BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fasolino M, Goldman N, Wang W, Cattau B, Zhou Y, Petrovic J, Link VM, Cote A, Chandra A, Silverman M, Joyce EF, Little SC, Kaestner KH, Naji A, Raj A, Henao-Mejia J, Faryabi RB, Vahedi G; HPAP Consortium. Genetic Variation in Type 1 Diabetes Reconfigures the 3D Chromatin Organization of T Cells and Alters Gene Expression. Immunity 2020;52:257-274.e11. [PMID: 32049053 DOI: 10.1016/j.immuni.2020.01.003] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Shi C, Rattray M, Barton A, Bowes J, Orozco G. Using functional genomics to advance the understanding of psoriatic arthritis. Rheumatology (Oxford) 2020;59:3137-46. [PMID: 32778885 DOI: 10.1093/rheumatology/keaa283] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
2 Vahedi G. Remodeling the chromatin landscape in T lymphocytes by a division of labor among transcription factors. Immunol Rev 2021;300:167-80. [PMID: 33452686 DOI: 10.1111/imr.12942] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Raugh A, Allard D, Bettini M. Nature vs. nurture: FOXP3, genetics, and tissue environment shape Treg function. Front Immunol 2022;13:911151. [DOI: 10.3389/fimmu.2022.911151] [Reference Citation Analysis]
4 Gilbertson SE, Weinmann AS. Conservation and divergence in gene regulation between mouse and human immune cells deserves equal emphasis. Trends Immunol 2021;42:1077-87. [PMID: 34740529 DOI: 10.1016/j.it.2021.10.007] [Reference Citation Analysis]
5 Zajec A, Trebušak Podkrajšek K, Tesovnik T, Šket R, Čugalj Kern B, Jenko Bizjan B, Šmigoc Schweiger D, Battelino T, Kovač J. Pathogenesis of Type 1 Diabetes: Established Facts and New Insights. Genes 2022;13:706. [DOI: 10.3390/genes13040706] [Reference Citation Analysis]
6 Papadogkonas G, Papamatheakis D, Spilianakis C. 3D Genome Organization as an Epigenetic Determinant of Transcription Regulation in T Cells. Front Immunol 2022;13:921375. [DOI: 10.3389/fimmu.2022.921375] [Reference Citation Analysis]
7 Chandrasekaran V, Oparina N, Garcia-Bonete MJ, Wasén C, Erlandsson MC, Malmhäll-Bah E, Andersson KME, Jensen M, Silfverswärd ST, Katona G, Bokarewa MI. Cohesin-Mediated Chromatin Interactions and Autoimmunity. Front Immunol 2022;13:840002. [PMID: 35222432 DOI: 10.3389/fimmu.2022.840002] [Reference Citation Analysis]
8 Clark M, Kroger CJ, Ke Q, Tisch RM. The Role of T Cell Receptor Signaling in the Development of Type 1 Diabetes. Front Immunol 2020;11:615371. [PMID: 33603744 DOI: 10.3389/fimmu.2020.615371] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 van der Veeken J, Glasner A, Zhong Y, Hu W, Wang ZM, Bou-Puerto R, Charbonnier LM, Chatila TA, Leslie CS, Rudensky AY. The Transcription Factor Foxp3 Shapes Regulatory T Cell Identity by Tuning the Activity of trans-Acting Intermediaries. Immunity 2020;53:971-984.e5. [PMID: 33176163 DOI: 10.1016/j.immuni.2020.10.010] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
10 Yoon S, Chandra A, Vahedi G. Stripenn detects architectural stripes from chromatin conformation data using computer vision. Nat Commun 2022;13:1602. [PMID: 35332165 DOI: 10.1038/s41467-022-29258-9] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Shi C, Ray-Jones H, Ding J, Duffus K, Fu Y, Gaddi VP, Gough O, Hankinson J, Martin P, McGovern A, Yarwood A, Gaffney P, Eyre S, Rattray M, Warren RB, Orozco G. Chromatin Looping Links Target Genes with Genetic Risk Loci for Dermatological Traits. J Invest Dermatol 2021;141:1975-84. [PMID: 33607115 DOI: 10.1016/j.jid.2021.01.015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
12 Herder C, Roden M. A novel diabetes typology: towards precision diabetology from pathogenesis to treatment. Diabetologia 2022. [PMID: 34981134 DOI: 10.1007/s00125-021-05625-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
13 Liu S, Zhao K. The Toolbox for Untangling Chromosome Architecture in Immune Cells. Front Immunol 2021;12:670884. [PMID: 33995409 DOI: 10.3389/fimmu.2021.670884] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Diedisheim M, Carcarino E, Vandiedonck C, Roussel R, Gautier JF, Venteclef N. Regulation of inflammation in diabetes: From genetics to epigenomics evidence. Mol Metab 2020;41:101041. [PMID: 32603690 DOI: 10.1016/j.molmet.2020.101041] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
15 Szukiewicz D. Epigenetic regulation and T-cell responses in endometriosis – something other than autoimmunity. Front Immunol 2022;13:943839. [DOI: 10.3389/fimmu.2022.943839] [Reference Citation Analysis]
16 Walter HC, Weinmann AS. Are You There? Genetic Variation Impacts Long-Distance Connections in Diabetes. Trends Immunol 2020;41:269-71. [PMID: 32169284 DOI: 10.1016/j.it.2020.02.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Solé P, Santamaria P. Re-Programming Autoreactive T Cells Into T-Regulatory Type 1 Cells for the Treatment of Autoimmunity. Front Immunol 2021;12:684240. [PMID: 34335585 DOI: 10.3389/fimmu.2021.684240] [Reference Citation Analysis]
18 Bansal K, Michelson DA, Ramirez RN, Viny AD, Levine RL, Benoist C, Mathis D. Aire regulates chromatin looping by evicting CTCF from domain boundaries and favoring accumulation of cohesin on superenhancers. Proc Natl Acad Sci U S A 2021;118:e2110991118. [PMID: 34518235 DOI: 10.1073/pnas.2110991118] [Reference Citation Analysis]
19 Feng Y, Pauklin S. Revisiting 3D chromatin architecture in cancer development and progression. Nucleic Acids Res 2020;48:10632-47. [PMID: 32941624 DOI: 10.1093/nar/gkaa747] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
20 Bertozzi TM, Elmer JL, Macfarlan TS, Ferguson-Smith AC. KRAB zinc finger protein diversification drives mammalian interindividual methylation variability. Proc Natl Acad Sci U S A 2020;117:31290-300. [PMID: 33239447 DOI: 10.1073/pnas.2017053117] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
21 Feng Y, Wang P, Cai L, Zhan M, He F, Wang J, Li Y, Gega E, Zhang W, Zhao W, Xin Y, Chen X, Ruan Y, Lu L. 3D‐Epigenomic Regulation of Gene Transcription in Hepatocellular Carcinoma. Advanced Genetics. [DOI: 10.1002/ggn2.202100010] [Reference Citation Analysis]
22 Ramos-Rodríguez M, Pérez-González B, Pasquali L. The β-Cell Genomic Landscape in T1D: Implications for Disease Pathogenesis. Curr Diab Rep 2021;21:1. [PMID: 33387073 DOI: 10.1007/s11892-020-01370-4] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Orozco G. Fine mapping with epigenetic information and 3D structure. Semin Immunopathol 2022. [PMID: 35022890 DOI: 10.1007/s00281-021-00906-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Zhou Y, Petrovic J, Zhao J, Zhang W, Bigdeli A, Zhang Z, Berger SL, Pear WS, Faryabi RB. EBF1 nuclear repositioning instructs chromatin refolding to promote therapy resistance in T leukemic cells. Mol Cell 2022:S1097-2765(22)00058-2. [PMID: 35182476 DOI: 10.1016/j.molcel.2022.01.015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Wang W, Chandra A, Goldman N, Yoon S, Ferrari EK, Nguyen SC, Joyce EF, Vahedi G. TCF-1 promotes chromatin interactions across topologically associating domains in T cell progenitors. Nat Immunol 2022. [PMID: 35726060 DOI: 10.1038/s41590-022-01232-z] [Reference Citation Analysis]
26 González-Serna D, Villanueva-Martin G, Acosta-Herrera M, Márquez A, Martín J. Approaching Shared Pathophysiology in Immune-Mediated Diseases through Functional Genomics. Genes (Basel) 2020;11:E1482. [PMID: 33317201 DOI: 10.3390/genes11121482] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Gilbertson SE, Walter HC, Gardner K, Wren SN, Vahedi G, Weinmann AS. Topologically associating domains are disrupted by evolutionary genome rearrangements forming species-specific enhancer connections in mice and humans. Cell Rep 2022;39:110769. [PMID: 35508135 DOI: 10.1016/j.celrep.2022.110769] [Reference Citation Analysis]
28 Xu L, Yin L, Qi Y, Tan X, Gao M, Peng J. 3D disorganization and rearrangement of genome provide insights into pathogenesis of NAFLD by integrated Hi-C, Nanopore, and RNA sequencing. Acta Pharm Sin B 2021;11:3150-64. [PMID: 34729306 DOI: 10.1016/j.apsb.2021.03.022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Ding J, Frantzeskos A, Orozco G. Functional genomics in autoimmune diseases. Hum Mol Genet 2020;29:R59-65. [PMID: 32420598 DOI: 10.1093/hmg/ddaa097] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]