AR, Jesse CR. Modulatory response of chrysin supplementation in a experimental autoimmune encephalomyelitis model: Evaluation of microRNAs influence. PharmaNutrition 2021;15:100242. [DOI: 10.1016/j.phanu.2020.100242] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Welcome MO. Cellular mechanisms and molecular signaling pathways in stress-induced anxiety, depression, and blood-brain barrier inflammation and leakage. Inflammopharmacology 2020;28:643-65. [PMID: 32333258 DOI: 10.1007/s10787-020-00712-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]