BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic Biol Med 2020;152:116-41. [PMID: 32156524 DOI: 10.1016/j.freeradbiomed.2020.02.025] [Cited by in Crossref: 90] [Cited by in F6Publishing: 82] [Article Influence: 45.0] [Reference Citation Analysis]
Number Citing Articles
1 Song L, Liu J, Shi T, Zhang Y, Xin Z, Cao X, Yang J. Angiotensin‐(1‐7), the product of ACE2 ameliorates NAFLD by acting through its receptor Mas to regulate hepatic mitochondrial function and glycolipid metabolism. FASEB j 2020;34:16291-306. [DOI: 10.1096/fj.202001639r] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
2 Chen Z, Liu J, Zhou F, Li H, Zhang XJ, She ZG, Lu Z, Cai J, Li H. Nonalcoholic Fatty Liver Disease: An Emerging Driver of Cardiac Arrhythmia. Circ Res 2021;128:1747-65. [PMID: 34043417 DOI: 10.1161/CIRCRESAHA.121.319059] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Klisic A, Kavaric N, Ninic A, Kotur-Stevuljevic J. Oxidative stress and cardiometabolic biomarkers in patients with non-alcoholic fatty liver disease. Sci Rep 2021;11:18455. [PMID: 34531465 DOI: 10.1038/s41598-021-97686-6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Radice RP, Limongi AR, Viviano E, Padula MC, Martelli G, Bermano G. Effects of astaxanthin in animal models of obesity-associated diseases: A systematic review and meta-analysis. Free Radic Biol Med 2021;171:156-68. [PMID: 33974978 DOI: 10.1016/j.freeradbiomed.2021.05.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Ghosh D, Karmakar P. Insight into anti-oxidative carbohydrate polymers from medicinal plants: Structure-activity relationships, mechanism of actions and interactions with bovine serum albumin. Int J Biol Macromol 2021;166:1022-34. [PMID: 33166557 DOI: 10.1016/j.ijbiomac.2020.10.258] [Reference Citation Analysis]
6 Choi J, Lee S, Choi E, Ahn H, Kwon S, Park S, Lee H, Chung J, Han M, Lee S, Han K, Oh S, Lip GYH. Non-alcoholic Fatty Liver Disease and the Risk of Incident Atrial Fibrillation in Young Adults: A Nationwide Population-Based Cohort Study. Front Cardiovasc Med 2022;9:832023. [DOI: 10.3389/fcvm.2022.832023] [Reference Citation Analysis]
7 Direito R, Rocha J, Sepodes B, Eduardo-Figueira M. Phenolic Compounds Impact on Rheumatoid Arthritis, Inflammatory Bowel Disease and Microbiota Modulation. Pharmaceutics 2021;13:145. [PMID: 33499333 DOI: 10.3390/pharmaceutics13020145] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
8 Shekarchizadeh-Esfahani P, Heydarpour F, Izadi F, Jalili C. The effect of cinnamon supplementation on liver enzymes in adults: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Med 2021;58:102699. [PMID: 33639251 DOI: 10.1016/j.ctim.2021.102699] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Zhang H, Gao X, Chen P, Wang H. Protective Effects of Tiaoganquzhi Decoction in Treating inflammatory Injury of Nonalcoholic Fatty liver Disease by Promoting CGI-58 and Inhibiting Expression of NLRP3 Inflammasome. Front Pharmacol 2022;13:851267. [DOI: 10.3389/fphar.2022.851267] [Reference Citation Analysis]
10 Zhang H, Zhang E, Hu H. Role of Ferroptosis in Non-Alcoholic Fatty Liver Disease and Its Implications for Therapeutic Strategies. Biomedicines 2021;9:1660. [PMID: 34829889 DOI: 10.3390/biomedicines9111660] [Reference Citation Analysis]
11 Rada P, González-Rodríguez Á, García-Monzón C, Valverde ÁM. Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell Death Dis 2020;11:802. [PMID: 32978374 DOI: 10.1038/s41419-020-03003-w] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 13.0] [Reference Citation Analysis]
12 Hurtado-Carneiro V, Dongil P, Pérez-García A, Álvarez E, Sanz C. Preventing Oxidative Stress in the Liver: An Opportunity for GLP-1 and/or PASK. Antioxidants (Basel) 2021;10:2028. [PMID: 34943132 DOI: 10.3390/antiox10122028] [Reference Citation Analysis]
13 Galicia-Moreno M, Lucano-Landeros S, Monroy-Ramirez HC, Silva-Gomez J, Gutierrez-Cuevas J, Santos A, Armendariz-Borunda J. Roles of Nrf2 in Liver Diseases: Molecular, Pharmacological, and Epigenetic Aspects. Antioxidants (Basel) 2020;9:E980. [PMID: 33066023 DOI: 10.3390/antiox9100980] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
14 Datfar T, Doulberis M, Papaefthymiou A, Hines IN, Manzini G. Viral Hepatitis and Hepatocellular Carcinoma: State of the Art. Pathogens 2021;10:1366. [PMID: 34832522 DOI: 10.3390/pathogens10111366] [Reference Citation Analysis]
15 Legaki AI, Moustakas II, Sikorska M, Papadopoulos G, Velliou RI, Chatzigeorgiou A. Hepatocyte Mitochondrial Dynamics and Bioenergetics in Obesity-Related Non-Alcoholic Fatty Liver Disease. Curr Obes Rep 2022. [PMID: 35501558 DOI: 10.1007/s13679-022-00473-1] [Reference Citation Analysis]
16 Kowalczuk A, Bourebaba N, Kornicka-Garbowska K, Turlej E, Marycz K, Bourebaba L. Hyoscyamus albus nortropane alkaloids reduce hyperglycemia and hyperinsulinemia induced in HepG2 cells through the regulation of SIRT1/NF-kB/JNK pathway. Cell Commun Signal 2021;19:61. [PMID: 34034759 DOI: 10.1186/s12964-021-00735-w] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Tian D, Zhong X, Fu L, Zhu W, Liu X, Wu Z, Li Y, Li X, Li X, Tao X, Wei Q, Yang X, Huang Y. Therapeutic Effect and Mechanism of Polysaccharides from Anoectochilus Roxburghii (Wall.) Lindl. in Diet-Induced Obesity. Phytomedicine 2022. [DOI: 10.1016/j.phymed.2022.154031] [Reference Citation Analysis]
18 Cho JH, Lee JS, Kim HG, Lee HW, Fang Z, Kwon HH, Kim DW, Lee CM, Jeong JW. Ethyl Acetate Fraction of Amomum villosum var. xanthioides Attenuates Hepatic Endoplasmic Reticulum Stress-Induced Non-Alcoholic Steatohepatitis via Improvement of Antioxidant Capacities. Antioxidants (Basel) 2021;10:998. [PMID: 34201527 DOI: 10.3390/antiox10070998] [Reference Citation Analysis]
19 Zakaria Z, Othman ZA, Suleiman JB, Che Jalil NA, Ghazali WSW, Nna VU, Mohamed M. Hepatoprotective Effect of Bee Bread in Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) Rats: Impact on Oxidative Stress and Inflammation. Antioxidants (Basel) 2021;10:2031. [PMID: 34943134 DOI: 10.3390/antiox10122031] [Reference Citation Analysis]
20 Orabi D, Berger NA, Brown JM. Abnormal Metabolism in the Progression of Nonalcoholic Fatty Liver Disease to Hepatocellular Carcinoma: Mechanistic Insights to Chemoprevention. Cancers (Basel) 2021;13:3473. [PMID: 34298687 DOI: 10.3390/cancers13143473] [Reference Citation Analysis]
21 Cristofano M D, A F, Giacomo M D, C F, F B, D L, Rotondi Aufiero V, F M, E C, G M, V Z, M R, P B. Mechanisms underlying the hormetic effect of conjugated linoleic acid: Focus on Nrf2, mitochondria and NADPH oxidases. Free Radic Biol Med 2021;167:276-86. [PMID: 33753237 DOI: 10.1016/j.freeradbiomed.2021.03.015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Melis M, Tang X, Trasino SE, Gudas LJ. Retinoids in the Pathogenesis and Treatment of Liver Diseases. Nutrients 2022;14:1456. [DOI: 10.3390/nu14071456] [Reference Citation Analysis]
23 Simões ICM, Amorim R, Teixeira J, Karkucinska-Wieckowska A, Carvalho A, Pereira SP, Simões RF, Szymanska S, Dąbrowski M, Janikiewicz J, Dobrzyń A, Oliveira PJ, Potes Y, Wieckowski MR. The Alterations of Mitochondrial Function during NAFLD Progression-An Independent Effect of Mitochondrial ROS Production. Int J Mol Sci 2021;22:6848. [PMID: 34202179 DOI: 10.3390/ijms22136848] [Reference Citation Analysis]
24 Xu Y, Ke H, Li Y, Xie L, Su H, Xie J, Mo J, Chen W. Malvidin-3-O-Glucoside from Blueberry Ameliorates Nonalcoholic Fatty Liver Disease by Regulating Transcription Factor EB-Mediated Lysosomal Function and Activating the Nrf2/ARE Signaling Pathway. J Agric Food Chem 2021;69:4663-73. [PMID: 33787249 DOI: 10.1021/acs.jafc.0c06695] [Reference Citation Analysis]
25 Huang YL, Shen ZQ, Huang CH, Teng YC, Lin CH, Tsai TF. Cisd2 Protects the Liver from Oxidative Stress and Ameliorates Western Diet-Induced Nonalcoholic Fatty Liver Disease. Antioxidants (Basel) 2021;10:559. [PMID: 33916843 DOI: 10.3390/antiox10040559] [Reference Citation Analysis]
26 Grossini E, Garhwal DP, Calamita G, Romito R, Rigamonti C, Minisini R, Smirne C, Surico D, Bellan M, Pirisi M. Exposure to Plasma From Non-alcoholic Fatty Liver Disease Patients Affects Hepatocyte Viability, Generates Mitochondrial Dysfunction, and Modulates Pathways Involved in Fat Accumulation and Inflammation. Front Med (Lausanne) 2021;8:693997. [PMID: 34277668 DOI: 10.3389/fmed.2021.693997] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Arroyave-Ospina JC, Wu Z, Geng Y, Moshage H. Role of Oxidative Stress in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Implications for Prevention and Therapy. Antioxidants (Basel) 2021;10:174. [PMID: 33530432 DOI: 10.3390/antiox10020174] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 15.0] [Reference Citation Analysis]
28 Xu L, Lu Y, Wang N, Feng Y. The Role and Mechanisms of Selenium Supplementation on Fatty Liver-Associated Disorder. Antioxidants 2022;11:922. [DOI: 10.3390/antiox11050922] [Reference Citation Analysis]
29 Hu J, Ying H, Yao J, Yang L, Jin W, Ma H, Li L, Zhao Y. Micronized Palmitoylethanolamide Ameliorates Methionine- and Choline-Deficient Diet-Induced Nonalcoholic Steatohepatitis via Inhibiting Inflammation and Restoring Autophagy. Front Pharmacol 2021;12:744483. [PMID: 34712137 DOI: 10.3389/fphar.2021.744483] [Reference Citation Analysis]
30 Kim H, Lee DS, An TH, Park HJ, Kim WK, Bae KH, Oh KJ. Metabolic Spectrum of Liver Failure in Type 2 Diabetes and Obesity: From NAFLD to NASH to HCC. Int J Mol Sci 2021;22:4495. [PMID: 33925827 DOI: 10.3390/ijms22094495] [Reference Citation Analysis]
31 Di Ciaula A, Passarella S, Shanmugam H, Noviello M, Bonfrate L, Wang DQ, Portincasa P. Nonalcoholic Fatty Liver Disease (NAFLD). Mitochondria as Players and Targets of Therapies? Int J Mol Sci 2021;22:5375. [PMID: 34065331 DOI: 10.3390/ijms22105375] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Ramos-Tovar E, Muriel P. Molecular Mechanisms That Link Oxidative Stress, Inflammation, and Fibrosis in the Liver. Antioxidants (Basel) 2020;9:E1279. [PMID: 33333846 DOI: 10.3390/antiox9121279] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
33 Qu W, Ma T, Cai J, Zhang X, Zhang P, She Z, Wan F, Li H. Liver Fibrosis and MAFLD: From Molecular Aspects to Novel Pharmacological Strategies. Front Med (Lausanne) 2021;8:761538. [PMID: 34746195 DOI: 10.3389/fmed.2021.761538] [Reference Citation Analysis]
34 Liu Y, Zhang Y, Muema FW, Kimutai F, Chen G, Guo M. Phenolic Compounds from Carissa spinarum Are Characterized by Their Antioxidant, Anti-Inflammatory and Hepatoprotective Activities. Antioxidants (Basel) 2021;10:652. [PMID: 33922451 DOI: 10.3390/antiox10050652] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Martelli A, Testai L, Colletti A, Cicero AFG. Coenzyme Q10: Clinical Applications in Cardiovascular Diseases. Antioxidants (Basel) 2020;9:E341. [PMID: 32331285 DOI: 10.3390/antiox9040341] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 9.5] [Reference Citation Analysis]
36 Hodges JK, Sasaki GY, Bruno RS. Anti-inflammatory activities of green tea catechins along the gut-liver axis in nonalcoholic fatty liver disease: lessons learned from preclinical and human studies. J Nutr Biochem 2020;85:108478. [PMID: 32801031 DOI: 10.1016/j.jnutbio.2020.108478] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
37 Zhang X, Xin L, Wang C, Sun S, Lyu Y. Short‐term hypobaric treatment enhances chilling tolerance in peaches. J Food Process Preserv 2021;45. [DOI: 10.1111/jfpp.15362] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Ikeda S, Sugihara T, Hoshino Y, Matsuki Y, Nagahara T, Okano JI, Kitao S, Fujioka Y, Yamamoto K, Isomoto H. Pemafibrate Dramatically Ameliorated the Values of Liver Function Tests and Fibrosis Marker in Patients with Non-Alcoholic Fatty Liver Disease. Yonago Acta Med 2020;63:188-97. [PMID: 32884438 DOI: 10.33160/yam.2020.08.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
39 Pillai SS, Lakhani HV, Zehra M, Wang J, Dilip A, Puri N, O'Hanlon K, Sodhi K. Predicting Nonalcoholic Fatty Liver Disease through a Panel of Plasma Biomarkers and MicroRNAs in Female West Virginia Population. Int J Mol Sci 2020;21:E6698. [PMID: 32933141 DOI: 10.3390/ijms21186698] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
40 Cai S, Fan J, Ye J, Rao X, Li Y. Phthalates exposure is associated with non-alcoholic fatty liver disease among US adults. Ecotoxicol Environ Saf 2021;224:112665. [PMID: 34438269 DOI: 10.1016/j.ecoenv.2021.112665] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Tu M, Fan X, Shi J, Jing S, Xu X, Wang Y. 2-Fluorofucose Attenuates Hydrogen Peroxide-Induced Oxidative Stress in HepG2 Cells via Nrf2/keap1 and NF-κB Signaling Pathways. Life 2022;12:406. [DOI: 10.3390/life12030406] [Reference Citation Analysis]
42 Heo YJ, Choi SE, Lee N, Jeon JY, Han SJ, Kim DJ, Kang Y, Lee KW, Kim HJ. Visfatin exacerbates hepatic inflammation and fibrosis in a methionine-choline-deficient diet mouse model. J Gastroenterol Hepatol 2021. [PMID: 33600604 DOI: 10.1111/jgh.15465] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
43 Della Torre S. Non-alcoholic Fatty Liver Disease as a Canonical Example of Metabolic Inflammatory-Based Liver Disease Showing a Sex-Specific Prevalence: Relevance of Estrogen Signaling. Front Endocrinol (Lausanne) 2020;11:572490. [PMID: 33071979 DOI: 10.3389/fendo.2020.572490] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
44 Ferro D, Baratta F, Pastori D, Cocomello N, Colantoni A, Angelico F, Del Ben M. New Insights into the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Gut-Derived Lipopolysaccharides and Oxidative Stress. Nutrients 2020;12:E2762. [PMID: 32927776 DOI: 10.3390/nu12092762] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
45 Gao Y, Zhang W, Zeng LQ, Bai H, Li J, Zhou J, Zhou GY, Fang CW, Wang F, Qin XJ. Exercise and dietary intervention ameliorate high-fat diet-induced NAFLD and liver aging by inducing lipophagy. Redox Biol 2020;36:101635. [PMID: 32863214 DOI: 10.1016/j.redox.2020.101635] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
46 Dwivedi S, Kushalan S, Paithankar JG, D'Souza LC, Hegde S, Sharma A. Environmental toxicants, oxidative stress and health adversities: interventions of phytochemicals. J Pharm Pharmacol 2021:rgab044. [PMID: 33822130 DOI: 10.1093/jpp/rgab044] [Reference Citation Analysis]
47 Wang R, Yao L, Lin X, Hu X, Wang L. Exploring the potential mechanism of Rhodomyrtus tomentosa (Ait.) Hassk fruit phenolic rich extract on ameliorating nonalcoholic fatty liver disease by integration of transcriptomics and metabolomics profiling. Food Res Int 2022;151:110824. [PMID: 34980375 DOI: 10.1016/j.foodres.2021.110824] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Chimienti G, Orlando A, Russo F, D'Attoma B, Aragno M, Aimaretti E, Lezza AMS, Pesce V. The Mitochondrial Trigger in an Animal Model of Nonalcoholic Fatty Liver Disease. Genes (Basel) 2021;12:1439. [PMID: 34573421 DOI: 10.3390/genes12091439] [Reference Citation Analysis]
49 Tian B, Zhao J, Xie X, Chen T, Yin Y, Zhai R, Wang X, An W, Li J. Anthocyanins from the fruits of Lycium ruthenicum Murray improve high-fat diet-induced insulin resistance by ameliorating inflammation and oxidative stress in mice. Food Funct 2021;12:3855-71. [PMID: 33704297 DOI: 10.1039/d0fo02936j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Smirne C, Croce E, Di Benedetto D, Cantaluppi V, Comi C, Sainaghi PP, Minisini R, Grossini E, Pirisi M. Oxidative Stress in Non-Alcoholic Fatty Liver Disease. Livers 2022;2:30-76. [DOI: 10.3390/livers2010003] [Reference Citation Analysis]
51 Bhowmick S, Singh V, Jash S, Lal M, Sinha Roy S. Mitochondrial metabolism and calcium homeostasis in the development of NAFLD leading to hepatocellular carcinoma. Mitochondrion 2021;58:24-37. [PMID: 33581332 DOI: 10.1016/j.mito.2021.01.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Yasmin T, Rahman MM, Khan F, Kabir F, Nahar K, Lasker S, Islam MD, Hossain MM, Hasan R, Rana S, Alam MA. Metformin treatment reverses high fat diet- induced non-alcoholic fatty liver diseases and dyslipidemia by stimulating multiple antioxidant and anti-inflammatory pathways. Biochem Biophys Rep 2021;28:101168. [PMID: 34825068 DOI: 10.1016/j.bbrep.2021.101168] [Reference Citation Analysis]
53 Huang YL, Shen ZQ, Huang CH, Lin CH, Tsai TF. Cisd2 slows down liver aging and attenuates age-related metabolic dysfunction in male mice. Aging Cell 2021;20:e13523. [PMID: 34811857 DOI: 10.1111/acel.13523] [Reference Citation Analysis]
54 Comas F, Moreno-Navarrete JM. The Impact of H2S on Obesity-Associated Metabolic Disturbances. Antioxidants (Basel) 2021;10:633. [PMID: 33919190 DOI: 10.3390/antiox10050633] [Reference Citation Analysis]
55 Ding L, Sun W, Balaz M, He A, Klug M, Wieland S, Caiazzo R, Raverdy V, Pattou F, Lefebvre P, Lodhi IJ, Staels B, Heim M, Wolfrum C. Peroxisomal β-oxidation acts as a sensor for intracellular fatty acids and regulates lipolysis. Nat Metab 2021;3:1648-61. [PMID: 34903883 DOI: 10.1038/s42255-021-00489-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
56 Wu CY, Hsieh HH, Chu PA, Hong WH, Chang TY, Hsu CF, Lin ST, Su PH, Peng SL. Comparison of 18F-FDG, 18F-Fluoroacetate, and 18F-FEPPA for Imaging Liver Fibrosis in a Bile Duct-Ligated Rat Model. Mol Imaging 2021;2021:7545284. [PMID: 34934405 DOI: 10.1155/2021/7545284] [Reference Citation Analysis]
57 Kucukler S, Darendelioğlu E, Caglayan C, Ayna A, Yıldırım S, Kandemir FM. Zingerone attenuates vancomycin-induced hepatotoxicity in rats through regulation of oxidative stress, inflammation and apoptosis. Life Sci 2020;259:118382. [PMID: 32898532 DOI: 10.1016/j.lfs.2020.118382] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
58 Xu F, Tautenhahn HM, Dirsch O, Dahmen U. Modulation of Autophagy: A Novel "Rejuvenation" Strategy for the Aging Liver. Oxid Med Cell Longev 2021;2021:6611126. [PMID: 33628363 DOI: 10.1155/2021/6611126] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Du S, Zhu X, Zhou N, Zheng W, Zhou W, Li X. Curcumin alleviates hepatic steatosis by improving mitochondrial function in postnatal overfed rats and fatty L02 cells through the SIRT3 pathway. Food Funct 2022. [PMID: 35113098 DOI: 10.1039/d1fo03752h] [Reference Citation Analysis]
60 van Meteren N, Lagadic-Gossmann D, Podechard N, Gobart D, Gallais I, Chevanne M, Collin A, Burel A, Dupont A, Rault L, Chevance S, Gauffre F, Le Ferrec E, Sergent O. Extracellular vesicles released by polycyclic aromatic hydrocarbons-treated hepatocytes trigger oxidative stress in recipient hepatocytes by delivering iron. Free Radic Biol Med 2020;160:246-62. [PMID: 32791186 DOI: 10.1016/j.freeradbiomed.2020.08.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
61 Li YF, Xie ZF, Song Q, Li JY. Mitochondria homeostasis: Biology and involvement in hepatic steatosis to NASH. Acta Pharmacol Sin 2022. [PMID: 35105958 DOI: 10.1038/s41401-022-00864-z] [Reference Citation Analysis]
62 Li X, Hong J, Wang Y, Pei M, Wang L, Gong Z. Trimethylamine-N-Oxide Pathway: A Potential Target for the Treatment of MAFLD. Front Mol Biosci 2021;8:733507. [PMID: 34660695 DOI: 10.3389/fmolb.2021.733507] [Reference Citation Analysis]
63 Santos-Sánchez G, Cruz-Chamorro I, Álvarez-Ríos AI, Fernández-Santos JM, Vázquez-Román MV, Rodríguez-Ortiz B, Álvarez-Sánchez N, Álvarez-López AI, Millán-Linares MDC, Millán F, Pedroche J, Fernández-Pachón MS, Lardone PJ, Guerrero JM, Bejarano I, Carrillo-Vico A. Lupinus angustifolius Protein Hydrolysates Reduce Abdominal Adiposity and Ameliorate Metabolic Associated Fatty Liver Disease (MAFLD) in Western Diet Fed-ApoE-/- Mice. Antioxidants (Basel) 2021;10:1222. [PMID: 34439470 DOI: 10.3390/antiox10081222] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Skat-rørdam J, Pedersen K, Skovsted GF, Gregersen I, Vangsgaard S, Ipsen DH, Latta M, Lykkesfeldt J, Tveden-nyborg P. Vitamin C Deficiency May Delay Diet-Induced NASH Regression in the Guinea Pig. Antioxidants 2022;11:69. [DOI: 10.3390/antiox11010069] [Reference Citation Analysis]
65 Paul B, Henne WM. How cells flex their PEX to fine-tune lipolysis in NAFLD. Nat Metab 2021;3:1591-3. [PMID: 34903885 DOI: 10.1038/s42255-021-00490-9] [Reference Citation Analysis]
66 Torre P, Motta BM, Sciorio R, Masarone M, Persico M. Inflammation and Fibrogenesis in MAFLD: Role of the Hepatic Immune System. Front Med (Lausanne) 2021;8:781567. [PMID: 34957156 DOI: 10.3389/fmed.2021.781567] [Reference Citation Analysis]
67 Elizalde-Velázquez GA, Rosas-Ramírez JR, Raldua D, García-Medina S, Orozco-Hernández JM, Rosales-Pérez K, Islas-Flores H, Galar-Martínez M, Guzmán-García X, Gómez-Oliván LM. Low concentrations of ciprofloxacin alone and in combination with paracetamol induce oxidative stress, upregulation of apoptotic-related genes, histological alterations in the liver, and genotoxicity in Danio rerio. Chemosphere 2022;294:133667. [PMID: 35077737 DOI: 10.1016/j.chemosphere.2022.133667] [Reference Citation Analysis]
68 Mazi TA, Borkowski K, Fiehn O, Bowlus CL, Sarkar S, Matsukuma K, Ali MR, Kieffer DA, Wan YY, Stanhope KL, Havel PJ, Newman JW, Medici V. Plasma Oxylipin Profile Discriminates Ethnicities in Subjects with Non-Alcoholic Steatohepatitis: An Exploratory Analysis. Metabolites 2022;12:192. [DOI: 10.3390/metabo12020192] [Reference Citation Analysis]
69 Ferron PJ, Gicquel T, Mégarbane B, Clément B, Fromenty B. Treatments in Covid-19 patients with pre-existing metabolic dysfunction-associated fatty liver disease: A potential threat for drug-induced liver injury? Biochimie 2020;179:266-74. [PMID: 32891697 DOI: 10.1016/j.biochi.2020.08.018] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
70 Zeng L, Zhong F, Chen Z, Li G, Zhu Q. Polygonatum sibiricum polysaccharides protect against obesity and non-alcoholic fatty liver disease in rats fed a high-fat diet. Food Science and Human Wellness 2022;11:1045-52. [DOI: 10.1016/j.fshw.2022.03.031] [Reference Citation Analysis]
71 Jadhav S, Protchenko O, Li F, Baratz E, Shakoury-Elizeh M, Maschek A, Cox J, Philpott CC. Mitochondrial dysfunction in mouse livers depleted of iron chaperone PCBP1. Free Radic Biol Med 2021;175:18-27. [PMID: 34455040 DOI: 10.1016/j.freeradbiomed.2021.08.232] [Reference Citation Analysis]
72 Dabravolski SA, Bezsonov EE, Baig MS, Popkova TV, Orekhov AN. Mitochondrial Lipid Homeostasis at the Crossroads of Liver and Heart Diseases. Int J Mol Sci 2021;22:6949. [PMID: 34203309 DOI: 10.3390/ijms22136949] [Reference Citation Analysis]
73 Grattagliano I, Di Ciaula A, Baj J, Molina-Molina E, Shanmugam H, Garruti G, Wang DQ, Portincasa P. Protocols for Mitochondria as the Target of Pharmacological Therapy in the Context of Nonalcoholic Fatty Liver Disease (NAFLD). Methods Mol Biol 2021;2310:201-46. [PMID: 34096005 DOI: 10.1007/978-1-0716-1433-4_12] [Reference Citation Analysis]
74 Sabir U, Irfan HM, Alamgeer, Ullah A, Althobaiti YS, Asim MH. Reduction of Hepatic Steatosis, Oxidative Stress, Inflammation, Ballooning and Insulin Resistance After Therapy with Safranal in NAFLD Animal Model: A New Approach. JIR 2022;Volume 15:1293-316. [DOI: 10.2147/jir.s354878] [Reference Citation Analysis]
75 Chen W, Tumanov S, Fazakerley DJ, Cantley J, James DE, Dunn LL, Shaik T, Suarna C, Stocker R. Bilirubin deficiency renders mice susceptible to hepatic steatosis in the absence of insulin resistance. Redox Biol 2021;47:102152. [PMID: 34610553 DOI: 10.1016/j.redox.2021.102152] [Reference Citation Analysis]
76 Palombo V, Alharthi A, Batistel F, Parys C, Guyader J, Trevisi E, D'Andrea M, Loor JJ. Unique adaptations in neonatal hepatic transcriptome, nutrient signaling, and one-carbon metabolism in response to feeding ethyl cellulose rumen-protected methionine during late-gestation in Holstein cows. BMC Genomics 2021;22:280. [PMID: 33865335 DOI: 10.1186/s12864-021-07538-w] [Reference Citation Analysis]
77 Mukherjee U, Samanta A, Biswas S, Ghosh S, Das S, Banerjee S, Maitra S. Chronic exposure to nonylphenol induces oxidative stress and liver damage in male zebrafish (Danio rerio): Mechanistic insight into cellular energy sensors, lipid accumulation and immune modulation. Chem Biol Interact 2022;351:109762. [PMID: 34843692 DOI: 10.1016/j.cbi.2021.109762] [Reference Citation Analysis]
78 Oke SL, Lee K, Papp R, Laviolette SR, Hardy DB. In Utero Exposure to Δ9-Tetrahydrocannabinol Leads to Postnatal Catch-Up Growth and Dysmetabolism in the Adult Rat Liver. Int J Mol Sci 2021;22:7502. [PMID: 34299119 DOI: 10.3390/ijms22147502] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
79 Gabbia D, Cannella L, De Martin S. The Role of Oxidative Stress in NAFLD-NASH-HCC Transition-Focus on NADPH Oxidases. Biomedicines 2021;9:687. [PMID: 34204571 DOI: 10.3390/biomedicines9060687] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
80 Hendrikx T, Binder CJ. Oxidation-Specific Epitopes in Non-Alcoholic Fatty Liver Disease. Front Endocrinol (Lausanne) 2020;11:607011. [PMID: 33362721 DOI: 10.3389/fendo.2020.607011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
81 Katsiki N, Stoian AP, Steiropoulos P, Papanas N, Suceveanu AI, Mikhailidis DP. Metabolic Syndrome and Abnormal Peri-Organ or Intra-Organ Fat (APIFat) Deposition in Chronic Obstructive Pulmonary Disease: An Overview. Metabolites 2020;10:E465. [PMID: 33203192 DOI: 10.3390/metabo10110465] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
82 Ju HQ, Lin JF, Tian T, Xie D, Xu RH. NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications. Signal Transduct Target Ther 2020;5:231. [PMID: 33028807 DOI: 10.1038/s41392-020-00326-0] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
83 Yuan Z, Xiao-Wei L, Juan W, Xiu-Juan L, Nian-Yun Z, Lei S. HIIT and MICT attenuate high-fat diet-induced hepatic lipid accumulation and ER stress via the PERK-ATF4-CHOP signaling pathway. J Physiol Biochem 2022. [PMID: 35315506 DOI: 10.1007/s13105-022-00884-7] [Reference Citation Analysis]
84 Zembroski AS, Buhman KK, Aryal UK. Proteome and phosphoproteome characterization of liver in the postprandial state from diet-induced obese and lean mice. J Proteomics 2021;232:104072. [PMID: 33309929 DOI: 10.1016/j.jprot.2020.104072] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
85 Hwang S, Wang X, Rodrigues RM, Ma J, He Y, Seo W, Park SH, Kim SJ, Feng D, Gao B. Protective and Detrimental Roles of p38α Mitogen-Activated Protein Kinase in Different Stages of Nonalcoholic Fatty Liver Disease. Hepatology 2020;72:873-91. [PMID: 32463484 DOI: 10.1002/hep.31390] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
86 Zhu B, Chan SL, Li J, Li K, Wu H, Cui K, Chen H. Non-alcoholic Steatohepatitis Pathogenesis, Diagnosis, and Treatment. Front Cardiovasc Med 2021;8:742382. [PMID: 34557535 DOI: 10.3389/fcvm.2021.742382] [Reference Citation Analysis]
87 Long S, Dong X, Liu H, Yan X, Tan B, Zhang S, Chi S, Yang Q, Liu H, Yang Y, Zhang H. Effect of dietary oxidized fish oil on liver function in hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ Epinephelus lanceolatus). Aquaculture Reports 2022;22:101000. [DOI: 10.1016/j.aqrep.2021.101000] [Reference Citation Analysis]
88 Seo SH, Fang F, Kang I. Ginger (Zingiber officinale) Attenuates Obesity and Adipose Tissue Remodeling in High-Fat Diet-Fed C57BL/6 Mice. Int J Environ Res Public Health 2021;18:E631. [PMID: 33451038 DOI: 10.3390/ijerph18020631] [Reference Citation Analysis]
89 Pinto C, Ninfole E, Benedetti A, Marzioni M, Maroni L. Involvement of Autophagy in Ageing and Chronic Cholestatic Diseases. Cells 2021;10:2772. [PMID: 34685751 DOI: 10.3390/cells10102772] [Reference Citation Analysis]
90 Shahein MR, Atwaa ESH, Radwan HA, Elmeligy AA, Hafiz AA, Albrakati A, Elmahallawy EK. Production of a Yogurt Drink Enriched with Golden Berry (Physalispubescens L.) Juice and Its Therapeutic Effect on Hepatitis in Rats. Fermentation 2022;8:112. [DOI: 10.3390/fermentation8030112] [Reference Citation Analysis]
91 Delli Bovi AP, Marciano F, Mandato C, Siano MA, Savoia M, Vajro P. Oxidative Stress in Non-alcoholic Fatty Liver Disease. An Updated Mini Review. Front Med (Lausanne) 2021;8:595371. [PMID: 33718398 DOI: 10.3389/fmed.2021.595371] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
92 Chen Y, Lian C, Sun Q, Wang T, Liu Y, Ye J, Gao L, Yang Y, Liu S, Shen Z, Liu Y. Ramulus Mori (Sangzhi) Alkaloids Alleviate High-Fat Diet-Induced Obesity and Nonalcoholic Fatty Liver Disease in Mice. Antioxidants 2022;11:905. [DOI: 10.3390/antiox11050905] [Reference Citation Analysis]
93 Khan S, Sharifi M, Bloukh SH, Edis Z, Siddique R, Falahati M. In vivo guiding inorganic nanozymes for biosensing and therapeutic potential in cancer, inflammation and microbial infections. Talanta 2021;224:121805. [PMID: 33379031 DOI: 10.1016/j.talanta.2020.121805] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
94 Infante-Menéndez J, López-Pastor AR, González-López P, Gómez-Hernández A, Escribano O. The Interplay between Oxidative Stress and miRNAs in Obesity-Associated Hepatic and Vascular Complications. Antioxidants (Basel) 2020;9:E607. [PMID: 32664383 DOI: 10.3390/antiox9070607] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
95 Luo M, Ma X, Jiang W, Zhang J, Liu W, Wei S, Liu H. Novel phosphanegold(I) thiolate complexes suppress de novo lipid synthesis in human lung cancer. European Journal of Medicinal Chemistry 2022. [DOI: 10.1016/j.ejmech.2022.114168] [Reference Citation Analysis]
96 Zhang Y, Xu J, Yang H. Hydrogen: An Endogenous Regulator of Liver Homeostasis. Front Pharmacol 2020;11:877. [PMID: 32595504 DOI: 10.3389/fphar.2020.00877] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
97 Huang Y, Wang S, Meng X, Chen N, Li S. Molecular Cloning and Characterization of Sirtuin 1 and Its Potential Regulation of Lipid Metabolism and Antioxidant Response in Largemouth Bass (Micropterus salmoides). Front Physiol 2021;12:726877. [PMID: 34646155 DOI: 10.3389/fphys.2021.726877] [Reference Citation Analysis]
98 Dai X, Kuang Q, Sun Y, Xu M, Zhu L, Ge C, Tan J, Wang B. Fisetin represses oxidative stress and mitochondrial dysfunction in NAFLD through suppressing GRP78-mediated endoplasmic reticulum (ER) stress. Journal of Functional Foods 2022;90:104954. [DOI: 10.1016/j.jff.2022.104954] [Reference Citation Analysis]
99 Liu T, Li R, Luo N, Lou P, Limesand SW, Yang Y, Zhao Y, Chen X. Hepatic Lipid Accumulation and Dysregulation Associate with Enhanced Reactive Oxygen Species and Pro-Inflammatory Cytokine in Low-Birth-Weight Goats. Animals 2022;12:766. [DOI: 10.3390/ani12060766] [Reference Citation Analysis]
100 Massart J, Begriche K, Corlu A, Fromenty B. Xenobiotic-Induced Aggravation of Metabolic-Associated Fatty Liver Disease. IJMS 2022;23:1062. [DOI: 10.3390/ijms23031062] [Reference Citation Analysis]
101 Drygalski K, Siewko K, Chomentowski A, Odrzygóźdź C, Zalewska A, Krętowski A, Maciejczyk M. Phloroglucinol Strengthens the Antioxidant Barrier and Reduces Oxidative/Nitrosative Stress in Nonalcoholic Fatty Liver Disease (NAFLD). Oxid Med Cell Longev 2021;2021:8872702. [PMID: 33510844 DOI: 10.1155/2021/8872702] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
102 Han H, Li X, Guo Y, Zheng M, Xue T, Wang L. Plant sterol ester of α-linolenic acid ameliorates high-fat diet-induced nonalcoholic fatty liver disease in mice: association with regulating mitochondrial dysfunction and oxidative stress via activating AMPK signaling. Food Funct 2021;12:2171-88. [DOI: 10.1039/d0fo02623a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
103 Tang G, Xu Y, Zhang C, Wang N, Li H, Feng Y. Green Tea and Epigallocatechin Gallate (EGCG) for the Management of Nonalcoholic Fatty Liver Diseases (NAFLD): Insights into the Role of Oxidative Stress and Antioxidant Mechanism. Antioxidants (Basel) 2021;10:1076. [PMID: 34356308 DOI: 10.3390/antiox10071076] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
104 Lee DH, Park JS, Lee YS, Bae SH. PERK prevents hepatic lipotoxicity by activating the p62-ULK1 axis-mediated noncanonical KEAP1-Nrf2 pathway. Redox Biology 2022. [DOI: 10.1016/j.redox.2022.102235] [Reference Citation Analysis]
105 Leslie J, Geh D, Elsharkawy AM, Mann DA, Vacca M. Metabolic dysfunction and cancer in HCV: shared pathways and mutual interactions. Journal of Hepatology 2022. [DOI: 10.1016/j.jhep.2022.01.029] [Reference Citation Analysis]
106 Zou Y, Chen Z, Sun C, Yang D, Zhou Z, Peng X, Zheng L, Tang C. Exercise Intervention Mitigates Pathological Liver Changes in NAFLD Zebrafish by Activating SIRT1/AMPK/NRF2 Signaling. Int J Mol Sci 2021;22:10940. [PMID: 34681600 DOI: 10.3390/ijms222010940] [Reference Citation Analysis]
107 Shiau J, Chuang Y, Cheng Y, Tang J, Hou M, Yen C, Chang H. Impacts of Oxidative Stress and PI3K/AKT/mTOR on Metabolism and the Future Direction of Investigating Fucoidan-Modulated Metabolism. Antioxidants 2022;11:911. [DOI: 10.3390/antiox11050911] [Reference Citation Analysis]
108 Huby T, Gautier EL. Immune cell-mediated features of non-alcoholic steatohepatitis. Nat Rev Immunol 2021. [PMID: 34741169 DOI: 10.1038/s41577-021-00639-3] [Reference Citation Analysis]
109 Lee M, Kim D, Park SJ, Kim KS, Park GD, Kim OK, Lee J. Artichoke Extract Directly Suppresses Inflammation and Apoptosis in Hepatocytes During the Development of Non-Alcoholic Fatty Liver Disease. J Med Food 2021;24:1058-67. [PMID: 34591699 DOI: 10.1089/jmf.2021.K.0069] [Reference Citation Analysis]
110 Rocha DFA, Machado-Junior PA, Souza ABF, Castro TF, Costa GP, Talvani A, Bezerra FS, Cangussú SD. Lycopene Ameliorates Liver Inflammation and Redox Status in Mice Exposed to Long-Term Cigarette Smoke. Biomed Res Int 2021;2021:7101313. [PMID: 34869769 DOI: 10.1155/2021/7101313] [Reference Citation Analysis]
111 Guo Y, Wang Q, Chen S, Xu C. Functions of amyloid precursor protein in metabolic diseases. Metabolism 2021;115:154454. [PMID: 33248065 DOI: 10.1016/j.metabol.2020.154454] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
112 Madduma Hewage S, Prashar S, O K, Siow YL. Lingonberry Improves Non-Alcoholic Fatty Liver Disease by Reducing Hepatic Lipid Accumulation, Oxidative Stress and Inflammatory Response. Antioxidants (Basel) 2021;10:565. [PMID: 33917360 DOI: 10.3390/antiox10040565] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
113 Yang YQ, Meng FY, Liu X, Zhang M, Gu W, Yan HL, Yu J, Yang XX. Distinct metabonomic signatures of Polygoni Multiflori Radix Praeparata against glucolipid metabolic disorders. J Pharm Pharmacol 2021;73:796-807. [PMID: 33734400 DOI: 10.1093/jpp/rgab012] [Reference Citation Analysis]
114 Kim J, Lee SK, Jeong SY, Cho HJ, Park J, Kim TM, Kim S. Cargo proteins in extracellular vesicles: potential for novel therapeutics in non-alcoholic steatohepatitis. J Nanobiotechnology 2021;19:372. [PMID: 34789265 DOI: 10.1186/s12951-021-01120-y] [Reference Citation Analysis]
115 Lee A, Yang M, Lee Y, Yang T, Wang C, Wang C. Gallic Acid Improves Diabetic Steatosis by Downregulating MicroRNA-34a-5p through Targeting NFE2L2 Expression in High-Fat Diet-Fed db/db Mice. Antioxidants 2022;11:92. [DOI: 10.3390/antiox11010092] [Reference Citation Analysis]
116 Liang L, Ye S, Jiang R, Zhou X, Zhou J, Meng S. Liensinine alleviates high fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) through suppressing oxidative stress and inflammation via regulating TAK1/AMPK signaling. Int Immunopharmacol 2022;104:108306. [PMID: 34999396 DOI: 10.1016/j.intimp.2021.108306] [Reference Citation Analysis]
117 Márquez-Quiroga LV, Arellanes-Robledo J, Vásquez-Garzón VR, Villa-Treviño S, Muriel P. Models of nonalcoholic steatohepatitis potentiated by chemical inducers leading to hepatocellular carcinoma. Biochem Pharmacol 2022;195:114845. [PMID: 34801522 DOI: 10.1016/j.bcp.2021.114845] [Reference Citation Analysis]
118 Shiraiwa M, Kitakaze T, Yamashita Y, Ukawa Y, Mukai K, Ashida H. Pectolinarigenin Induces Antioxidant Enzymes through Nrf2/ARE Pathway in HepG2 Cells. Antioxidants 2022;11:675. [DOI: 10.3390/antiox11040675] [Reference Citation Analysis]
119 Oke SL, Hardy DB. The Role of Cellular Stress in Intrauterine Growth Restriction and Postnatal Dysmetabolism. Int J Mol Sci 2021;22:6986. [PMID: 34209700 DOI: 10.3390/ijms22136986] [Reference Citation Analysis]
120 Daher-Abdi A, Olvera Hernández S, Reyes Castro LA, Mezo-González CE, Croyal M, García-Santillán JA, Ouguerram K, Zambrano E, Bolaños-Jiménez F. Maternal DHA Supplementation during Pregnancy and Lactation in the Rat Protects the Offspring against High-Calorie Diet-Induced Hepatic Steatosis. Nutrients 2021;13:3075. [PMID: 34578953 DOI: 10.3390/nu13093075] [Reference Citation Analysis]
121 Lee SC, Jee SC, Kim M, Kim S, Shin MK, Kim Y, Sung JS. Curcumin Suppresses the Lipid Accumulation and Oxidative Stress Induced by Benzo[a]pyrene Toxicity in HepG2 Cells. Antioxidants (Basel) 2021;10:1314. [PMID: 34439562 DOI: 10.3390/antiox10081314] [Reference Citation Analysis]
122 Teratani T, Tomita K, Toma-fukai S, Nakamura Y, Itoh T, Shimizu H, Shiraishi Y, Sugihara N, Higashiyama M, Shimizu T, Inoue I, Takenaka Y, Hokari R, Adachi T, Shimizu T, Miura S, Kanai T. Redox-dependent PPARγ/Tnpo1 complex formation enhances PPARγ nuclear localization and signaling. Free Radical Biology and Medicine 2020;156:45-56. [DOI: 10.1016/j.freeradbiomed.2020.06.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
123 Petriv N, Neubert L, Vatashchuk M, Timrott K, Suo H, Hochnadel I, Huber R, Petzold C, Hrushchenko A, Yatsenko AS, Shcherbata HR, Wedemeyer H, Lichtinghagen R, Falfushynska H, Lushchak V, Manns MP, Bantel H, Semchyshyn H, Yevsa T. Increase of α-dicarbonyls in liver and receptor for advanced glycation end products on immune cells are linked to nonalcoholic fatty liver disease and liver cancer. Oncoimmunology 2021;10:1874159. [PMID: 33628620 DOI: 10.1080/2162402X.2021.1874159] [Reference Citation Analysis]
124 Chen J, Chen X, Li J, Luo B, Fan T, Li R, Liu X, Song B, Jia X, Zhong S. Preparation and Characterization of Nano-Selenium Decorated by Chondroitin Sulfate Derived from Shark Cartilage and Investigation on Its Antioxidant Activity. Marine Drugs 2022;20:172. [DOI: 10.3390/md20030172] [Reference Citation Analysis]
125 do Carmo MAV, Granato D, Azevedo L. Antioxidant/pro-oxidant and antiproliferative activities of phenolic-rich foods and extracts: A cell-based point of view. Adv Food Nutr Res 2021;98:253-80. [PMID: 34507644 DOI: 10.1016/bs.afnr.2021.02.010] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
126 Gallia MC, Echeverri Del Sarto J, Bongiovanni GA. Sustainable and efficient protocols for in vitro germination and antioxidants production from seeds of the endangered species Araucaria araucana. J Genet Eng Biotechnol 2021;19:181. [PMID: 34882279 DOI: 10.1186/s43141-021-00280-6] [Reference Citation Analysis]
127 Abd El-Hameed NM, Abd El-Aleem SA, Khattab MA, Ali AH, Mohammed HH. Curcumin activation of nuclear factor E2-related factor 2 gene (Nrf2): Prophylactic and therapeutic effect in nonalcoholic steatohepatitis (NASH). Life Sci 2021;285:119983. [PMID: 34599938 DOI: 10.1016/j.lfs.2021.119983] [Reference Citation Analysis]
128 Zumbro EL, Rao M, Balcom-Luker S, Broughton KS, LeMieux MJ. Whey Protein Supplementation Improves the Glycemic Response and May Reduce Non-Alcoholic Fatty Liver Disease Related Biomarkers in Women with Polycystic Ovary Syndrome (PCOS). Nutrients 2021;13:2451. [PMID: 34371959 DOI: 10.3390/nu13072451] [Reference Citation Analysis]
129 Morán-Costoya A, Proenza AM, Gianotti M, Lladó I, Valle A. Sex Differences in Nonalcoholic Fatty Liver Disease: Estrogen Influence on the Liver-Adipose Tissue Crosstalk. Antioxid Redox Signal 2021;35:753-74. [PMID: 33736456 DOI: 10.1089/ars.2021.0044] [Reference Citation Analysis]
130 Gad El-Hak HN, Abdelrazek HMA, Zeidan DW, Almallah AA, Khaled HE. Assessment of changes in the liver of pregnant female rats and their fetuses following monosodium glutamate administration. Environ Sci Pollut Res Int 2021;28:44432-41. [PMID: 33847887 DOI: 10.1007/s11356-021-13557-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
131 Podszun MC, Frank J. Impact of vitamin E on redox biomarkers in non-alcoholic fatty liver disease. Redox Biol 2021;42:101937. [PMID: 33773953 DOI: 10.1016/j.redox.2021.101937] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
132 González-Fernández R, Grigoruţă M, Chávez-Martínez S, Ruiz-May E, Elizalde-Contreras JM, Valero-Galván J, Martínez-Martínez A. Liver proteome alterations in psychologically distressed rats and a nootropic drug. PeerJ 2021;9:e11483. [PMID: 34055494 DOI: 10.7717/peerj.11483] [Reference Citation Analysis]
133 Han JH, Park MH, Myung CS. Garcinia cambogia Ameliorates Non-Alcoholic Fatty Liver Disease by Inhibiting Oxidative Stress-Mediated Steatosis and Apoptosis through NRF2-ARE Activation. Antioxidants (Basel) 2021;10:1226. [PMID: 34439474 DOI: 10.3390/antiox10081226] [Reference Citation Analysis]
134 Mass Sanchez PB, Krizanac M, Weiskirchen R, Asimakopoulos A. Understanding the Role of Perilipin 5 in Non-Alcoholic Fatty Liver Disease and Its Role in Hepatocellular Carcinoma: A Review of Novel Insights. Int J Mol Sci 2021;22:5284. [PMID: 34067931 DOI: 10.3390/ijms22105284] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
135 Shabalala SC, Dludla PV, Mabasa L, Kappo AP, Basson AK, Pheiffer C, Johnson R. The effect of adiponectin in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and the potential role of polyphenols in the modulation of adiponectin signaling. Biomed Pharmacother 2020;131:110785. [PMID: 33152943 DOI: 10.1016/j.biopha.2020.110785] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
136 Gonzalez A, Huerta-Salgado C, Orozco-Aguilar J, Aguirre F, Tacchi F, Simon F, Cabello-Verrugio C. Role of Oxidative Stress in Hepatic and Extrahepatic Dysfunctions during Nonalcoholic Fatty Liver Disease (NAFLD). Oxid Med Cell Longev 2020;2020:1617805. [PMID: 33149804 DOI: 10.1155/2020/1617805] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
137 Shan D, Wang J, Di Q, Jiang Q, Xu Q. Steatosis induced by nonylphenol in HepG2 cells and the intervention effect of curcumin. Food Funct 2021. [PMID: 34904613 DOI: 10.1039/d1fo02481g] [Reference Citation Analysis]
138 Kwon HC, Kim DH, Jeong CH, Kim YJ, Han JH, Lim SJ, Shin DM, Kim DW, Han SG. Tebuconazole Fungicide Induces Lipid Accumulation and Oxidative Stress in HepG2 Cells. Foods 2021;10:2242. [PMID: 34681291 DOI: 10.3390/foods10102242] [Reference Citation Analysis]
139 Xiao X, Hu Q, Deng X, Shi K, Zhang W, Jiang Y, Ma X, Zeng J, Wang X. Old wine in new bottles: Kaempferol is a promising agent for treating the trilogy of liver diseases. Pharmacol Res 2021;175:106005. [PMID: 34843960 DOI: 10.1016/j.phrs.2021.106005] [Reference Citation Analysis]
140 Di Ciaula A, Calamita G, Shanmugam H, Khalil M, Bonfrate L, Wang DQ, Baffy G, Portincasa P. Mitochondria Matter: Systemic Aspects of Nonalcoholic Fatty Liver Disease (NAFLD) and Diagnostic Assessment of Liver Function by Stable Isotope Dynamic Breath Tests. Int J Mol Sci 2021;22:7702. [PMID: 34299321 DOI: 10.3390/ijms22147702] [Reference Citation Analysis]
141 Barrios-Maya MA, Ruiz-Ramírez A, Quezada H, Céspedes Acuña CL, El-Hafidi M. Palmitoyl-CoA effect on cytochrome c release, a key process of apoptosis, from liver mitochondria of rat with sucrose diet-induced obesity. Food Chem Toxicol 2021;154:112351. [PMID: 34171418 DOI: 10.1016/j.fct.2021.112351] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
142 Karami S, Poustchi H, Sarmadi N, Radmard AR, Ali Yari F, Pakdel A, Shabani P. Association of anti-oxidative capacity of HDL with subclinical atherosclerosis in subjects with and without non-alcoholic fatty liver disease. Diabetol Metab Syndr 2021;13:121. [PMID: 34702329 DOI: 10.1186/s13098-021-00741-5] [Reference Citation Analysis]
143 Fouda S, Khan A, Chan SMH, Mahzari A, Zhou X, Qin CX, Vlahos R, Ye JM. Exposure to cigarette smoke precipitates simple hepatosteatosis to NASH in high-fat diet fed mice by inducing oxidative stress. Clin Sci (Lond) 2021;135:2103-19. [PMID: 34427662 DOI: 10.1042/CS20210628] [Reference Citation Analysis]
144 Ezhilarasan D, Lakshmi T, Kosuru R. A Molecular Insight into the Role of Antioxidants in Nonalcoholic Fatty Liver Diseases. Oxidative Medicine and Cellular Longevity 2022;2022:1-15. [DOI: 10.1155/2022/9233650] [Reference Citation Analysis]
145 Kurajoh M, Fukumoto S, Yoshida S, Akari S, Murase T, Nakamura T, Ishii H, Yoshida H, Nagata Y, Morioka T, Mori K, Imanishi Y, Hirata K, Emoto M. Uric acid shown to contribute to increased oxidative stress level independent of xanthine oxidoreductase activity in MedCity21 health examination registry. Sci Rep 2021;11:7378. [PMID: 33795813 DOI: 10.1038/s41598-021-86962-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
146 Goh YQ, Cheam G, Wang Y. Understanding Choline Bioavailability and Utilization: First Step Toward Personalizing Choline Nutrition. J Agric Food Chem 2021. [PMID: 34392687 DOI: 10.1021/acs.jafc.1c03077] [Reference Citation Analysis]
147 Li P, Ma Y, Yu C, Wu S, Wang K, Yi H, Liang W. Autophagy and Aging: Roles in Skeletal Muscle, Eye, Brain and Hepatic Tissue. Front Cell Dev Biol 2021;9:752962. [PMID: 34778264 DOI: 10.3389/fcell.2021.752962] [Reference Citation Analysis]
148 Wang J, Du MM, Du Y, Li JX. HA-20 prevents hepatocyte steatosis in metabolic-associated fatty liver disease via regulating Ca2+ relative signalling pathways. Eur J Pharmacol 2022;:174838. [PMID: 35218717 DOI: 10.1016/j.ejphar.2022.174838] [Reference Citation Analysis]
149 Rives C, Fougerat A, Ellero-Simatos S, Loiseau N, Guillou H, Gamet-Payrastre L, Wahli W. Oxidative Stress in NAFLD: Role of Nutrients and Food Contaminants. Biomolecules 2020;10:E1702. [PMID: 33371482 DOI: 10.3390/biom10121702] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
150 Alshehri AS, El-Kott AF, El-Kenawy AE, Khalifa HS, AlRamlawy AM. Cadmium chloride induces non-alcoholic fatty liver disease in rats by stimulating miR-34a/SIRT1/FXR/p53 axis. Sci Total Environ 2021;784:147182. [PMID: 34088068 DOI: 10.1016/j.scitotenv.2021.147182] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]